Sealing/Joining Technology for Gas Separation Membranes and SOFCs

22nd Annual Conference on Fossil Energy Materials July 7 – 10, 2008

K. S. Weil, J. S. Hardy, and J. T. Darsell Pacific Northwest National Laboratory Richland, WA

Support: U. S. DOE (Fossil Energy) Advanced Research Materials Program

The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. DOE under Contract DE-AC06-76RLO 1830

Materials Joining: An Enabling Technology

- Project Objectives: To develop joining/sealing technology that enables gas separation processes and high-temperature power generation
- Project Accomplishments:
 - New low-cost process for ceramic joining: air brazing
 - Several new families of air braze filler metals
 - Patent issuing on joining Al₂O₃ using Al-based conversion technique
 - Successful joining of porous H₂ separation support tubes
 - Demonstration of the viability of ceramic membrane joining for SOFCs and H₂ and O₂ separation membranes
- Present Focus:
 - Develop joining materials/practices that meet current DOE-FE needs on electrochemical devices
 - Process optimization
 - Performance feedback from prototypic devices/equipment fabrication and operation
 - Understand structure-bonding/property relationships in joining systems under development
 - Alloying effects
 - Environmental exposure testing

Develop coal as a potential source of clean hydrogen fuel for use in fuel cells, turbines and various process applications

- Hydrogen separation membranes to remove H₂ from the coal gas stream and enable higher product yield due via the water-gas-shift reaction
- Oxygen separation membranes to enhance H₂ production and coal gasification/combustion efficiencies by eliminating dilution effects of N₂ in air and simultaneously mitigate NO_x formation
- Solid oxide fuel cells to augment power generation efficiency via electrochemical conversion

Leveraged Collaborations

- <u>Washington State University, Argonne National Laboratory, and Marshall Space</u>
 <u>Flight Center</u>: structural and property analysis of molten Ag-CuO
- <u>Alfred University and Aachen University</u>: employing the new brazing technique in joining large tubular oxygen separation membranes to metallic gas manifolds
- <u>Delphi Corporation</u>: demonstrating the use of a new binary braze filler metal in joining solid oxide fuel cell components
- <u>Battelle Memorial Institute</u>: demonstrating the use of air brazing metal in fabricating high-temperature microchannel devices
- <u>Bechtel Bettis Inc.</u>: developing a new braze filler metal alloy for use in YSZ
 electrochemical probes to be employed in pressurized water reactor applications
- <u>Aegis, Inc. and Williams Advanced Materials</u>: demonstrating methods of manufacturing air braze filler metals for various energy applications
- <u>Corning Inc.</u>: demonstrating the use of a new ternary braze filler metal in joining solid oxide fuel cell components
- <u>Ceramic Tubular Products</u>: developing ceramic joining approaches for nuclear energy applications

Fundamental Studies

- Structure-bonding/property relationships
- Alloying effects: Pd, Al, TiO₂
- Two-phase wetting phenomena
- Effect of particle additions

Applied Studies

- Braze process optimization
- Demonstration in prototypic devices/equipment
- Low-cost fabrication techniques
- Environmental exposure testing

Fundamental Studies

Understanding Mutual Solubility in Ag-CuO

- Objective: to gain an understanding of the physicochemical properties of metal-metal oxide solutions via the characterization of molten Ag-CuO alloys as a function of composition and temperature
- Approach:
 - Atomistic structure:
 - Aerodynamic levitation containerless study avoids contamination due to dissolution of substrate material into the high temperature melt
 - Laser heating
 - High energy x-ray scattering the Advanced Photon Source (APS) synchrotron at ANL provides x-rays with sufficient energy for full penetration of levitated samples
 - Density, surface tension, and viscosity:
 - Electrostatic levitation at Marshall Space Flight Center (MSFC) containerless, to avoid contamination
 - Laser heating
 - Digital processing of images from a high-speed video
 - Induced surface oscillations natural frequency (surface tension) and rate of decay (viscosity)

Correlation of structure and properties

- High (99.999%) purity Ag-Cu alloy wires were fabricated at Williams Advanced Materials:
 - 99.999mol% Ag (100Ag); 99.46mol% Ag (99.5Ag); 98.87mol% Ag (99Ag)
 - 90.43mol% Ag (90Ag); 65.38mol% Ag (65Ag); 40.39mol% Ag (40Ag)
 - 19.99mol% Ag (20Ag); 15.08mol% Ag (15Ag); 10.08mol% Ag (10Ag)
 - 99.999 mol% Cu (0Ag)
- Segments of wire were pressed in a pair of hemispherical dies to form 2 3 mm spheres
- 65Ag 99.5Ag: pre-oxidized at 600 650°C for 1 2.5 hours to darken the surface for better absorption of laser energy
- Other compositions: oxidized in-situ during heating and melting

Experimental Apparatus: Aerodynamic Levitation

• 0Ag – 65Ag

- Obtained X-ray scattering patterns of the liquid alloys at various temperatures
- Data reduction is currently in progress
- 90Ag 100Ag
 - Too reflective to couple with the laser well enough to melt
- The high purity wires of 90Ag 100Ag alloys were cut into 1 2 cm long segments
- The wire segments were placed in a 1.5 mm dia thin-walled carboncoated fused quartz capillary tube
 - These measurements were not containerless, therefore:
 - X-ray scattering measurements were performed on the empty capillary tube
 - The signal from the empty capillary tube will be subtracted from the measurement run when it contained a sample

Capillary Tube X-ray Scattering Measurements

- X-ray scattering patterns have been obtained for the liquid 65Ag 100Ag alloys at various temperatures
- Data reduction is currently in progress

Status: Electrostatic Levitation

- Preliminary work at MSFC to determine levitation and heating parameters for Ag-CuO alloys has shown that it is difficult to maintain levitation during heating
- Method works with end-point compositions, but not with the alloys thus far
- Currently attempting electrostatic levitation of samples that were previously melted on the aerodynamic levitator at ANL

Surface tension: Rayleigh's formula

 $h = \sqrt{\frac{l(l-1)(l+2)\gamma}{3\pi m}}$

f = natural frequency l = oscillation mode γ = surface tension m = mass

Viscosity: Lamb's formula

$$\tau_{l} = \frac{\rho R_{o}^{2}}{(l-1)(2l+1)\mu}$$

 τ = exponential time constant I = oscillation mode ρ = density R_o = undeformed spherical radius μ = viscosity

In-Situ Wetting Transition Studies

Applied Studies

- Objective: optimize the air brazing process to hermetically seal BSCF to Nicrofer 6025
 - BSCF: $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (CTE = 18.5 x 10⁻⁶ K⁻¹)
 - Nicrofer 6025: 0.2 C, 2AI, 11 Fe, 25 Cr, bal. Ni (CTE = 17.0 x 10⁻⁶ K⁻¹)
- Test Variables
 - Filler metal composition
 - Intermediate and soak temperature(s)
 - Intermediate and soak time(s)
 - Heating/cooling rates
- Experimental methodology
 - Determine the initial filler metal composition based on prior wetting/reactivity data
 - 1st series of brazing trials: employ the standard heat treatment schedule and examine effects (interfacial analysis)
 - 2nd series of brazing trials: incorporate compositional/heat treatment schedule modifications and examine "robustness" of the changes using the Box approach
 - Fine tuning brazing trials: joint analysis and hermeticity testing

Trial 1 Joining Conditions:

- Filler metal: 8mol% CuO in Ag
- Applied as a 70% solids paste mixture via stencil printing -125μm (5mil) thick layer
- Heat treated in air at 3°C/min to 980°C and held for 10min

Higher Heating Rate, Lower Soak Time/Temp

Trial 4 Joining Conditions:

- Filler metal: 8mol% CuO in Ag
- Applied as a 70% solids paste mixture via stencil printing 125 μ m (5mil) thick layer
- Heat treated in air at 10°C/min to 970°C and held for 0min, cooled at 10°C/min

Trial 6 Joining Conditions:

- Filler metal: 8mol% CuO in Ag
- Applied as a 70% solids paste mixture via stencil printing 125 μ m (5mil) thick layer
- Heat treated in air at 10°C/min to 990°C and held for 0min, cooled at 100°C/min to 900°C and at 10°C/min to 300°C

Trial 7 Joining Conditions:

- Filler metal: 8mol% CuO in Ag
- Applied as a 70% solids paste mixture via stencil printing 125 μ m (5mil) thick layer
- Heat treated in air at 10°C/min to 990°C and held for 0min, cooled at 100°C/min to 930°C and at 10°C/min to 300°C

SOFC/Reformed Natural Gas Studies

- In short-to-mid-term (0 2000h) testing, Ag-CuO braze seals work well (reformed natural gas fuel, 750°C, slow load/thermal cycling)
- Some problems with excessive filler metal flow
- After ~2000h, begin to see signs of dual atmosphere degradation

Tracking Dual Atmosphere Effects

- Statistical test methodology
- Two test temperatures: 750 and 850°C
- Exposure times: 500, 1000, 2000, 3000, 4000, and 5000 hrs
- YSZ sensor will track seal integrity

Tracking Dual Atmosphere Effects

Testing Underway

Dual Atmosphere Reactions

Ag2CuO brazed at 980°C; dual atm exposure at 850°C for 500hrs

- Materials joining processes that enable a wide variety of technologies important to efficient fossil fuel utilization:
 - ▶ Gas separation (H₂/O₂)
 - SOFC fabrication
 - Electrochemical sensors
- Fundamental studies focused on obtaining information that enables the design of joining processes that meet DOE-FE needs:
 - Structure-bonding/property relationships
 - Alloying effects: Pd, Al, TiO₂, CoO
 - Two-phase wetting phenomena
 - Effect of particle additions
- Applied studies focused on solving near-term DOE-FE joining issues:
 - Braze process optimization
 - Demonstration in prototypic devices/equipment
 - Low-cost fabrication techniques
 - Environmental exposure testing

Pacific Northwest NATIONAL LABORATORY

- Complete our physicochemical studies on Ag-CuO
- Examine dual atmosphere effects in air brazed joints
- Explore non-silver based air braze systems
- Investigate transient liquid phase concepts → development of air braze filler metals with higher re-melt temperatures
- Develop and evaluate joining processes for:
 - Various high temperature materials
 - Refractory metal alloys
 - Metal matrix composites
 - Coated alloys
 - ODS alloys
 - SiC and SiC_f/SiC composites
 - Low-cost, high-temperature recuperator for CHP applications
 - High-temperature, ceramic-based microchannel devices

- Argonne National Laboratory
 Chris Benmore
- Materials Development , Inc.
 - Rick Weber
- Battelle Memorial Institute
 - Paul George
- Aachen University
 - Sabine Dabbarh
- Aegis Technology, Inc.
 - Tim Lin
 - Chuck Tan
- Corning, Inc.
 - Dillip Chatterjee

- Alfred University
 - Alan Meier
 - Jared Friant
- **Bechtel Bettis Laboratory**
 - Jim Hardy
- Marshall Space Flight Center
 - Jan Rogers
 - Trudy Allen
- Delphi Corporation
 - Karl Haltiner
 - Shubhashish Mukerjee

Applications: H₂ & O₂ Separations

Applications: Solid Oxide Fuel Cells & Sensors

