

Designing and Implementing an Advanced Metering Program at the U.S. Postal Service

William Golove WHGolove@lbl.gov Lawrence Berkeley National Laboratory

Energy 2006 Chicago, IL August 6-9, 2006

Origins – e USPS California Advanced Metering Pilot

- Electricity restructuring in CA
- CA energy crisis 2000/2001
 - Rolling blackouts
 - High/volatile energy prices
- California Energy Commission (CEC) grant program to develop demand response capabilities among large electricity users (funded meters, demand controls, etc based on demonstrated kW reduction)
- New energy data management products available (web-based, near real time, flexible reporting capabilities, etc)
- USPS recognized increased need for data for:
 - Energy commodity purchases in deregulated market
 - Energy efficiency project design
- Originally, motivated by business needs and desire to cooperate with needs of the State (reduce peak demand)
- Now, EPACT requirements also

Key Features of California Advanced Metering Pilot

- 24 large USPS processing facilities in CA
- Project included:
 - Facility level interval electric meters
 - HVAC and other equipment controls
 - Web-based data access, including standard and custom analysis and graphics
 - Two one-day training sessions
- Shortcoming
 - Access to USPS network denied (no real time data)
 - Phone line access only (once a day polling)
- Partnered with Viron (now Chevron Energy Solutions) who provided UtilityVision energy data management platform
- Demonstrated 4.7MW of demand response potential (noncoincident) across all 24 sites
- Completely funded by \$1.2M CEC grant
- In addition, FEMP funded: Using Energy Information Systems (EIS):`A Guidebook for the U.S. Postal Service

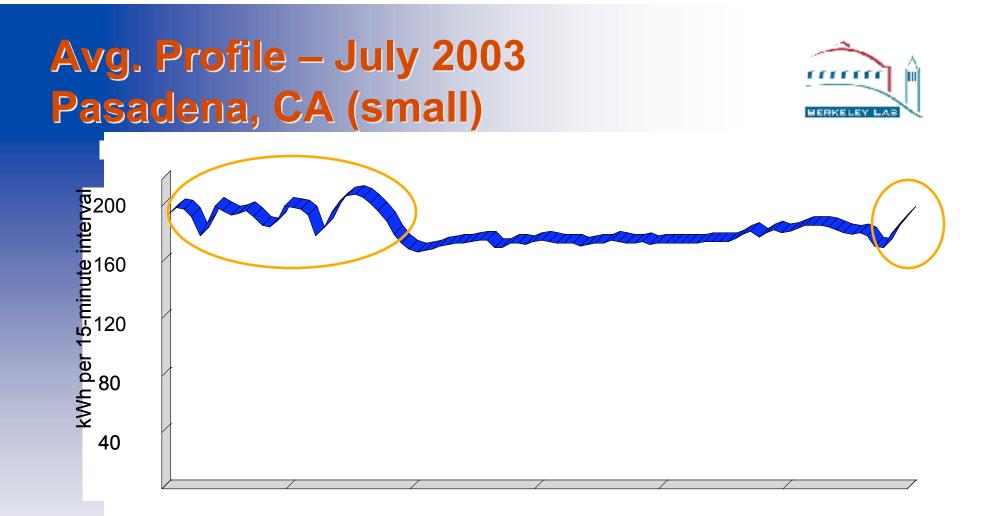
Potential Sources of Benefits from Advanced Metering

- sed on pilot success, LBNL was asked by USPS National Energ Program Committee to identify potential sources of benefits and develop business case for national advanced metering program
- More effective electricity and gas commodity procurements
 - Detailed usage history helps reduce risk for suppliers
- Improve facility operations & maintenance (O&M)
 - Establish consumption benchmarks (with sub-metering)
 - Identify equipment problems through changes in consumptio patterns
 - Prevent equipment damage (with sub-metering)
- Improve energy efficiency retrofit project design
 - Detailed equipment usage (with sub-metering)
 - Verify projected savings
- Reduce demand charges
- Reduce unnecessary energy consumption

Potential Sources of Benefits from Advanced Metering (cont.)

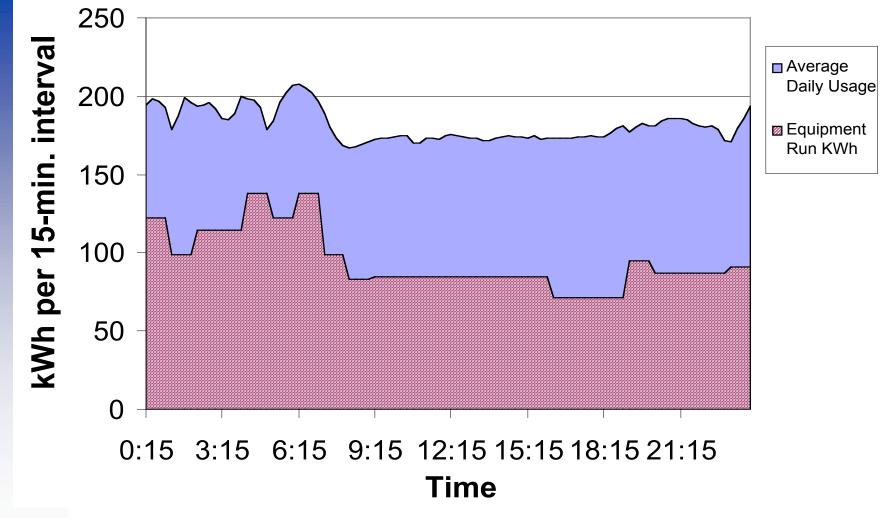
- Emergency management system
 - Controls and automation facilitate quick response
 - Prevent equipment damage (with sub-metering and controls)
- Tariff analysis
 - Evaluate alternative rates and supply options
- Reduce utility billing errors
 - Estimate bills, identify errors
- Evaluate potential benefits from economic (price response) and reliability (grid emergency) demand response programs
 - Identify load reduction opportunities
 - Monitor reductions

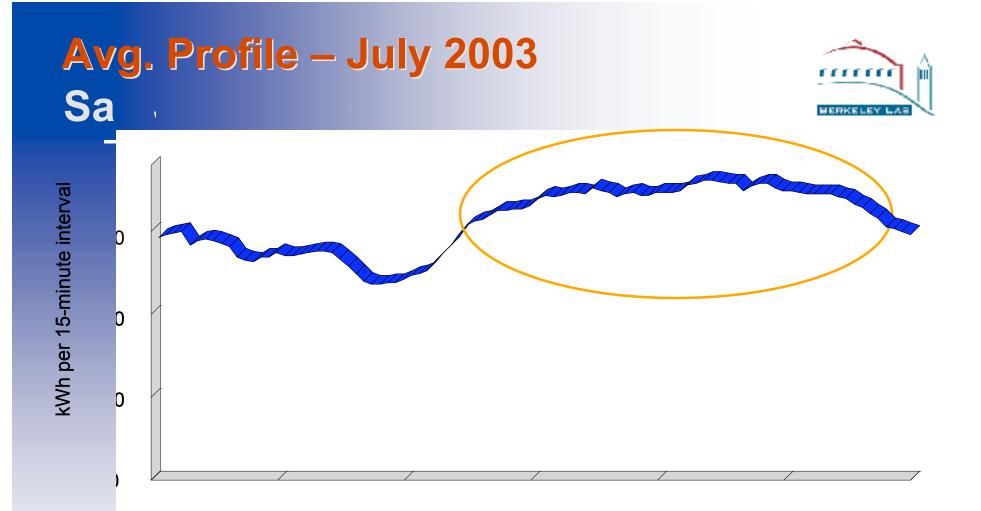
Nationwide Large Facility Statistics: P&DCs, BMCs, and AMC/AMFs


Category	Size	P&DC count	P&DC Avg. Sq. Ft.	BMC count	BMC Avg. Sq. Ft.	AMC/AMF Count	AMC/AMF Avg. Sq. Ft.
Small	Under 200K sq ft.	132	106,818 (min. 21 sq. ft.)	0	n/a	n/a	106,818 (min. 800 sq. ft.)
Medium	>200K and >600K sq. ft.	118	330,833	18	531,022 (min. 336K sq. ft.)	5	268,192 (max. 380K sq. ft.)
Large	>600K sq. ft.	30	901,935 (max. 1.5M sq. ft.)	2	1,129,415 (max. 1.5M sq. ft.)	1	638,000
	Totals	280		20		6	

Representative P&DC sites*

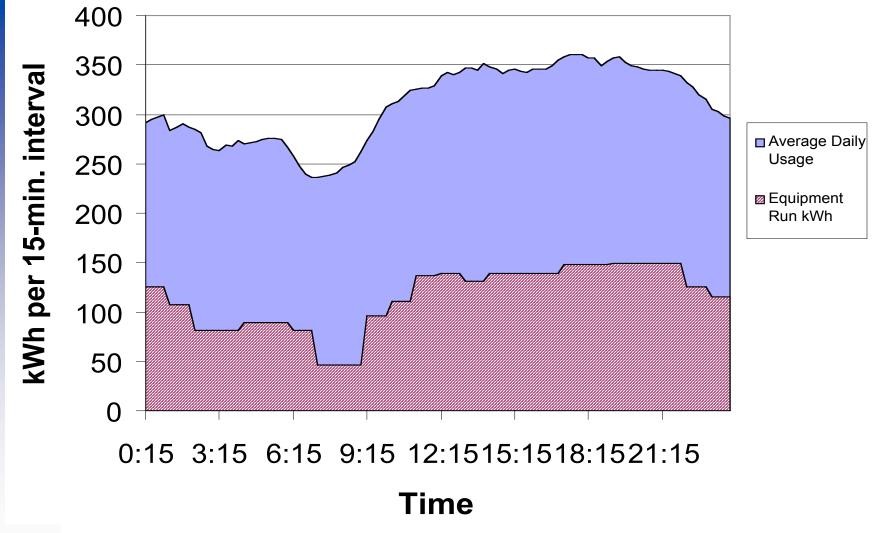
(Category	Location	Int. Sq. Ft.		
	Small	Pasadena, CA	152,895		
	Medium	San Jose, CA	394,442		
	Large	Oakland, CA	827,587		


*Representative sites selected based on average size and availability of 15-minute interval data from UtilityVision system.


Highest Use Period : 11:00 p.m. – 8:00 a.m. Summer Stats (May – Oct): Max 15-min. kWh: **226** Min 15-min kWh: **116**

Average Load with Estimate* of Process Equipment Use – Pasadena, CA

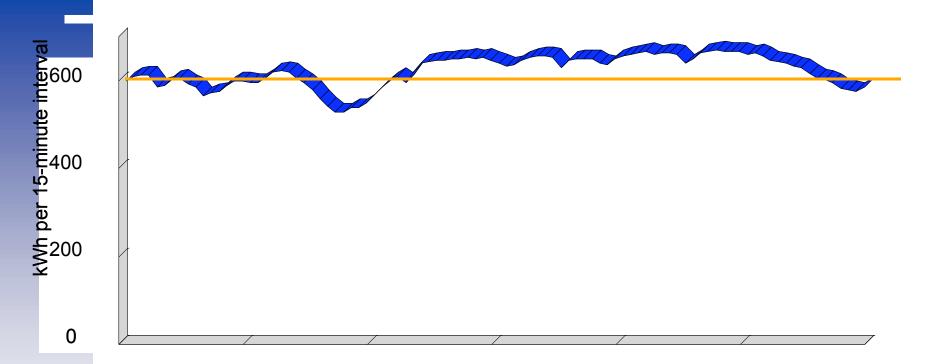
*Some equipment run information not available


 Highest Use Period:
 8:00 a.m. - 11:00 p.m.

 Summer Stats (May - Oct):
 Max 15-min. kWh: 406

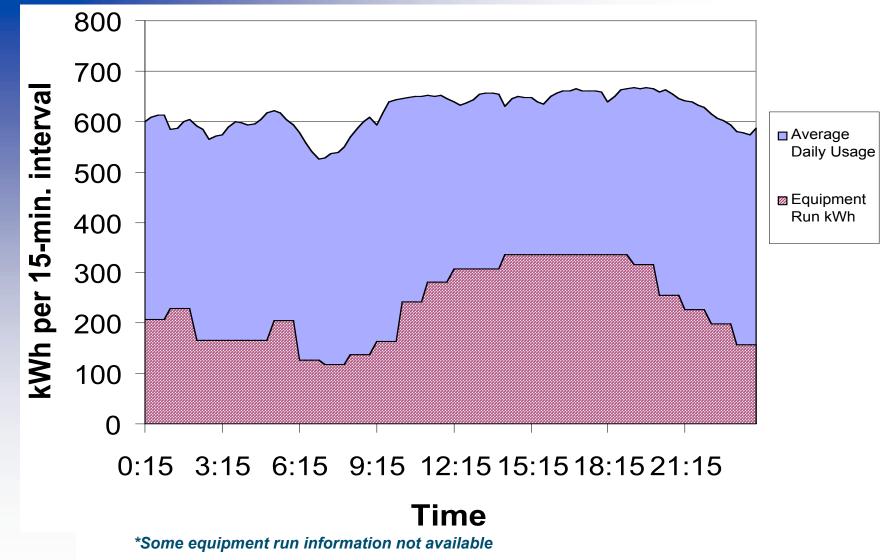
 Min 15-min kWh: 148

Average Load with Estimate* of Process Equipment Use – San Jose, CA



*Some equipment run information not available

Avg. Profile – July 2003 Oakland, CA (large)



Fairly consistent all day, slightly higher in afternoon Summer Stats (May – Oct): Max 15-min. kWh: **742** Min 15-min. kWh: **392**

Average Load with Estimate* of Process Equipment Use – Oakland, CA

Calculating Benefits – O&M and Procurement Savings

- Average utility bill costs by facility size
 - Small: \$500K
 - Medium: \$1.0M
 - Large: \$1.5M
- Estimated annual savings of 1%, 2% and 3%
- Estimated costs for low-, medium- and high-tech meterin solutions
- Applied to facilities likely to install telemetering:
 - P&DCs
 - BMCs
 - Medium and large AMC/AMFs
- NPV at 5% over 5 years, installation costs in year 0

Calculating Benefits – Energy Efficiency Retrofit Designs

- National scenarios based on potential annual estimated savings from EE opportunities
 - Low: \$10M
 - Medium: \$30M
 - High: \$50M
- Estimated annual savings of 1%, 5% and 10%
- Applied to facilities likely to install telemetering:
 - P&DCs
 - BMCs
 - Medium and large AMC/AMFs

National Advanced Metering Pilot – Objectives

Based on success in first pilot, selected Chevron Energy Solutions to install advanced meters and UtilityVision at six sites:

- Establish full access to USPS network
- Validate findings from California pilot
- Provide interval data for commodity purchases
- Provide interval data for energy efficiency retrofit project design
- Better understand components of demand
 - **Process loads**
 - HVAC
 - Compressed air
 - Lighting
 - Plug loads
 - Other
- Improve overall facility O&M
- Improve chiller O&M (alarms, etc)
- More effective participation in demand response programs
- Better understand performance of on-site generation

National Advanced Metering Pilot – Sub-metering Protocol Design

- One key question to be addressed in pilot: how to design a cost-effective sub-metering plan
- Two sites of six in pilot receive sub-meters
- 18 sub-metering points funded
- Accomplish different goals at different facilities
 - Chiller O&M
 - On-site generation
 - Process load

Financial Analysis of National Advanced Metering Program

Business Case: Net Present Value of Advanced Metering Program

Discount Rate =	5.00%					
Facilities Benefitting (%) - Comm =	50%					
Facilities Benefitting (%) - O&M =	50%					
Facilities Benefitting (%) - EE =	50%					
Year	0	1	2	3	4	;
Commodity Procurements		\$256,500	\$513,000	\$769,500	\$1,026,000	\$1,282,500
O&M Improvements		\$513,000	\$1,026,000	\$1,539,000	\$2,052,000	\$2,565,000
EE Project Design		\$150,000	\$300,000	\$450,000	\$600,000	\$750,000
Telemetering Investment	(\$7,000,000)					
Telemetering Costs		(\$345,600)	(\$345,600)	(\$345,600)	(\$345,600)	(\$345,600)
Annual Cash Flow	(\$7,000,000)	\$573,900	\$1,493,400	\$2,412,900	\$3,332,400	\$4,251,900
Discounted Cash Flow	(\$7,000,000)	\$546,571	\$1,354,558	\$2,084,354	\$2,741,574	\$3,331,475
Net Present Value	\$3,058,532					

Conclusions

- An well-designed advanced metering program makes business sense for the USPS, even absent EPAct 2005 requirements
- (Near) real time access to data is key to maximizing benefits
- No obvious rule of thumb for designing submetering protocols, although effective submetering likely to add significant value
- Metering is just a start
 - Proper analysis necessary
 - Effective use must be made of data