
NASA TM-1998-208470

Field Guide for Designing Human Interaction
With Intelligent Systems
Carroll G. Thronesbery and Jane T. Malin

July 1998

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information.
The NASA STI Program Office provides access
to the NASA STI Database, the largest
collection of aeronautical and space science STI
in the world. The Program Office is also
NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to be
of continuing reference value. NASA’s
counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent
of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical confer-
ences, symposia, seminars, or other meetings
sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and mission, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access Help
Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

• Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard
Hanover, MD 21076-1320

NASA TM-1998-208470

Field Guide for Designing Human Interaction
With Intelligent Systems
Carroll G. Thronesbery
Metrica

Jane T. Malin
Lyndon B. Johnson Space Center

July 1998

ii

Available from:

NASA Center for AeroSpace Information National Technical Information Service
7121 Standard 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161
Price Code: A17 Price Code: A10

CONTENTS

Page

iii

1. Introduction to Field Guide .. 1

2. Rationale for Development Approach .. 2
2.1 Goal-Oriented Analysis and Design ... 2

2.2 Iterative, Spiral, and Incremental Prototypes.. 3

2.3 Participatory Design ... 3

3. Development Activities and Products... 4
3.1 Select and Scope the Project... 6

3.2 Determine and Revise System Goals.. 6

3.3 Develop Task Descriptions and Scenarios ... 7

3.4 Select Objectives for the Current Prototype ... 8

3.5 Design the Prototype .. 10

3.6 Formally Evaluate the Prototype .. 11

3.7 Define Requirements .. 11

4. Develop a Task Description.. 12
4.1 Uses of the Task Description.. 12

4.2 Elements of the Task Description... 13

4.3 Sources of Task Analysis Information ... 14

4.4 Allocation ... 15

4.5 Team Architecture .. 16

4.6 Initial Generic Scenario Description .. 16

4.7 Iteration and Progression Over Project Life Span .. 17

4.8 Implications for Designing Human Interaction .. 17

4.9 Implications for Evaluation Plan and Scenarios ... 18

4.10 Final Cautions... 18

5. Build Scenarios... 18
5.1 Scenario Selection .. 18

5.2 Levels of Scenarios... 19

5.2.1 Nominal Scenarios .. 19

5.2.2 Failure and Off-Nominal Scenarios .. 19

5.2.3 Specific Variations .. 20

5.2.4 Integration Scenarios... 21

5.3 Scenario Construction... 21

6. Design the Prototype... 22
6.1 Storyboards and Design Mockups .. 22

6.2 Evaluation Prototypes... 23

6.3 Operational and Integration Prototypes .. 24

CONTENTS
(continued)

Page

iv

7. Evaluation ... 25
7.1 Formal vs Informal Evaluation... 25

7.1.1 Informal Evaluation .. 25

7.1.2 Formal Evaluation... 26

7.1.3 Outside Review ... 27

7.2 Preparing a Formal Evaluation: A Products View... 27

7.2.1 Previous Design Products ... 29

7.2.2 Evaluation Objectives ... 29

7.2.3 Interview ... 32

7.2.4 Scenario Events... 33

7.2.5 Evaluation Scenarios... 33

7.2.6 Session Training.. 34

7.2.7 Evaluation Agenda .. 35

7.3 Conducting a Formal Evaluation .. 36

7.4 Reporting Results of a Formal Evaluation.. 36

8. Further Reading .. 37
8.1 Related Documents... 37

8.2 Iterative, Collaborative Design... 38

8.3 Use of Scenarios and Task Descriptions .. 38

8.4 Evaluation... 38

TABLES
1 Development Products and Their Recommended Lengths ... 5

2 Typical Times for an Evaluation Agenda.. 35

FIGURES
1 Development Activities Across the Project Life Span .. 5

2 Changing Focus Across the Project Life Span .. 9

3 Evaluation Plan Products... 28

4 How the Evaluation Report Is Used .. 30

1

1. Introduction to Field Guide

The purpose of this document is to describe the methods we are using to design human inter-
actions with intelligent systems which support Space Shuttle flight controllers in the Mission
Control Center at NASA/Johnson Space Center. Although these software systems usually have
some intelligent features, the design challenges arise primarily from the innovation needed in the
software design.

While these methods are tailored to our specific context, they should be extensible, and helpful
to designers of human interaction with other types of automated systems. We review the unique
features of this context so that you can determine how to apply these methods to your project.

The most important feature of our software is that it is innovative, with a number of implications:

• No one can start the project by generating an adequate requirements description. Generating
such requirements documents at the beginning would be a misuse of time—detailed require-
ments must be derived from initial design efforts and interactions with users.

• At the beginning, users cannot give an accurate, detailed description of what they would like
the software to do because they have no previous experience using similar software.

• Developers may be unsure whether they can accomplish some of the technical objectives of
the intelligent automation. The development is not routine.

Additional characteristics are defined by the Space Shuttle context. The highly trained flight
controllers are engineers with specialized expertise in Shuttle subsystems. New software is
integrated into a system of legacy software and processes. When software is certified for flight
support, flight controllers become adept at using that software, but most do not have a
programmer’s depth of knowledge about the software.

Throughout this Field Guide, goals of the design methods are discussed. This should help
designers understand how a specific method might need to be adapted to the project at hand.

This guide differs from other documents written by members of this group because it is oriented
to human-computer interaction (HCI) design issues and is intended for use during HCI design.
This guide is intended to have an applied orientation, in a style that provides a new team member
with a written description of how the team works. It is intended to be like a field guide: open
while designing and short enough to find an answer before the bird flies away. When examples
are available, we provide links so that the application of a principle can be more concretein
much the same spirit of providing pictures of birds in a field guide for bird identification to
clarify their descriptions.

Our approach cannot be used as a cookbook, guaranteeing perfect "brownies" each time the
recipe is followed. Instead, it is to be used as a quasi-checklist, helping to ensure that you
haven't forgotten something important. It provides just enough reminders to assist a thoughtful
team in building useful, usable applications of advanced technology while avoiding common
distractions and traps.

2

The following steps are recommended for using this Field Guide efficiently:

1. Preview the entire document, to understand what the document has to offer and how it is
organized.

2. Read the "Rationale for Development Approach" (Section 2), a short discussion of key
characteristics of the methods in the Field Guide.

3. Consult the "Development Activities and Products" section (Section 3), to gain a firm
understanding of the specific design products you are developing. Once you have become
familiar with this design methodology, you can use this section to refresh your memory
before focusing on a specific design product.

4. Read the appropriate activity section (Sections 4 through 7), where four of the key
development products are discussed: task descriptions, scenarios, prototypes, and evalua-
tions. These sections are intended to give in-depth descriptions about how to develop these
products.

2. Rationale for Development Approach

The characteristics of this approach address the problems of designing innovative software to
support user tasks. The requirements for novel software are difficult to specify a priori, because
there is not sufficient understanding of how the users’ tasks should be supported, and there are
not obvious pre-existing design solutions. When the design team is in unfamiliar territory, care
must be taken to avoid rushing into detailed design, requirements specification, or implementa-
tion of the wrong product. The challenge is to get the right design and requirements in an
efficient, cost-effective manner.

Goal-oriented analysis and design help designers understand how users can be supported, and
guide the wise use of development resources without cutting quality. Iterative spiral design and
development and incremental deliveries provide the flexibility required to deal with the un-
knowns associated with innovative projects. Finally, participatory design ensures that all the
necessary expertise is applied to the design process.

2.1 Goal-Oriented Analysis and Design

In our approach, determining system goals and selecting prototype objectives occur very early
in the design process. Attempts to develop a detailed requirements specification or implementa-
tion early would be a costly waste of resources. The effort spent on identifying and validating
goals and objectives is essential to keep the design and requirements on target. The goals and
objectives are identified, validated, and prioritized by studying user tasks and defining scenarios
that characterize the supported activities. These scenarios concretely embody the goals and
objectives in a form that challenges the thought and imagination of the design team. They guide
the planning of informal and formal evaluations. They provide a framework that guides the
understanding of design risks and helps ensure that design shortcuts do not sacrifice quality.
Even in projects where detailed requirements are provided up front, it pays to identify or develop
such a framework early.

3

2.2 Iterative, Spiral, and Incremental Prototypes

Our iterative design approach addresses two sets of difficulties associated with the design of
innovative software: Users often can’t specify requirements very well and developers often can’t
"design it right the first time." In contrast to a requirements-centered, traditional waterfall
model, an iterative prototyping approach allows users to interact with specific designs within the
context of specific, realistic scenarios. They can respond to a concrete situation with specific,
helpful feedback (e.g., "The scenario is unrealistic. The software doesn't help me with the
hardest part of the task. I can't find the information I need to make the next decision."). Thus,
users can voice their requirements better when the design process is iterative.

Iterative development allows discoveries during the design process to be incorporated into the
design. It also allows the project to accommodate contributions from users, software engineers,
subject matter experts, and graphic design specialists. Consequently, iterative design helps users
and developers alike in dealing effectively with the uncertainty that accompanies innovative
software.

Our iterative approach is closely related to spiral development, because each iteration of the
prototype has different objectives. Product goals and objectives help determine the scope for
each prototype. In our approach, early prototypes are far from implementations. Early designs
address key design risks and core capabilities. Subsequent iterations will add new capabilities
and refine existing ones, and move closer to implementation.

A related strategy to iterative development is the use of incremental deliveries. When feasible,
early restricted-scope deliveries for use in the workplace let the users benefit from the new
application earlier. This provides them with concrete evidence that you are building a useful
application. As the scope of the application is broadened over time and as the existing capabili-
ties are refined, users (and sponsors) can see progress, and can see the potential for improve-
ments with additional funding. Also, as a result of an earlier, longer period of using the new
application, users can provide more feedback during the project.

2.3 Participatory Design

Our approach includes participatory design because the team is composed of users and others
with equally valuable expertise. The important ingredient is that the user's viewpoint is reflected
in the design of the prototype. Not everyone will contribute in the same manner. In fact,
depending on personal preferences, users will not contribute in the same manner for every
project. Some users will prefer to help design the next prototype while others will prefer a more
evaluative role, providing feedback on each design candidate. The following areas of expertise
should be represented on the design team:
• user task performance (usually represented by a user)

• subject matter expertise (technical details about what's being monitored or controlled by the
softwarein our case, usually represented by a user)

• design and implementation of advanced software
• human-computer interaction design

• graphic design

4

Each team member contributes to the design process from his (or her) strengths resulting in a
type of "design dialog." For instance, the following hypothetical scenario illustrates how a
design team with the above areas of expertise can make significant progress on an issue in a
short period of time—progress which, separately, they probably could not make at all:

A user objects to proposed interaction, saying that he needs to see the interim
results of a timer while the motor is driving, not just the final motor drive time.
A short discussion between the subject matter expert and the software expert
satisfies everyone that they know how to provide a reasonable, continual timer
display. Then, the human-computer interaction expert suggests that even more
information might be important—an indication of the expected drive time. The
user concurs, saying that, in fact, that he’d like to see two expected times, one for
single-motor and one for dual-motor drives. A short discussion among the user,
human-computer interaction expert, and graphic designer yields a first cut at a
graphic design that allows the user to watch the time for the motor and maintain
awareness when it approaches alert or alarm limits.

3. Development Activities and Products

This section summarizes the development activities and products in our approach. Our approach
includes the following activities performed over the span of a project:
• Select and Scope the Project
• Determine and Revise System Goals
• Develop Task Descriptions and Scenarios
• Select Prototype Objectives
• Design the Prototype
• Formally Evaluate the Prototype

• Define Requirements for Product Implementation

Figure 1 ("Development Activities Across the Project Life Span") shows how these activities and
their products are related to one another. The arrows loosely indicate logical and temporal rela-
tionships. For instance, a project is usually selected and scoped before goals for the software
system are determined (temporal), and the goals will usually depend on the reasons why the
project was selected in the first place (logical). After goals have been decided for the entire
software system, and as some task descriptions and scenarios are developed, specific objectives
are selected for the first prototype iteration. The prototype is iteratively designed and evaluated
within the design team. In this stage, informal evaluations are focused using scenarios and lead
to regular revisions of the prototype and occasional revisions in the prototype objectives. When
the prototype is ready, a formal evaluation is conducted. The developers decide if the improved
understanding should result in minor modifications to the project goals, task descriptions, and
scenarios. Then, objectives are selected for the next prototype. The cycle continues until the
system goals have been met. Then a requirements document is written as a companion to the
prototype.

Table 1 provides a list of development products. You should use this to identify products as the
project progresses and to get some ideas about the length and content of those products. Not

5

every project should generate every product listed in the table. The table is provided to remind
you of the types of products to consider generating and to give you some indication of the length
and level of formality with which they have been handled on projects in our lab.

Figure 1. Development Activities Across the Project Life Span

Table 1. Development Products and Their Recommended Lengths

PRODUCT WRITTEN LENGTH FORMALITY

System Goals a page or less informal

Prototype Objectives a page or less informal

Task Descriptions enough to develop scenarios and user descriptions informal

Scenarios — generic little detail (½ pp narrative) somewhat formal
 nominal detailed somewhat formal
 failure detailed somewhat formal
 variations detailed somewhat formal
 integration detailed somewhat formal

Prototype — storyboard
 evaluation
 integration
 operational

code (document for storyboards) formal

Formal Evaluation Plan 1-5 pp formal

Formal Evaluation Report 5-10 pp formal

Requirements needed when prototype is to be re-implemented formal

Select and Scope Project

Determine/Revise System Goals

Select Objectives for
Current Prototype

Formally Evaluate
the Prototype

Define Requirements, Deploy Application

Goals
Met?

Design the Prototype
(Iterative, Participatory)

System Goals

Requirements

Prototype Objectives

Evaluation Plan

One Iteration Per Prototype

Evaluation Report

Scenarios

Prototype

Develop Task Descriptions and Scenarios

Task Description

6

3.1 Select and Scope the Project

The first thing that must be done is to select and scope the project so that it will be successful.
This is a difficult step, and probably most mistakes in selecting and scoping projects result from
an incomplete consideration of what is required for project success. Because resources for
advanced development are extremely scarce, our circumstances require vigorous support from
the users and the proponents of the advanced technology we are applying. While users are often
kind, morally supportive, and generally in favor of advanced automation, they won’t get really
excited about your project unless they believe it will make their job easier. Consequently, the
following list includes not only items related to completing the project successfully, but also
items related to making the new application useful. Here are some characteristics to consider
when selecting a new project and scoping it:
• available expertise
• probability of successful implementation
• viewed by user as important to his job
• continually useful (frequent use)
• viewed by user as difficult, laborious, or error-prone

• useful early, allows incremental development where initial products (or iterations) are used
while later ones are being developed

• allows demonstration of full range of proposed functionality

These considerations behind project selection and scoping are of central importance to our
approach. They begin by influencing the determination of system goals and continue by guiding
resource decisions about design risks and shortcuts.

3.2 Determine and Revise System Goals

Probably the greatest reservation held by newcomers to this approach is that the project might be
allowed to wander toward first one goal, then the next, without knowing when the project should
end or if success has been achieved. To prevent this from happening, system goals are identified
at the beginning of the project. Sources of knowledge for setting these goals include the corpo-
rate knowledge of the users’ tasks and how software can support those tasks, discussions with
users, and discussions with people who can fund the project. System goals may need to be
reviewed after each prototype evaluation for two reasons: to ensure that the overall system
continues to follow the goals which are set for it, and to make minor adjustments to those goals
based on an improved understanding of the users’ tasks and how they can be supported. Conse-
quently, the system goals should help to keep the project focused on solving specific problems,
while allowing minor adjustments in the direction of the project.

The system goal statement could be as simple as a paragraph or two—rarely longer than a page.
It's important, but doesn't need to be lengthy. It's probably good to have the goal statement in
written form for team coordination and agreement. It is also desirable to state the goal in meas-
urable terms (although, for the sake of brevity, you shouldn’t include an evaluation plan in the
goal statement). Measurable terms help the team determine when the goals have been met, and

7

they are concrete enough to improve communication across the development team. In formulat-
ing the statement, consider what you want to demonstrate at the end of the project, what will
make users (and funders) say it was a worthwhile project. It is also good to indicate priorities
(not all goals are equally important, and they will often conflict). The system goal statement
should build on the results of project selection. Try to get it mostly right at the beginning of the
project and consider revising it when the objectives for the next development iteration are
addressed.

3.3 Develop Task Descriptions and Scenarios

Designing is not just a matter of "doing it till you get it right" or, as a colleague termed it, "Now
It’s Through, What Do You Think?" (NITWYT). Instead, we use STEPScenarios, Task
descriptions and Evaluation to focus Prototyping. The STEP approach helps to focus design
efforts toward effective task support. Developing task descriptions helps to maintain awareness
of the task being supported and the type of support that is needed. Scenarios are developed to
focus the design and evaluation on realistic user tasks. Prototypes provide a concrete basis for
design evaluation.

There is usually some confusion about the difference between scenarios and task descriptions.
Task descriptions are abstract and general. The task description is a system-like description of
the setting within which the new application will fit and an overview of the tasks performed in
that setting. A scenario is a specific traversal through that system.

The task description should be written, since it contains design information not written anywhere
else. The description contains information on the setting, tasks, and activities. Elements relating
to the intelligent system include a description of the automation architecture, including the
allocation (manual, automated, shared) of tasks between users and intelligent software and the
information needs of the users, to perform tasks and coordinate with the intelligent software.

The level of detail of a task description depends on the demands of the project for which it is
written, and on the maturity of the prototyping effort. It doesn’t have to be done all at once.
Initially, it can be an overview that focuses on typical tasks and typical users. When determining
what is important for the task description, resist the urge to "dive into the details" prematurely.
A good rule of thumb is that the task description should include just enough detail to guide the
design of the next iteration of the prototype. The task description doesn’t need to use models or
formal analysis. While the task description in our method is shorter than a traditional one, it
helps the team focus on goals, objectives, and priorities for design and evaluation.

Scenarios are specific concrete instances of a set of tasks, the surrounding situation, and how the
software is used in carrying out the tasks. Described simply, a scenario tells a story. When data
are received, specific values of that data are identified (not a range of possible values). When a
decision point is encountered, one decision is taken (not a range of possible decisions). The form
in which the scenario is expressed depends on the way it is to be used. It could simply be a
narrative description (either spoken or written) of events that could happen during the use of the
new application. At a detailed level, it might include a rigorously defined data structure that
defines the information that is input during the scenario. Types and levels of scenarios vary over
the course of a project, as the prototyping objectives change to reflect the maturity of the design.

8

Scenarios provide a focus for both design and evaluation efforts. Scenarios contain concrete,
specific information, which assists a team with diverse backgrounds in communicating and
coordinating their design efforts. Furthermore, scenarios tend to help the development team
maintain its focus on design to support user tasks. Scenarios provide a context for evaluation
and help users to focus evaluation on task support. Instead of simply asking users how they like
the new application, a more focused question can be asked: "How well does it support you in
performing this task?"

See Sections 4 and 5 for more details about developing task descriptions and scenarios.

3.4 Select Objectives for the Current Prototype

Using a spiral development model (Boehm, 1988), a subset of the overall system goals is
selected for each prototype. With each additional prototype, a larger subset of the system goals
will be addressed. The formal evaluation of a given prototype will probably reveal that some of
its objectives were not met. Thus, the objectives for the current prototype should include unmet
objectives from the previous prototype as well as some new system goals that had not previously
been addressed. This process should continue until the system goals have been met and the
project is completed.

The order in which system goals are selected for prototyping depends on a number of things:
• For HCI issues, prioritize to support understanding, then utility, then usability.
• Support for common tasks is usually prototyped before support for unusual tasks.
• Support for tasks critical to the success of the application is usually prototyped early.
• Difficult software techniques are usually prototyped early.

• High-risk issues are prototyped before low-risk issues.

The general progression in which HCI objectives should be addressed is illustrated in Figure 2
("Changing Focus Across the Project Life Span") (also see Woods, et al., 1996). The upper
portion of this figure shows a progression in which HCI issues are addressed. Early efforts
should focus on identifying the right user tasks to be supported (understanding). Once critical
user tasks have been identified, the focus should shift to finding the successful strategies for
supporting those tasks (utility). Finally, efforts should shift to identify good display forms for
implementing those strategies (usability). This general progression helps to steer the project into
a productive expenditure of development resources. Following this progression, the develop-
ment team confirms its understanding of which tasks are critical before expending resources to
find effective strategies for supporting those tasks.

Sometimes, it is necessary to prototype alternative strategies for task support to make sure that
you have truly identified which tasks should be supported. Likewise, it is sometimes necessary
to prototype alternative implementations of support strategies to test the relative value of those
strategies. Because new project goals are added to each prototype iteration, a given prototype
iteration may address some issues at greater maturity levels than others. For instance, a given
prototype might focus on finding a good strategy to address one problem and on finding a good
implementation of another strategy. Thus, while the progression shown in Figure 2 is about
right, it should be used as a suggested order, not as a required sequence.

9

Figure 2. Changing Focus Across the Project Life Span

The sequence in Figure 2 doesn’t consider the relative risks of advanced software techniques.
They need to be considered along with the HCI objectives. First address those objectives which,
if unmet, pose the greatest risk to the project. For example, if the project involves a tricky case-
based problem-solving technique and failure to apply the technique properly will kill the project,
then an early prototype should include an attempt at implementing the proposed case-based
approach. If the success of the project depends on displaying operational situations for review,
then the first prototype should include the first attempt at that display. Note that, as high-risk
objectives are addressed and the next prototype is evaluated, the relative riskiness of the objec-
tives changes. If the initially highest risk objective has been addressed adequately with the
previous prototype, it is no longer a high-risk objective. Other objectives can take focus in the
next prototype.

Ultimately, the decision about the order in which to address system goals is based on a consid-
eration of risk: high-risk issues are prototyped early. There are three reasons for this risk-driven
approach. The first is that if the project is doomed to failure because it simply cannot be done,
it’s better to learn that information early—before development resources have been wasted. The
second reason for addressing high-risk objectives first is so that you will have more prototype
iterations to find the right way to address the most critical objectives. If your first attempt is
successful, you can address some of the lesser objectives next and possibly finish the project
ahead of schedule. If not, you can use what you’ve learned from the first prototype to formulate
the next attempt. If early attempts prove that the goal cannot be met, there may be sufficient

Levels of Scenarios

Levels of Prototypes

Focus of Objectives

UNDERSTANDING:
identify and verify user
tasks to be supported

UTILITY:
identify strategies for supporting
user tasks; identify information
requirements

USABILITY:
identify display forms to
implement support strategies

STORYBOARDS & DESIGN
MOCKUPS

EVALUATION
PROTOTYPES

INTEGRATION &
OPERATIONAL
PROTOTYPES

GENERIC
(use case)

NOMINAL
SCENARIOS

FAILURE &
OFF-NOMINAL
SCENARIOS

SPECIFIC
VARIATION
SCENARIOS

INTEGRATION
SCENARIOS

Project Maturity

10

time and resources to revise the goal so that the project can still provide a useful software appli-
cation. If, on the other hand, you address the riskiest goal last and fail, you’re simply sunk.
Finally, the elements of system design are interdependent. Settling on a specific implementation
of one aspect of design sometimes constrains others. Using the risk-based approach ensures that
the most critical aspects of the design are the least constrained by the remainder of the system.

3.5 Design the Prototype

Designing the prototype is so highly iterative, that it is misleading to think of the component
activities occurring in a particular sequence. However, it is important to give attention to the
component activities.

The prototype is a tool for determining the requirements of the application. In some cases, the
prototype will evolve into the final, delivered application. In other cases, the functions embodied
in early prototypes will be re-coded in a more capable implementation language to form the
delivered product. Regardless of whether the final implementation is the result of a gradual
evolution or the result of a re-implementation late in the project, earlier prototypes are used as a
means of identifying appropriate requirements for improving user task support by the
application.

All other products for the project are developed to ensure that the application is a good one.
These other development products are interdependent with the prototype. Not only do the other
products guide the development and evaluation of the prototype, but also the prototype helps to
refine the other design products. The prototype provides the users an opportunity to evaluate the
accuracy of the information in the scenarios, the task analysis, and the requirements. By interact-
ing with the prototype in the context of the scenario, users are better able to judge how well the
new application will support their task performance. Thus, one of the primary functions of the
prototype during most of the project is to refine the requirements of the intelligent system.

The prototyping section below (Section 6) provides information about how to design human
interaction during the prototyping process and about levels of prototypes, which serve different
functions as the development project matures. The levels of prototypes include:
• storyboards
• evaluation prototypes
• integration prototypes

• fielded (operational) prototypes

Another key to good design is to make certain that it represents a collaboration of several view-
points and levels of expertise. As was illustrated earlier, this participatory design enables the
team to design quickly so that the resulting prototype is acceptable from many viewpoints at
once. The reason for the speedy progress toward an acceptable design is the simultaneous
informal evaluation by team members representing multiple viewpoints and levels of expertise
during the design process. Unacceptable designs are identified quickly and modified based on a
clarification about what makes them unacceptable. The informal evaluations are focused on
relevant issues by using the design scenarios.

11

Figure 1 identifies only two explicit products from the design process: scenarios and the
prototype. Because of the highly iterative nature of the design activities, we recommend waiting
until after a design is completed before trying to capture the requirements and revisions to task
descriptions in document form. This should save you a considerable amount of editing. The
scenarios and prototype, on the other hand, need to be updated during the design process in order
to coordinate the participatory design effort.

3.6 Formally Evaluate the Prototype

Evaluations in our approach are more formative (providing information about how to improve
the prototype) than summative (evaluating how well the project objectives were met). Both
informal and formal evaluations emphasize formative evaluation: they guide how each develop-
ment product (prototype, scenarios, task description, goals, evaluation plan) should be improved.
The purpose of evaluation is to determine which features of the prototype (also objectives, task
description, and scenarios) need to be changed. The informal evaluations take place during
iterative design, thereby guiding the design. The formal evaluations are also formative, identify-
ing issues that need to be addressed in the next prototype. If the evaluation indicates that the
changes should be numerous, it might be necessary to reexamine priorities so that the most
important changes are made in the next iteration of the prototype.

Formal evaluations involve several users, mostly from outside the design team. They help to
ensure that the design hasn’t been biased by the idiosyncrasies of one or two users. This also
helps to ensure that users who haven’t been intimately involved in the design of the prototype
can also use it. These evaluations are planned more formally, and more formal data collection
techniques are used. In addition to examining things like understanding of the user tasks,
improving the usefulness of the prototype, and improving the usability of the prototype, formal
evaluations also address specific issues for the next prototype iteration.

The Evaluation Plan for a formal evaluation should tell how the application will be evaluated. It
should focus on what will make the current project a success (project goals, current prototype
iteration goals). It should identify specific evaluation activities, including evaluation scenarios
and interview questions. For a formal evaluation of a major prototype iteration involving several
users, it should identify a detailed usability test procedure.

Section 7 contains a detailed discussion of the evaluation process.

3.7 Define Requirements

When the project goals have been met, then the design phase of the project is over. Require-
ments can be written, for implementing and deploying the application. The prototype embodies
the bulk of the requirements, and a small, supplemental document identifies the critical portions
of the prototype and the purpose behind the designs that appear in the prototype. Putting the
requirements set (prototype plus document) in the language of the user makes it easier to
understand and evaluate the requirements. This also makes the requirements less expensive to
generate, and aids programmers re-implementing the prototype. The prototype shows the new
implementers a good implementation, and the requirements tell the purpose behind the design of

12

the prototype. If the new implementers need to change the design to fit the new environment,
they can make informed design decisions.

Since the requirements document supplements the prototype rather than trying to carry the entire
specification burden, it can be much shorter than the traditional requirements document. Tradi-
tional requirements documents are exhaustive accountings of software functions, data interfaces,
and human interaction design. They are expensive to write and often difficult to read. They are
difficult to evaluate because they are too detailed and written in the language of the developer,
not the user. Their length gives the user an impression of completeness, but makes it difficult to
verify completeness.

4. Develop a Task Description

The development of task descriptions and generic task scenarios is commonly called task analy-
sis. Task analysis for our method of designing human interactions with intelligent system differs
from a traditional one by being much briefer, more flexible, and including an extra phase where a
team architecture is considered. A traditional task analysis can be exhaustive, including multi-
level descriptions of current tasks, reorganized tasks in light of the new applications, new alloca-
tions of tasks, etc. However, projects rarely have sufficient resources for such an exhaustive,
traditional task analysis. Furthermore, by doing all the task analysis work before any design
begins, the traditional methods tend to make the task analysis a static product. An unfortunate
consequence is that if the analysts are mistaken about the task, there is no graceful recovery.

Finally, being static, traditional task analyses don’t accommodate the appearance of a new team
member, the intelligent system. By contrast, consider how a new human assistant would be
introduced into the work situation. Some parts of the task would be given completely to the new
assistant. As the assistant demonstrates competence, he may be given more tasks. A way of
sharing information would be "worked out" with the assistant. More importantly, a way of doing
business would be developed to change the allocation of tasks dynamically during critical times
so that the senior partner (the human) can make the really tough decisions. Thus, in order to
accommodate an intelligent system that can provide varying levels of task assistance, task
description methods need to flexible and need to be able to accommodate intelligent system
characteristics that cannot be known at the outset of the project.

4.1 Uses of the Task Description

It is important to avoid the common mistake of assuming that the most exhaustive task analysis
will be the most useful. While we agree that understanding user tasks is imperative, our recom-
mendation is to identify the uses of the task description and to do no more than is needed to
satisfy those uses. In this manner, the design is not delayed and effort is not wasted writing parts
of a document that are never used. Also, while we agree that the bulk of task description is done
before development, we recommend revising the description throughout the project before
designing each new prototype. This preserves flexibility and also discourages developers from
thinking of the task description as a static product that must be perfected before beginning any
design efforts.

13

The principal uses of task analysis are to:

• Identify, confirm, or revise goals, objectives, and priorities for design and evaluation:
− critical functions of the software and user strengths that should be supported

− task difficulties and bottlenecks, the main problems for users that the software should
help overcome

− current human tasks which are performed frequently or consume considerable time,
which could be expedited by software assistance

• Identify the settingother software, tools and resources that are used, the situation in which
use of the software is embedded (helps identify conflicts and needs for consistency)

• Identify userstypes of users and their characteristics

• Help identify task allocations and team architecture for the system of humans and intelligent
software

• Help identify user interface design elements and information needsflow of tasks, steps,
choice points, task variations

• Perhaps eventually lead to user models (how the user thinks about use of the softwareuser
actions on objects when using the software, preparation and cleanup) or to formal analysis of
sub-task microstructures (We have not found it helpful to do such detailed modeling or
formal analysis.)

4.2 Elements of the Task Description

While the uses of the task description should be the definitive driver of what information to
include, it is sometimes helpful to see a list of candidate task description elements. You will
need to consider whether the items on the list below are related to the uses your project will
make of the task description. This list is provided to help you to avoid overlooking information
that might be important for designing your application.

• Description of users
− Level of expertise in subject matter
− Expected frequency of use of new software application
− Level of expertise with software in general

− Other relevant user biases and expertise which should influence HCI design

• Purpose of overall person-system task

• Task list, task descriptionslist or diagram of activities and tasks, perhaps showing ordering,
grouping, and dependencies among activities

• How software will support that overall task

• Identification of what is currently difficult (may want to get quantitative measures so that
effectiveness can be demonstrated later)
− error prone
− time constrained

− laborious

14

• Information Requirements
− information needed by the user at each step

− information the user provides the software (and how to make it easy to provide that
information)

• Management of intelligent systemteam architecture
− keeping user informed (current state, controls issued, effects of controls issued)
− providing controls to user
− sharing tasks

− handing off tasks between the user and the intelligent system

• Failures of monitored system
− how to avoid them

− how to recover from them

• Failures of new software application
− how to avoid them

− how to recover from them

It should be noted that the above information can be made even more useful to the design proc-
ess when combined with scenario information (Section 5). For instance, the above information
includes the identification of information which must be exchanged between the user and the
new software application (user needs to see elapsed time). Additional design constraints include
how this information needs to be displayed (user needs to compare elapsed time to expected
time) and the type of interaction needed (user needs to be able to reset the timers at any time).

4.3 Sources of Task Analysis Information

Gathering task analysis information efficiently requires some knowledge of sources and how to
use them. If it exists, a corporate knowledge base is a good place to become familiar with user
tasks. This knowledge base should include written task descriptions from previous projects.
This should help you gain a better understanding of the tasks performed by these users, what
makes those tasks difficult, and the strategies that have successfully helped users with those tasks
in the past. If that information is not written, it may still be available by asking people who have
developed similar applications. Unless previous applications support the exact same task as the
current one, this source is probably good for gaining a general familiarity with the users’ tasks.

The next recommended source is the user representative on your design team. In the initial visit,
you want to gain some understanding of the relevant tasks, what makes them difficult, what
strategies have been tried to deal with those difficulties, which strategies were successful, and
which strategies were not. In addition, it’s a good idea to ask about good written sources for
learning more about the tasks. Written sources allow you to become more familiar with the
users’ tasks without having users continually "spoon-feed" you. Reading them communicates
your respect for the value of their time. Written documentation is also probably less likely to
make small errors in details than the users themselves would. However, written sources should
be discussed with the user. Users can help you consult the most reliable sources. Usually, you
have two objectives when looking at written documentation: (1) Build better intuitions about

15

your users’ tasks, and (2) get a lot of details when building specific HCI designs. It’s probably
not productive to study this documentation enough to try to duplicate the users’ expertiseThey
have already studied, they have already practiced, they are good at it, and they are available for
consultation. Below are some written information sources we have found useful for our projects:

• console handbook
• training manuals
• operations checklists
• reports (post-flight, post-phase)
• flight controller written flight logs

• telemetry logs

Finally, it will be necessary to observe users performing the tasks. At a minimum, this is to
acquaint you with small details no one considers important enough to mention. (Oh, sure, we
always write these figures down on a scratch pad because we need them later.) Depending on
the application, observations can also reveal things about the task that users never noticed. (For
example, because they are so intent on performing the task, they may not even notice that they
have to place their fingers on the screen to mark places for repeated scanning and data compari-
sons.) Also, because some tasks require coordinated efforts of many people, there may not be a
single individual who is intimately familiar with every aspect of the task.

In the interest of good risk management, you should consult with multiple users to gain a good
understanding of the task early in the project. The user representative on the design team will
have unique characteristics and may approach tasks in a slightly different way from some other
users. Your broader experience with users early in the project will give you a better perspective
from which to view the inputs from the user representative. It will also help your communica-
tion with the user representative by giving you a more common understanding with him or her
from the beginning. Later, evaluating each prototype iteration will give you the opportunity to
verify (and refine) the generality across the user population of the task information provided by
the user representative.

4.4 Allocation

Task analysis may include allocation of tasks to the intelligent system, to the human, and to both
(shared tasks). In this activity, all the development team members can have active roles. The
user knows what tasks have been error-prone, laborious, and time-consuming. The user also
knows the times when things get so hectic they are difficult to manage--times when some of the
work needs to be off-loaded to the intelligent system. The subject matter expert knows what
tasks are critical and demand the highest levels of accuracy. The human factors engineer knows
the cognitive/perceptual strengths of humans (creativity, insight, dealing with the unexpected,
evaluation of trends, etc.). The software engineer knows what software systems do well
(vigilance; comparing large sets of numbers repeatedly; executing rapid, routine sequences of
commands; making elaborate logical evaluations; entertaining multiple hypotheses simultane-
ously; etc.). As a team, they should be able to allocate tasks so that the new application will be
useful, usable, reliable, and safe.

16

As stated earlier, these methods are to be applied with thought and creativity, not with mechani-
cal rigor. In light of this consideration, the initial task allocation might be attempted as part of
the generic scenario descriptions. The advantages of this suggestion are that (1) the entire team
can be involved in something more concrete (easier to visualize) than the typical task descrip-
tion, (2) it maintains a focus on the overall objectives of the user tasks, and (3) there is less of a
temptation to "dive into the details" prematurely.

4.5 Team Architecture

Task allocation can lead to definition of a team architecture. A team architecture specifies how
human and intelligent system activities will be coordinated. It is an important aspect of building
reliable systems because it also provides alternative ways of achieving goals when planned
activities are not effective:
• degraded performance due to high workload

• goal or plan changes due to failures in the domain system being monitored

The team architecture identifies alternative ways of accomplishing tasks, and it defines points of
coordination between the human and the intelligent system. Even an extraordinarily talented
software development team cannot anticipate every situation that the intelligent system will
encounter. A good intelligent system-human team architecture will preserve the human
capability to take over a task when an unanticipated situation is encountered.

Providing summaries of intelligent system activities and making raw data continually available
to the user is a good way to preserve human options for taking over intelligent system tasks.
When it is necessary for the intelligent system to interrupt the human, it should assist the human
in responding to the interruption. Sometimes message priorities are used to assist the human in
prioritizing responses to these interruptions.

A common way of implementing dynamic task assignment is to provide alternative task alloca-
tions in the form of multiple modes of operation. For example, the intelligent system may have
different control modes that vary its level of autonomy in executing activities. Modes enforce
task reassignment by constraining what the intelligent system can do in a particular mode. Modes
can also provide a context for the presentation of information. Intelligent system capability,
information, and style of interaction can all vary by mode.

As with the task allocation, you are encouraged to consider initially addressing the architecture
with scenarios. They help to maintain a focus on the user’s tasks, they help to make development
team contributions more concrete, and they encourage the right level of detail for early architec-
tural decisions.

4.6 Initial Generic Scenario Description

Generic scenario descriptions, the first type of scenarios to be constructed, are an important
product of task analysis. They are abstracted narrative profiles of the most common types of
situations the new application is intended to support. They should read more like a narrative
than a system description or a list of requirements. The intent of the generic scenario is to
identify how the new application will support users, to outline the task allocation, and to outline

17

the user-intelligent system team architecture. Generic scenarios assist the development team in
establishing the objectives of the new application.

Generic scenarios should illustrate what makes the new application useful. While they are
important, they need not be long. Their purpose is to build a common understanding of how the
new application will support user task performance. When done well, they will guide decisions
about
• allocating tasks to the person, the intelligent system, or both
• the important information to capture in the task analysis
• how to demonstrate the prototype to show off its capabilities and usefulness
• how to evaluate the utility and usability of the prototype
• additional scenarios to build for evaluating prototypes as the project matures

4.7 Iteration and Progression Over Project Life Span

Construction and evaluation of the first prototype results in improved understanding of the users’
tasks, their allocation, and the team architecture. This information can be helpful in document-
ing the system for user training and for future software maintenance. As understanding is
improved and details stabilize, they should be identified in the task description to improve
coordination among the development team and to expedite future system documentation and
evaluation. Improved understanding of allocation and architecture policies are identified as
much for development team coordination as for system documentation. Efficient expenditure of
development resources is a prime consideration. Details are captured when they are readily
available (as they are uncovered) rather than after they are partially forgotten. Furthermore,
details are captured only to the extent that they will be useful for team coordination, design or
evaluation decisions, or specific training or maintenance documents. Traditional, final-form
system documentation is not attempted until the system is formally delivered.

Iteration is a means of spending fewer development resources while controlling the risk of
having an incomplete task analysis. Initially, you should perform enough task analysis to gain a
general knowledge of the users’ tasks that will be supported by the new application. In addition,
the specific tasks addressed by the first prototype iteration should receive a little more attention.
If designing the prototype reveals an incomplete understanding of the task, then the task analysis
should be revisited. Also, when additional functions are added to future prototype iterations,
additional task analysis will probably be required. Thus, by iterating between design and task
analysis, you can be assured that the details you add to the task description are indeed useful to
the design process.

4.8 Implications for Designing Human Interaction

The task analysis yields requirements for human interaction design. It identifies information
that should be exchanged between the human and the intelligent system, the task architecture for
tasks shared by the human and intelligent system, and restrictions on the way in which the
human and intelligent system will interact.

18

If the application is innovative, the task analysis is almost guaranteed to be inaccurate. Conse-
quently, while the task analysis is a good place to begin the design of interaction between the
intelligent system and the human, the process is iterative. Problems may be discovered in the
task analysis during human interaction design, and you may need to refine the task analysis by
comparing it to a scenario which, in turn, may force a refinement of the scenarios. These
changes may also have implications for the evaluation plan and the goals for the next prototype
iteration. This activity helps to inform your human interaction design choices and improve the
prototype.

4.9 Implications for Evaluation Plan and Scenarios

Task analysis and generic scenarios can help focus prototyping by leading to an initial definition
of an evaluation plan and fragments of evaluation scenarios. While we don’t recommend trying
to complete these products before designing the prototype, we have found rough drafts of these
products helpful in focusing the design efforts toward the upcoming evaluation.

4.10 Final Cautions

In summary, it is imperative to understand the users’ task in order to design a software system to
support that task. That understanding will influence not just the prototype designs; it will influ-
ence the development and revision of every development product. However, it is also imperative
to avoid two common mistakes associated with task analyses. First, you should not try to have a
completely finished task description before you begin your prototype design. Even if you could
write an accurate description at this point, the prototype itself would probably render it obsolete.
Second, you should not write a more exhaustive task analysis than you plan to use in your
project. There is no guarantee that anyone beyond the current project will ever want to read
the task analysis, and it will probably be rendered obsolete when the new software system is
deployed. You will experience less of a tendency to commit these mistakes if you make certain
that you have user involvement throughout the design process because the users themselves can
be the best providers of task information.

5. Build Scenarios

In this section, we describe how to select events for a scenario, how to identify what type of
scenario it should be, and how to construct scenarios. Scenarios are selected and developed to
influence both design and evaluation of prototypes.

5.1 Scenario Selection

Selecting of events for scenarios is similar to selecting a project in that two questions should be
kept in mind: "Is it worth doing?" and "Can we do it?" The user representative on the develop-
ment team should help with the assessment of what is valuable to demonstrate. "If we include
this event (in the scenario), would it demonstrate valuable assistance to you?" (Is it worth doing?
Will it illustrate the successful support of a part of the task which is currently difficult? Does it
highlight the aspects of your job that you currently find difficult, which need better computer

19

support?) The subject matter expert should assess whether the events in the scenario are
probable, possible, and plausible. The software engineer, human factors engineer, and graphics
designer should all assess whether the scenario can be supported with the next iteration of the
prototype (Can we do it?).

5.2 Levels of Scenarios

As a project progresses, different types of design scenarios are needed. Each type of scenario
identified below serves a different purpose. We have found the following progression to apply to
our projects:

1. generic scenarios (developed as part of the task description)

2. nominal scenarios

3. failure and off-nominal scenarios

4. specific variations and less frequent scenarios

5. integration scenarios

This progression, also illustrated in the lower portion of Figure 2, is only approximate.
Generally, there should be a progression from simple scenarios to complex; from frequently
occurring to rare; from scenarios featuring absolutely required capabilities to those featuring
nice-to-have capabilities. For formal evaluation, events are extracted from these design
scenarios and recombined into new scenarios.

5.2.1 Nominal Scenarios

Nominal scenarios describe the most common situations that will be supported by the new
application. Unlike the generic scenarios, the nominal scenarios are concrete enough to be
specified with a time-ordered event list. In fact, in many instances, a simulated data stream with
these common scenarios should be built to evaluate the prototype.

Nominal scenarios are used to design the first truly interactive prototypes. They don’t include
off-nominal events because the prototype is not ready for that level of sophistication. These are
the first prototypes to include both user interaction and intelligent system functioning. The
nominal scenarios are the first to have sufficient detail for testing an interactive prototype. As a
consequence, they are the first that can provide concrete evidence whether the newly introduced
task of managing the intelligent system has been designed well. It is important that when you
introduce new intelligent system functions, you also develop scenarios that enable the users to
evaluate their ability to perform the emergent tasks of controlling and coordinating with the
intelligent system.

5.2.2 Failure and Off-Nominal Scenarios

Once the prototype has been proven useful in the context of the nominal scenarios, it is time to
expand its ability to deal with errors. This is the role of the failure and off-nominal scenarios.
There are three classes of error that should be included in this group of scenarios.

20

The first class is failures in the monitored process. Most of the software we develop monitors
external processes to help a human operator recognize and identify failures and off-nominal
conditions. An example of a failure in a monitored process would be an aborted end effector
grapple for the Shuttle arm.

The second class of failures to represent in these scenarios is human error. The design of human
interactions with an intelligent system should include the prevention, reversal of, and recovery
from human error. Examples of this type of error can range from a data entry error to a Shuttle
arm operator initiating a procedure before all the preconditions have been met.

Finally, the third class of failures is that of the intelligent system errors. It may be painful to
admit, but your intelligent system will make mistakes. Also, even though there may be no fault
in the intelligent system, the user may need to reject its conclusions or override a recommenda-
tion. Scenarios that illustrate the ability to override individual conclusions and the ability for the
user to take over intelligent system tasks are important for building user confidence. These
scenarios show users that, even if the worst thing happens (they don’t trust the expert system),
they can always take over its tasks. The objective is not to build a perfect system, but rather to
build a system tolerant of failures. An interesting example of this type of scenario was provided
early in the DESSY project (Malin, Thronesbery, & Land, 1993). The scenario was that there
would be a loss of signal from the Shuttle for a few minutes, during which the arm would have
been moved to a new position—which would appear to the software system as a sudden change
from one position to another without having occupied any of the interim positions. While it is
not common to receive arm configuration data in this sequence, it does occasionally happen
(because of data dropouts), and using that scenario helped to make DESSY a more robust
application.

Failure and off-nominal scenarios can usually be built more easily once the common scenarios
are well understood by the design team. While it is probably not possible to be exhaustive in
testing all combinations of failures and errors, it is a good idea first to test each failure in isola-
tion (e.g., single-fault, rather than multiple-fault) and later to look at some of the most probable
failure combinations. Often, in scoping operations monitoring intelligent systems applications,
the users will agree that the complexity of dealing with multiple failures results in a diminishing
return for the large amount of development effort. If they are outside the scope, then multiple-
failure scenarios aren't needed in prototype evaluation.

5.2.3 Specific Variations

Specific variations and less frequent scenarios are usually developed next. Examples of this type
of scenario for the remote manipulator subsystem end effector DESSY project would include end
effector checkout scenarios. Because there is no payload to grapple, the sequence of events that
must be accommodated is slightly different from a normal grapple or release. In addition, a
checkout often involves backup systems that probably wouldn't be involved in the common
scenarios. Also included in the specific variations scenarios would be some less common types
of failures or errors.

21

5.2.4 Integration Scenarios

Integration scenarios should be employed to ensure that the new application can be integrated
into the software environment and the task environment where it will ultimately be used. The
software environment integration includes connecting to a data stream, interpreting it correctly,
dealing with erratic data, and making certain that real-time processing constraints are met. Task
environment integration includes ensuring that information is available to the operator when it is
needed and ensuring that the task loading of the operator is not overwhelming. An important
problem to avoid is the situation where the new intelligent system is most demanding during a
time when the operator is already busy with other tasks.

5.3 Scenario Construction

Once you have decided what the next scenario should be and the major events that should occur,
you must then construct the scenario, with specific events and time-stamps. The following
description of a three-pass construction process should help you get going:

First, observe the user in performing the task with few (if any) interruptions so that you can
write a gross-level description of the scenario. For the generic scenarios, this is as far as the
construction process goes. The only thing remaining is to verify the accuracy with the user. For
other scenarios, the user might arrange for playback data for those events. However, when narra-
tive descriptions of scenarios are being developed, it might be sufficient for the user to describe
what data changes, when, and what he or she must do about itwhile sitting in front of the
current operational displays.

The purpose of the next pass is to add details. This is accomplished by having the user step
through the scenario slowly, with interruptions to answer detailed questions. You can supple-
ment this information by reading reference and training manuals.

The final pass is to edit the details so that they are correct and realistic. Correctness can be
verified by the user and subject matter expert and by referring to manuals. Realism is a little
more difficult, but can be approximated by building a simulated data stream, running the proto-
type, and having the user-designers and subject matter experts evaluate the scenario as they see it
unfold. Later, it would be good to compare it to recordings of actual data streams, if they are
available. For software systems we have developed, recordings of data streams during Shuttle
missions were helpful for ensuring realism.

Sometimes this sequence cannot be followed. For instance, when building a completely new
facility, there are no users to be observed performing the task to be supported. In such a case, the
three-step process identified above cannot be followed literally. Probably, the best approach in
such a case is to build the scenario in an iterative fashion, using requirements and operations
concepts documents and consulting with domain experts. The goals of the three steps can still be
used in this case: First, try to identify the general events which should occur in the scenario, then
add details, and finally, verify the accuracy of those details. It is important to consult with the
domain experts during the verification of the details of the scenario.

22

A scenario will be constructed to guide the design and evaluation of a specific prototype itera-
tion. However, once it has been used to evaluate the prototype, it will continue to be useful in
evaluating subsequent iterations of the prototype as well. Consequently, there will be refinement
of the scenario based on the evaluation, as well as refinement of the prototype.

6. Design the Prototype

At the heart of our methods is designing the prototype. Designing the prototype is participatory
(involving users, subject matter experts, software engineers, and human interaction engineers)
and iterative. The iterations involve informal evaluations (discussed in Section 7). Design
scenarios are used to focus the team on user task support and provide a common language for
people with varying perspectives and expertise.

In the following discussion, we will focus on the design of the human interaction, though it
should be kept in mind that there are a number of concurrent design activities required to make
the prototype interactive, to make it intelligent, and to make its processing accurate. In this
section we discuss levels of prototypes and their relation to levels of evaluation.

Before you can get started, you must decide the medium in which you plan to prototype. A
comparison of the following levels of prototypes and the purposes served by each to your goal
statement for the next iteration should help you to decide whether to use paper storyboards,
computer display storyboard, a special-purpose prototyping language, or a high-performance
programming language. As a rule of thumb, initial feedback for a new human interaction design
should be obtained from a low-cost implementation, whereas refinements require increasing
approximations to the final implementation medium.

Following the principles of spiral development, we have identified different levels of prototypes,
corresponding roughly to the maturity of the project:

1. storyboards and design mockups

2. evaluation prototypes

3. operational and integration prototypes

The general progression of these levels is illustrated in the middle portion of Figure 2.

6.1 Storyboards and Design Mockups

Initially, it will probably make sense to build a storyboard of the user interaction—before a
functioning, interactive software prototype is attempted. The goal of such a prototype is to
verify (and refine) the initial, generic scenario, the initial task analysis, and the general manner in
which the new application will support the users' tasks. By starting with a storyboard, you will
have invested less effort before getting your first evaluative feedback of the human interaction
designs. You are also not dependent on the completion of initial software engineering efforts
before obtaining initial feedback on the type of human interaction you are planning.

23

Depending on the tools at hand, the storyboard may be paper-based, World Wide Web-based, or
may be supported by some other tool. A critical factor is that developing the storyboard should
not be labor intensive. Consequently, there is typically no automated processing behind a story-
board. Sometimes computer-based storyboards may allow navigation from one screen to the
next, depending on the button pressed, but it would not involve intelligent system processing.
The storyboard is used to explore the accuracy of the scenario and the design of the human
interaction.

The purpose of the storyboard is to elicit feedback from the user (usually the user representative
on the design team). Since this is likely an early experience in the project for the user represen-
tative, the storyboard should have some initial, orienting description telling how the software is
to support the user during the course of the scenario. The initial description should be short (a
page or less). It should be followed by a series of frames or "screen snapshots" which show
important parts of the interface as the scenario develops. Since the intent is to test human
interaction designs without investing much implementation time, the screen snapshots should be
hand-drawn. As you gain confidence that the designs are meeting the user’s needs, you can
invest more into an interactive prototype design, rather than a hand-drawn sketch of how a
display might look. Each of the frames should also be supplemented by some text pointing out:
• scenario developments that caused the display to look the way it does
• design decisions that you think support the users’ task performance
• design decisions for which you especially want feedback from the user representative

• specific information questions for the user representatives (or any other design team member)
that you need in order to improve the human interaction design

The practice of anticipating the interaction with the user representative around the storyboards
will help to orient you for similar activities when meeting around subsequent interactive
prototypes.

6.2 Evaluation Prototypes

Following the storyboard is a series of evaluation prototypes, whose primary purpose is to elicit
an informative evaluation from users to refine the requirements of the new application. Eval-
uation prototypes will probably constitute the largest number of prototypes for the project,
beginning with the first implementation, which offers user interaction, and culminating in an
implementation which accomplishes the project goals of supporting specific users' tasks.

At the time in the project when evaluation prototypes are to be developed, you will need to
determine what prototyping medium or computer language to use. On one hand, a special
prototyping medium is ideal for the evaluation prototypes because they can be modified,
sometimes dramatically, without a great deal of effort. This will encourage the exploration of
alternative ways of supporting users' tasks, and it will encourage users to provide a frank
evaluation (rather than just approving of a design because the developers seem to have worked
so hard). Sometimes prototyping languages do not have the speedy performance of a lower-level
programming language. So, if your system has some difficult performance constraints, you
might be forced to translate the system into another language, later, as it becomes an operational
prototype. Translating the system into another language is difficult, error-prone, and consumes

24

development resources. Furthermore, different languages place different restrictions on graphic
forms available to implement a design. As a consequence, the developer may prototype graphic
forms that cannot be implemented in the final application, or graphical forms that would serve
the user even better may be overlooked in the prototype because the prototyping language did
not easily accommodate them. Consequently, as early as the initial evaluation prototypes, you
will be faced with making a calculated risk in selecting the language in which to write the
prototype.

The selection of a development language can be difficult, but perhaps the following discussion
will help. If you anticipate a number of false starts in designing the intelligent system and the
human interaction, then the special prototyping language should be favored. If real-time proc-
essing constraints are severe and the intelligent system and human interaction are relatively
straightforward, the low-level language should be favored. However, for some projects, where
both intelligent system and software performance requirements are expected to be difficult to
achieve, it might actually be better to identify requirements (with evaluation prototypes) using a
prototyping language and then to develop operational and integration prototypes using a lower-
level language. Other factors to consider include the:
• programming expertise of the human interaction designer
• availability of programming expertise to convert prototype to operational system

• tools available to you at the time of prototype development

Since the purpose of the evaluation prototypes is primarily to elicit feedback from the user
representative, you should plan the meeting with the user representative, just as you did with the
storyboards:
• provide a scenario context for the user representative to help him or her stay task oriented
• point out design decisions and get feedback about whether they achieved their goals

• be prepared to ask for specific information which you need to improve the prototype designs

6.3 Operational and Integration Prototypes

After the evaluation prototypes are the operational and integration prototypes, in which the new
application is nearly fully operational and integrated into the software and task environment
where it will be used. Software integration involves connecting to data streams, dealing with
noisy data, exchanging information with other processes, and sharing computing and display
resources with other software applications. Task integration involves evaluating the new
application in the workplace, with all the other concurrent activities, interruptions, etc., which
typically occur while the user is performing the tasks supported by the new application.

An operational prototype is a functional implementation that can support the user. Occasionally,
it may need to be re-implemented in a more efficiently executing language. At any rate, if the
application is a useful one, it will need to continue evolving after the initial deployment. Keep-
ing an easily modified prototype around will enable you to continue the iterative development so
that the application’s evolution will continue to be useful. For instance, if users want a new
capability added, the new designs can be refined in the prototype, so that only the best designs
need to appear in the deployed system product.

25

As with other progressions identified in our method (Figure 2), the progression according to
levels of prototypes is not hard and fast. For example some integration prototyping may occur
before all the evaluation prototyping is completed. Also, it might make sense to have more than
one level of prototype within the same project. For example, when adding a new capability to an
evaluation prototype, it might make sense to storyboard that capability to refine the scenario and
new interaction requirements before adding more code to the evaluation prototype.

7. Evaluation

During evaluations, users determine if the prototype is providing the right task support in the
context of a specific scenario. They report their evaluations either with words (by answering
questions or volunteering information) or with actions (by performing the task quickly, without
hesitation, and with few errors). The results of the evaluation will indicate where the prototype,
scenarios, and task understanding need improvement.

7.1 Formal vs Informal Evaluation

We use three types of evaluation: informal, formal, and outside. Informal evaluations are an
integral part of the design process. They take place on a continual basis during the design and
development of a prototype iteration. Formal evaluations, on the other hand, are used between
prototype iterations. They involve evaluators who were not involved in design, and are used to
ensure that the design team hasn’t "taken a wrong turn." Occasionally, an outside review can
help to supply a perspective that is difficult to achieve from within the design team.

7.1.1 Informal Evaluation

Informal evaluations are performed by development team members, including the user represen-
tatives. They are extremely important in producing a usable, useful prototype in a very short
amount of development time. In fact, we have referred to the informal evaluations in this Field
Guide under the discussions of scenario generation, task analysis, and prototyping. Informal
evaluation is most productive in rapid, collaborative design sessions where there are representa-
tives with user task knowledge, subject matter expertise, human factors expertise, and software
development expertise. Note that, depending on the individuals involved, two people could
represent all four viewpoints. Using this method, the developer leads the user (and subject
matter expert) through a scenario and a demonstration of the prototype. When a point of discom-
fort is encountered, modifications are made. The type of modification depends on the type of
difficulty: human factors, task support, or subject matter accuracy. Modifications may be
needed for both the scenario and the prototype. Suggestions for the modifications could come
from anyone—the value of having representatives from so many viewpoints is that the modifica-
tion can be given a preliminary review from all viewpoints at once. If an idea is obviously
impractical from any of these viewpoints, it won’t live long, and not much effort will be invested
in it—another idea can be offered in its place. Ideally, changes can be made to the prototype on
the spot to see if it works as everyone anticipated. If the suggested change is too extensive to
make on the spot, it’s probably a good idea to try to sketch out the implications of the change so
that everyone is clear about what is intended. This way, the software developer can be more

26

certain that the solution will be about right before investing the time to implement this extensive
change for the next group design session. The strength of this type of interactive, collaborative
design session is that many development iterations can be explored in a very short time interval.

A potential weakness is that it could degenerate into supporting a single user’s personal prefer-
ences. This design pitfall has been dubbed "design by Mikey likes it," emphasizing the fact that,
even among actual users, personal preferences differ. (Just because Mikey likes that breakfast
cereal doesn’t mean I will.) The goal of human interaction design is not to cater to a single
user’s personal preferences, but to support task performance by all users. One way to avoid this
pitfall is to consult with multiple users during the initial task description and generic scenario
definition and, later, to involve multiple users in the formal evaluation. Another way to avoid
this pitfall is to bring a strong task orientation to the collaborative design (evaluation/modifica-
tion/iteration) session. Directive questions can help provide a task orientation:
• Will this help you to perform your task?

• Can you find all the information you need for the next decision?

Another way to help ensure a continual task focus is to work within the context of scenarios:
• As the microswitch failure begins, does this display provide you with enough information to

recognize what is happening?

• Can you distinguish this failure from other possible failures with the information in this
display?

• Is there other contextual information that should be provided so that you can recognize what
failure is developing?

• Is there more information that should be shown so you can decide what to do about the
developing situation?

During an informal evaluation, behavior observation typically amounts to watching for
unexpected behaviors, noticing when users seem to have difficulty (provide obviously wrong
responses, take longer to respond than expected, appear confused, or appear frustrated). Try to
select a moment when you will not interrupt the user's task performance, but before he has
forgotten what was causing the difficulty. Then, ask what was going on:

• I expected you to push the blue button, here. What caused you to push the green one? How
might the wording be changed (or How might the task be re-arranged) so that you would
have pushed the blue button (made the expected response)?

• That last question seemed to be harder to answer than I expected. Did it seem difficult to
you? What could we do to the prototype to make that question easier?

After a few of these questions, most users will be giving you all kinds of constructive criticism
(and creative ideas) with very little additional prompting.

7.1.2 Formal Evaluation

Whereas informal evaluations tend to have extensive involvement of a single user representative,
formal evaluations usually involve many users—users who have not been participating in the
design of the prototype. Formal evaluations help to ensure that you aren’t tailoring an interface

27

to a single user. They are less frequent than the informal evaluations and are normally done for
major prototype iterations. Another distinguishing factor from the informal evaluation is that
modifications are not made during the formal evaluation session (no cooperative design ses-
sions). Usually, multiple users will complete the formal evaluation for the same version of the
prototype.

Formal evaluations are typically more objective than informal ones. Objectivity is an important
characteristic, ensuring that you are reliably measuring usability and usefulness across an entire
group of users. Objective measurements include quantitative measurements (e.g., response times
or number of correct answers). They also include multiple choice questions and short comple-
tion answers that can be tabulated and summarized across users in the evaluation report. Even
subjective judgments from users are treated more rigorously in the formal evaluations. For
instance, you can provide multiple choices to a preference question (Which capability would be
most helpful if added in the next prototype iteration?).

7.1.3 Outside Review

Occasional outside reviews are recommended. They can be helpful for all aspects of design;
however, most outside reviewers will not already have an in-depth knowledge of your users’
tasks and the best ways to support them. Probably the most efficient use of outside reviewers is
to provide them with a description of the users’ tasks, what makes those tasks difficult, your
strategies for addressing those difficulties, and the prototype and scenarios. By giving the out-
side reviewers all this information, you will make it easier for them to comment on all aspects
of the design and to offer suggestions for improvement and alternatives to consider. Outside
reviewers might be consulted early in the project to ensure that you haven’t overlooked any
obvious strategies for addressing users’ tasks needs. Outside reviewers are probably even more
valuable in concentrating on the usability of a more mature prototype, performing a heuristic
usability analysis. The outside reviewer is especially important at this point because develop-
ment team members will most probably have lost objectivity for evaluating the usability in the
later stages of the project. Also, because of the fresh look at the prototype that outside reviewers
can bring, they can help evaluate the consistency with which interactions are handled across the
application. Finally, an outside reviewer can often zero in on specific usability problems
whereas users may only be able to express that they are having difficulty with specific parts of
their tasks.

7.2 Preparing a Formal Evaluation: A Products View

This section is illustrated by Figure 3. Evaluation objectives are based on the prototype objec-
tives, which are, in turn, based on a knowledge of the supported user tasks. Interview questions
and evaluation scenario events are based on the evaluation objectives. Scenario events are used
to develop evaluation scenarios and to determine what session training will be needed so new
users can perform the tasks to support the evaluation. Finally, the interview, evaluation scenar-
ios, and session training are combined into an evaluation agenda so that each evaluation session
will be conducted according to a specific plan.

28

Figure 3. Evaluation Plan Products

The arrows in this diagram are not intended to imply a strict sequence for creating each product,
but rather a loose set of dependencies. The need for caution against a sequential interpretation of
the arrows is illustrated by the following: In the course of determining the evaluation objectives,
designers discover that a prototype objective was overlooked because of an incomplete under-
standing of the supported user task. The prototype objectives should be modified to fit the
improved understanding, as well as all the other products with dependencies on the prototype
objectives. Designers need to be alert for this type of opportunity for improving the prototype.
The paragraphs below describe each of the evaluation plan products in more detail. Although a
strict sequence of actions cannot be stated for developing an evaluation plan, the designer can
plan a formal prototype evaluation by attending to each of these products in a somewhat iterative
fashion.

Finally, the products described below should probably all appear in written form, but need not be
standalone, formal documents. For an example write-up of the supported users’ tasks, prototype
objectives, and evaluation objectives, see http://tommy.jsc.nasa.gov/~clare/methods/sit_eval/ and
http://tommy.jsc.nasa.gov/~clare/methods/artis_eval_plan.rtf.

Evaluation Objectives
• Understanding user tasks
• Utility of support strategies
• Usability of implemented user

interactions

Task Description
(previous design product)

Prototype Objectives
(previous design product)

Interview
• objective questions
• subjective questions

Scenario Events
• user tasks
• emergent tasks

(automation management)
• events to exercise tasks

Evaluation Scenarios
• main prototype
• paper prototype
• alternative displays

Session Training
• Orientation

− user expectations
− evaluation objectives
− evaluator’s role

• Training Materials
− how to use prototype
− cue cards

Design Scenarios
(previous design product)

Evaluation Agenda
• session training
• practice
• tasks & scenarios
• questionnaire

29

7.2.1 Previous Design Products

Evaluation is an integral part of design. If the design is attempting to achieve a particular
objective, the evaluation should see if that attempt was successful. To ensure unity of purpose
between evaluation and the design being evaluated, the evaluation makes use of information and
understanding gained earlier in the design process: supported users’ tasks, prototype objectives,
and design scenarios.

The task description identifies those parts of the user’s job which are to be made easier by the
software you are designing. The relevant parts of the task description should be identified in
your evaluation plan for a given formal evaluation.

The prototype objectives are the specific objectives to be achieved by the current prototype
iteration. There should be a strong relationship between the supported users' tasks and the
prototype objectives. However, depending on the maturity of the project, the current prototype
may not attempt to address all of the difficulties facing the user in the performance of the
supported tasks. The prototype objectives identify which portions of the users' tasks are being
addressed by the current prototype.

Finally, the design scenarios that have been used to help design the prototype can be instructive
in identifying the scenario events that should support the evaluation. In design, these scenarios
complete the supported user task definition by supplying specific details and they exercise the
prototype in accomplishing its new objectives. Since both of these features are needed in the
evaluation, it makes sense to borrow from the design scenarios. However, in the interest of
making sure that the prototype doesn’t just support one scenario, it is a good idea to borrow
events from the design scenarios rather than just copying it wholesale for the evaluation.

7.2.2 Evaluation Objectives

The evaluation objectives provide direction to the evaluation. When conflicts arise, solutions
must be based on meeting the important evaluation objectives. They should be understood in
relation to the prototype objectives, their role in improving the prototype, whether emergent
tasks are supported, and how they add to corporate design knowledge.

7.2.2.1 Evaluation Objectives: Based on the Prototype Objectives

The evaluation objectives are guided by the prototype objectives and by design scenarios which
are, in turn, influenced by the prototype objectives. Because the design scenarios should be
oriented to address the prototype objectives, evaluation scenario construction should go a little
easier if you use events from the design scenarios. (Evaluation scenarios shouldn’t be identical
to the design scenarios, however, so that you can be sure the prototype isn’t oriented to support-
ing just one case.) Scenario events are identified to address as many of those objectives as
possible. When objectives cannot easily be addressed by scenario events, interview questions
are constructed to allow the evaluators to address those objectives. This is the relationship of the
evaluation objectives to the other evaluation plan products, as illustrated in Figure 3 ("Evaluation
Plan Products").

30

7.2.2.2 Evaluation Objectives: To Improve the Prototype

To identify evaluation objectives, you should look beyond the stated prototype objectives to ask,
"What parts of the prototype need improving?" The questions below should suggest additional
important objectives to the evaluation planner:

1. Does the human interaction design provide sufficient task support?

2. For those designs that need to be improved, how should they be improved?

3. What new capabilities should be added to the next prototype iteration?

4. What changes need to be made to the scenarios to make them more realistic?

5. What changes need to be made to the scenarios to make them reveal the usefulness and
usability of the prototype?

6. What changes should be made to the other design products (project goals, task description,
evaluation plans)?

Another way to ensure that needed improvements are found during the evaluation is to consider
how the evaluation report will be used. Figure 4 ("How the Evaluation Report Is Used") shows
that the evaluation report provides inputs for improving the prototype design, revising
requirements for the final implementation, and adding to the corporate design knowledge. The
requirements path was added because some of our projects involve handing off a prototype for
final implementation by an external development organization—one that specializes in writing
and certifying operations software. The value of looking at this wider scope is to ensure that the
evaluation covers all the issues that should be addressed in the final report.

Figure 4. How the Evaluation Report Is Used

Revised Requirements
• pre-evaluation requirements
• changes suggested by evaluation

Evaluation Report

Prototype Improvements
• prototype & scenario improvements
• prioritized according to impact to task

performance

Corporate Design Knowledge
• Lessons learned (all three levels)

− Understanding
− Utility
− Usability

• Design Patterns
• Candidate Requirements for future project

Prototype Objectives for Next
Iteration
• Priority-ordered improvements
• Additional goals (expanded scope) of

project to be added for this iteration

or

Hand Off to Development
Organization
for “final” implementation

31

7.2.2.3 Evaluation Objectives: To Evaluate Support for Emergent Tasks

Another set of evaluation objectives can arise from the fact that innovative automation often
causes new user tasks to emerge. For instance, intelligent systems, while providing valuable
assistance, need to be managed. It is important to evaluate how easily the intelligent system can
be managed. Below are some candidate objectives for you to consider in relation to the emer-
gent task of managing the new intelligent system intelligent system:

1. If the user loses confidence in the intelligent system at this point in the scenario, can he/she
stop the intelligent system or safely ignore it?

2. If the user has special evidence that the intelligent system is wrong in a particular instance,
can he/she override the intelligent system conclusion (e.g., change the assessment from
"operational" to "questionable)?"

3. If, up to this point, the intelligent system has been performing this task alone, can the user
take over the task now?

4. Can the user describe what the intelligent system is doing at any given point in its execution?

5. Is adequate feedback provided to the user showing the intelligent system management actions
that have been taken? (e.g., Is it obvious when the user has switched to manual mode? Can
users see which manual commands have been issued?)

7.2.2.4 Evaluation Objectives: To Add to Corporate Knowledge
Woods et al. (1996) describe the design process as occurring on three levels: understanding,
utility, and usability. At the first level, the designer works to understand the users’ tasks, what
makes them difficult, and how users are managing the difficulty. At the second level, the
designer works with strategies for addressing some of the things that make the users’ tasks
difficult—the application is made useful. Finally, at the third level, the designer works with
specific implementations of those strategies—the application is made usable as well as useful.
After completing the design of an application, a designer will have gained some knowledge
which can be useful in similar future projects concerning these three levels of design: under-
standing, utility, and usability. While adding to this corporate knowledge probably shouldn’t be
a primary driver for the evaluation, the knowledge for satisfying these objectives is normally
gained during the course of seeking to improve the prototype design.

• Verifying and refining an understanding of the users' tasks. The understanding should
already be about right because of your previous involvement with the user representative in
the early formative stages of building the prototype. The formal evaluation provides an
opportunity to verify the understanding you have obtained from the user representative and to
refine it by interacting with several additional users who have not been involved in the design
process. Beyond addressing prototype improvements, the long-term knowledge identifies the
types of tasks which are difficult for users to perform. Candidate objectives to consider:
− What are the tasks?
− What makes the tasks difficult?
− Which ones are done frequently?
− Which ones are time-consuming?
− Where do errors usually occur?

32

− What strategies, practices, job aids, etc., help to manage the task difficulty? (This is
oriented toward things external to the prototype which help task performance.)

• Verifying and refining usefulness. The refinements could be more extensive than with
understanding the tasks. Again, the strategies for supporting the user should not be too far
afield, because of the input from the user representative on the development team. Depend-
ing on how many more prototype iterations are planned, new strategies might be explored to
see how the larger group of users responds to them. The long-term knowledge to be gained
is the types of strategies that are effective in addressing difficulties in user task performance.
Candidate objectives to consider:
− What parts of the prototype really help with task performance? Why?
− What parts are of little help? Why?
− What parts are in the way?
− What additional assistance would be desirable?
− Was all the relevant information presented when a decision was needed?

− Can users see at a glance the current state (configuration) and status (health) of the
intelligent system and of the monitored system?

− Can users see what control actions are available? Can they see what actions have been
taken?

− Can users take over part of the automated system’s task manually? If so, is it apparent
how that can be done? Can it be done without confusing either the automated system or
the users?

• Improving usability. Depending on the goals of the project, the last iteration should proba-
bly be done to refine the usability to a highly finished level. The long-term knowledge is
which display and interaction forms are successful for implementing strategies identified
above. Candidate objectives:
− What interaction forms were easy to use?

− Which display forms were effective? Which were not?

7.2.3 Interview

In our evaluations, we are primarily interested in observing people using the prototype to per-
form a task in the context of a scenario. We are also very interested in the verbal reports that
person can give us telling how well the prototype helped and where it can be improved. The
interview questions sometimes help to explain the observations and verbal reports from the more
objective portions of the evaluation. In addition, the interview can address evaluation objectives
which might not otherwise arise during the execution of a user task:
• What needs to be changed?
• How does it need to be changed?

• What should be added for the next prototyping iteration?

33

Objective questions (multiple choice) tend to be preferable when trying to combine the results
from several evaluators so that the design team will understand how well a particular aspect of
the design worked or how much users would like to see a proposed feature in the next iteration.
However, subjective (open-ended) questions need to be included as well, to allow users to
communicate needs and viewpoints the evaluation planners haven’t anticipated.

This collection of questions to be addressed has been called an interview because it is conducted
in an informal manner, with a developer asking questions orally and an evaluator answering
them orally. However, in some respects, it resembles a questionnaire, because most of the
questions are written—many are written with multiple choice response options. They are written
so that the developer can be sure that all the objectives received adequate coverage with each
evaluator. They are delivered in an interview format so that it will feel like less work to the
evaluator and to allow an opening to ask follow-up questions to the evaluator’s responses.
Sometimes even subtle, non-verbal responses indicate that there is a lot more to learn about a
topic if only you’ll ask a follow-up question.

Frame questions so that evaluators will respond from their expertise, rather than having them
give opinions about matters in which they are not expert. For example,

• GOOD: Present a scenario and two displays, asking evaluators which new coding scheme
helps them to locate anomalous data more quickly.

• NOT AS GOOD: Ask what coding scheme (bold print vs. blue text for anomalies) they
prefer for a type of information display.

• DIFFERENCE: No task information to orient the evaluators; phrasing of the question
implies that personal preference is being sought; less concrete assistance for judging coding
schemes.

7.2.4 Scenario Events

Scenario events are the key to constructing evaluation scenarios efficiently without compromis-
ing the quality of the evaluation. The design team scenarios are constructed to ensure that the
prototype addresses the prototype objectives. Because evaluation scenarios have a very similar
function, it would be most efficient just to reuse the scenarios that were originally used to design
the prototype. Unfortunately, this practice could result in a prototype which addresses only one
case: the specific scenario used in both the design and the evaluation. To make the evaluation a
better test of a more general task support, events are extracted from the design scenarios. They
can be modified slightly and recombined to form new scenarios, which can then be used in the
evaluation. This practice improves efficiency by reusing selected scenario events but also results
in a more independent assessment of task support.

7.2.5 Evaluation Scenarios

Scenario events are integrated into connected stories so that the user can evaluate the prototype
in a realistic context. The scenarios help the user to stay task-oriented in his/her evaluation,
which helps to prevent the evaluation session from deteriorating into some disconnected set of
personal preferences. In other words, the scenario helps him/her evaluate how well the prototype
supports task performance rather than whether he/she personally prefers blue backgrounds.

34

Because part of the evaluation is intended to explore directions for future prototypes, some of
the scenarios may call for capabilities that have not yet been built into the current prototype. To
address these questions, it might be necessary to make paper prototypes or to mock up small,
disconnected, exploratory prototypes to elicit better answers from the evaluators about future
capabilities. These techniques can also be used to investigate alternative approaches the
prototype could have taken.

7.2.6 Session Training

Session training includes an orientation supplemented by training materials. The orientation
helps evaluators understand why you are building the prototype, and they need to understand
their role in evaluating it. Fortunately, much of what you have done to prepare for the evaluation
can be used in the introductory materials. For instance, the evaluators should be informed of the
high-level evaluation objectives (e.g., "usefulness, rather than usability"). It is important to
avoid setting false expectations, which could damage the future credibility of the development
team. Tell how the evaluation report will be used in your project (see Figure 4, "How the
Evaluation Report Is Used").
• What is the overall goal of the project?
• If this is one drop in a plan of incremental drops,

− What are the others?
− When are the others expected?
− How is the current drop useful in the short run?
− How will it be useful in the context of future drops?
− Where do evaluator inputs fit within the plan of incremental drops?

• What are the evaluation goals? Which are primary and which are secondary?

• What will be done with the evaluators’ comments, suggestions, and reactions?

Training materials are used to make the evaluators familiar with the prototype so that they can
evaluate it. The evaluators you select should be future users of the system. As such, they should
already be familiar with the supported tasks and they should easily recognize the scenarios.
However, because the prototype is new, they need to be trained to use the prototype to perform
the task. How much training they receive depends on the way in which they are expected to use
the new software. If you were developing a walk-up-and-use information kiosk, the evaluation
probably should not have any training. However, most of our prototypes are for people to use on
a frequent basis. Consequently, it is more important that they be able to use the software well
after receiving some training than to be able to use it without any training at all. We usually tell
them how to perform each task and lead them through an execution of the task using the
prototype.

If the task is somewhat complex, we make graphical cue cards illustrating how each task is
performed. If cue cards are used, they should also be evaluated. An excessive dependence on
the cue card may indicate weakness in the user interface—perhaps a task orientation needs to be
integrated more tightly into the interface. If the evaluator indicates the cue card was useful but
could be discarded after becoming accustomed to the new software, then it should probably be
delivered along with the software—perhaps included as online help, as well.

35

Finally, part of the user training is to set expectations for the users’ role in the evaluation. They
aren’t being evaluated, the software is (that’s why we call them evaluators, not subjects). The
evaluators are helping you by providing insights from the user’s viewpoint. You are not only
concerned with how well the software supports them in performing a task, but you are also
interested in how to improve your prototype. Finally, you need to let them know what aspects of
the prototype are of greatest interest at this point in time. In other words, they are the evaluators,
and you are providing them with a view of the evaluation objectives. Initial prototypes will be
concerned more with whether the right tasks are being supported in reasonable ways. Evalua-
tions of later prototypes will be centered more on how effectively that support was delivered.

Consider using the following steps in the session training:
• Explain low-level interaction details.
• Introduce cue card.
• Lead user through task.

• Gain experience with the basics of the human-computer interaction.

7.2.7 Evaluation Agenda

The agenda identifies everything that should happen during an evaluation session and the
approximate amount of time to be spent on each. Table 2 identifies a typical agenda. The order
is important and has been rather constant across our previous evaluations. The specific times
will vary, depending on the evaluation—often the times will vary with each evaluator.

Table 2. Typical Times for an Evaluation Agenda

15 min introduction & project description

15 min session training & practice

45 min task execution with prototype (2 or 3 scenarios)

15 min interview and debriefing

30 min take notes & prepare for next evaluator

2 hours total (schedule evaluators 2 hours apart)

This is an example of a high-level agenda. You’ll want to add more details before the evalua-
tion. The web page at http://tommy.jsc.nasa.gov/~clare/methods/ contains links to some
examples of evaluation agendas for specific projects.

36

7.3 Conducting a Formal Evaluation

The most important results of the evaluation arise from observing the evaluator interacting with
the prototype to perform a task in the context of a scenario. If the observations are done well,
they can be quite valuable. For instance, if you notice unexpected behaviors (slowness, wrong
answers, mistakes, signs of confusion), you can ask the evaluator what was going on. Was the
prototype doing something different from what the evaluator expected? Was the prototype
providing inappropriate information? Was a message worded badly? Was the meaning of
graphic form unclear?

No matter how carefully the evaluation is planned, it is unlikely you’ll have it right the first time.
If so, you probably spent too much time planning it. Consequently, we recommend doing "dry
runs" for development team members who have been less active in planning the evaluation. If
the user representative fits that description, he/she will be able to provide valuable feedback for
improving the evaluation sessions.

The following list is a compilation of advice (lessons learned) for guiding your evaluators
through a session:

• Keep evaluation objectives in mind. Sometimes deviations from the plan are required in
order to ensure that the main objectives are met.

• Try not to explain too much. Part of the purpose of the evaluation is to see how clearly the
prototype communicates with the user.

• Try not to defend the application as implemented. You are there to learn how to improve
it. Defensiveness on your part can shut off the flow of helpful information. Your dedication
to improvement should always show—this is important in gaining the evaluator’s trust that
you will act on the results of the evaluation, that the evaluator’s efforts will be used to a good
effect.

• Correct misunderstandings when they threaten the value of the evaluator’s responses.
Even if you are testing a walk-up-and-use system, if the initial instructions are bad, you
should step in and correct them so that additional features of the prototype can then be
evaluated. Be sure to note any corrections that were necessary—if you had to interrupt to
explain, something about the prototype probably needs improving.

• Temper the evaluation objectives with a concern for the evaluator.
− Don’t stress the evaluator.
− Don’t allow the evaluator to leave with ill feelings toward the project.

− Don’t allow the evaluator to leave with misconceptions of the project.

7.4 Reporting Results of a Formal Evaluation

Once the evaluation is complete, the development team needs to determine the design implica-
tions and prioritize them for future development iterations. For the most part, the report should
answer each of the evaluation objectives:
• How well did the prototype perform with respect to each evaluation objective?
• What parts of the prototype need improving?

37

• What did the evaluators see as important new capabilities to add to future prototypes?
• What additional lessons were learned about the supported user tasks?
• What additional lessons were learned about strategies for supporting those tasks?

• What additional lessons were learned about the specific implementations of those strategies
which were used in the prototype?

The improvements and new features should be prioritized so the design team can make a
reasonable decision about when to implement them.

Before writing the report, review Figure 4 ("How the Evaluation Report Is Used").

8. Further Reading

The reader may wish to gain more in-depth knowledge about some of the information discussed
in this "Field Guide." The following list is an attempt to identify some of the more important
sources for this purpose. The references have been categorized to make it easier to find specific
information.

8.1 Related Documents

A related set of documents has been written describing other aspects of our approach. These
documents emphasize the role of an intelligent system as a team player:

Land, S. A., Malin, J. T., Thronesbery, C., and Schreckenghost, D. L. (1995, July). Making
Intelligent Systems Team Players: A Guide to Developing Intelligent Monitoring Systems.
NASA Technical Memorandum 104807. Available from Springfield, VA: NTIS.

Malin, J., Schreckenghost, D., Woods, D., Potter, S., Johannesen, L., Holloway, M., and Forbus,
K. (1991). Making Intelligent Systems Team Players: Case Studies and Design Issues.
Volume 1. Human-Computer Interaction Design, Volume 2. Fault Management System
Cases. NASA Technical Memorandum 104738. Available from Springfield, VA: NTIS.

Malin, J. and Schreckenghost, D. (1992). Making Intelligent Systems Team Players: Overview
for Designers. NASA Technical Memorandum 104751. Available from Springfield, VA:
NTIS.

Malin, J., Schreckenghost, D., and Rhoads, R. (1993). Making Intelligent Systems Team
Players: Additional Case Studies. NASA Technical Memorandum 104736. Available
from Springfield, VA: NTIS.

Roth, E., Malin, J., and Schreckenghost, D. (1997). Paradigms for intelligent interface design. In
T. Helander, P. Landauer & P. Prabhu (Ed.), Handbook of Human-Computer Interaction
(2nd ed). Amsterdam: Elsevier, pp. 1177-1201.

38

8.2 Iterative, Collaborative Design

Boehm, B. (1988, May). "The Spiral Model of Software Development and Enhancement," IEEE
Computer, 21(5), pp.61-72.

Malin, J. T., Thronesbery, C.G., and Land, S. A. (1993). "End-Effector Monitoring System: An
Illustrated Case of Operational Prototyping," Proceedings of the Seventh Annual Workshop
on Space Operations and Applications Research (SOAR’93) (NASA Conference
Publication). Houston, TX: NASA-Johnson Space Center, pp. 461-467.

Thronesbery, C.G., and Malin, J. T. (1993). "Operational Prototyping: A Development
Approach for Improved Support of User Task Performance." Proceedings of the MITRE
User Interface Symposium. McLean, VA: The MITRE Corporation.

Thronesbery, C.G., and Malin, J. T. (1993)."Operational Prototyping: A Development
Approach for Innovative Technology Applications," Paper presented at the Joint
Applications in Instrumentation, Process, and Computer Control (JAIPCC ’93)
Symposium. Houston, TX: University of Houston-Clear Lake.

Woods, D.D., Patterson, E.S., Corban, J.M., and Watts, J.C. (1996). Bridging the Gap Between
User-Centered Intentions and Actual Design Practice. Proceedings of the Human Factors
and Ergonomics Society 40th Annual Meeting. Santa Monica, CA: Human Factors and
Ergonomics Society.

8.3 Use of Scenarios and Task Descriptions

Jeffries, R. (1997). The Role of Task Analysis in the Design of Software. In M. Helander, T.K.
Landauer, & P. Prabhu (eds). Handbook of Human-Computer Interaction (2nd ed).
Amsterdam: Elsevier, pp. 347-359.

8.4 Evaluation

Wixon, D., and Wilson, C. (1997). The Usability Engineering Framework for Product Design
and Evaluation. In M. Helander, T.K. Landauer, & P. Prabhu (eds). Handbook of Human-
Computer Interaction (2nd ed). Amsterdam: Elsevier, pp. 653-688.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
 July 1998 NASA Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Field Guide for Designing Human Interaction With Intelligent Systems

6. AUTHOR(S)
Carroll G. Thronesbery* & Jane T. Malin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBERS

Lyndon B. Johnson Space Center
Houston, Texas 77058

S-841

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

TM-1998-208470

11. SUPPLEMENTARY NOTES
* Metrica

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified/unlimited
Available from the NASA Center for AeroSpace Information (CASI)
7121 Standard
Hanover, MD 21076-1320 (301) 621-0390 Subject category: 66

13. ABSTRACT (Maximum 200 words)
The characteristics of this Field Guide approach address the problems of designing innovative software to support user tasks. The
requirements for novel software are difficult to specify a priori, because there is not sufficient understanding of how the users’ tasks
should be supported, and there are not obvious pre-existing design solutions. When the design team is in unfamiliar territory, care
must be taken to avoid rushing into detailed design, requirements specification, or implementation of the wrong product. The
challenge is to get the right design and requirements in an efficient, cost-effective manner. This document's purpose is to describe the
methods we are using to design human interactions with intelligent systems which support Space Shuttle flight controllers in the
Mission Control Center at NASA/Johnson Space Center. Although these software systems usually have some intelligent features, the
design challenges arise primarily from the innovation needed in the software design. While these methods are tailored to our specific
context, they should be extensible, and helpful to designers of human interaction with other types of automated systems. We review
the unique features of this context so that you can determine how to apply these methods to your project Throughout this Field Guide,
goals of the design methods are discussed. This should help designers understand how a specific method might need to be adapted to
the project at hand.

14. SUBJECT TERMS 15. NUMBER OF
 PAGES

16. PRICE CODE

man-computer interface; computer programs; software engineering; software tools;
computer systems design; 46

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

20. LIMITATION OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited
Standard Form 298 (Rev Feb 89) (MS Word Mar 97)
Prescribed by ANSI Std. 239-18
298-102

NSN 7540-01-280-5500

