
International Conference on Field-Programmable Technology, Dec. 15-17, 2003, Tokyo, Japan.

Multisensor Inversion with High-Performance FPGA Computation

Yongxiang Hu1, Yang Cai2, Mark Tomzak2, Tsengdar Lee3
1. NASA Langley Research Center. 2. Carnegie Mellon University. 3. NASA Code Y.

Email: yongxiang.hu-1@nasa.gov

Abstract

An FPGA-based reconfigurable generalized
inversion processor is developed for real-time
physical property retrievals of the atmosphere,
land and ocean. The processor is based on
Generalized Non-Linear Regression algorithm and
trained with radiative transfer simulations and
observations for autonomous detection of satellite
measurement signatures and retrievals of
atmospheric physical properties. The FPGA
approach is faster than traditional computing
methods in orders of magnitude. The generalized
inversion processor is able to automatically adapt
to multi-platform sensors, eliminate redundant
algorithm development and provide a vehicle for
autonomous onboard image analysis and physics-
based data compressions.

1. Introduction

Sensory data fusion and analysis from multiple satellite
platforms have been increasingly important tasks in
Atmospheric science research. Unfortunately, seamless
multi-platform data analysis currently does not exist
because of difficulties in algorithm development and huge
cost. For example, developing an ensemble of operational
algorithms for a single instrument, such as CERES and
MODIS, took about a decade and cost millions. As a result,
these Earth observing missions are not fully achieving their
capabilities and could find more applications. With the
growing number of satellites and improving spatial and
spectral resolutions, users have been coping with massive
data on daily basis.
 This study is to build a near real-time tool for solving
nonlinear inverse problems. It intends to develop a
generalized inversion processor and significantly reduce
the cost of physical inversion for combined observations.
With this tool, scientists do not have to spend too much
time on repeatedly learning and developing complicated
mathematical and computational tricks, such as the
Rodgers iterative methods [7]. GNR requires lots of
computations, especially for atmospheric remote sensing
problems with many dimensions of observations. Thus, the

centerpiece of this study is to implement GNR on custom
FPGA chips and maximize the computational performance.
Authors have been investigating the utilization of FPGA
based computing in the processing of remote sensing
scientific algorithms.

2. Physical-Inversion Models

Given physical properties [P] of the atmosphere, most
multi-spectral observations [O] can be simulated [O = f(P)],
thanks to known physics models (also called “forward
models”). Physical-inversion is the process of retrieving
physical properties from observations [P = f -1(O)]. Physical
inversion is a key component of an Earth observing
mission. For example, near sea surface wind-speed (W) can
be retrieved from the TRMM Microwave Imager (TMI)
brightness temperatures (B). For given wind speed,
brightness temperatures can be estimated from physics
models [B = f(W)]. The simplest inversion to retrieve wind
speed W from observation B [W = f -1(B)] is a linear
regression

 W = C1B1,h + C2B1,v + C3B2,h + +…

For given physical properties, we will generate a huge
library of high spectral resolution radiative transfer
calculations for UV, visible, near IR, thermal IR and
microwave wavelengths. To create the database, we will
use radiative transfer models such as MODTRAN for gas
absorption and DISORT for multiple scattering.
 Most remote sensing related inverse problems are
nonlinear in nature. A generalized nonlinear regression
(GNR) method is used specifically for high-performance
computing implementation. Using GNR, the wind speed W
can be derived from microwave measurements B as:

1 1

ˆ()
N N

i i i
i i

W B W D D
= =

= ∑ ∑
r

2

,
2

1

ˆ()
]

()
exp[

M j i j
i

j i i

B B
D

ρ σ=

−
= ∑−

where ˆ
iW and ˆ

jiB are wind speed and microwave

brightness temperatures from forward model simulations
and previous retrieval results. ? is a correlation factor

International Conference on Field-Programmable Technology, Dec. 15-17, 2003, Tokyo, Japan.

between the brightness temperature of channel j (ˆ
jB) and

the wind speed, and ? is measurement error of ˆ
jB . Based

on radial-bases neural networks, GNR is a non-parametric
estimation method. Retrievals using GNR are as
straightforward as linear regressions but yield more
accurate results. GNR has been tested on other remote
sensing applications as well [9]. With all the existing
physics models, we can produce equivalent ˆ

iW and ˆ
jiB for

all instruments from forward simulation. Comparing with
other inverse methods, GNR is more universal since it does
not require a priori information. However, GNR is not
necessary an ideal candidate for high performance parallel
computations. To improve the parallelism of the algorithm,
we modify the GNR to its subset, the Radial Basis Function
(RBF) model, which is simpler and easy to parallelize.

2

0 2
1

ˆ()
() exp[]

2

k
i

i
i u

B B
W B W W

σ=

−
= + ∑

v
v

Where each iB̂ is a kernel center and where ()dist is a

Euclidean distance calculation. The kernel function Dl is
defined so that it decreases as the distance between Bu and
Bj,i increases. Here k is a user-defined constant that
specifies the number of kernel functions to be included.
The Gaussian weight function is centered at the point

iB̂ with some variance σu
2. The function provides a global

approximation to the target function, represented by a
linear combination of many local kernel functions. The
value for any given kernel function is non-negligible only

when the input B
v

 falls into the region defined by its
particular center and width. Thus, the network can be
viewed as a smooth linear combination of many local
approximations to the target function. The key advantage
of RBF networks is that they contain only summation of
kernel functions rather than compounded calculation so
that RBF networks are easier to be parallelized. In addition,
they can be trained much more efficiently with genetic
algorithms.

3. System Architecture

We used National Instrument’s FPGA module for rapid
prototyping. We used a PC processor as a host that
transfers data into and out of the FPGA board. The two
interface with a PXI bus. Current reconfigurable FPGA
boards function like coprocessor cards, which are plugged
into desktop or large computer systems, called the host. By
attaching a reconfigurable coprocessor to a host computer,
the computation intensive tasks can be migrated to the
coprocessor forming a more powerful system.
 A prototype of the physical inversion model solver was
constructed on the NI PXI-7831R FPGA prototyping board.

The FPGA Vertex II 1000 contains 11,520 logic cells, 720
Kbits Block RAM, and 40 embedded 18x18 multipliers. This
board is primarily designed for implementation of custom
electronic logic probes. It can be programmed using the
tools provided by National Instruments. These tools
convert LabVIEW VI block-diagram code into VHDL, which
is then comp iled to a layout for the FPGA using the
standard Xilinx toolset. With this system, rapid prototyping
of a solution and alteration of the number of parallel
channels can be done without significant development
time.
 In our design, the computation intensive portion of the
multi-spectral image classification algorithm resides on the
calculations within the processor. The user interface, data
storage and IO, and adaptive coprocessor initialization and
operation are performed on the host computer. The
inversion algorithm is mapped to the FPGA board. The
FPGA has a direct connection to the host through the PCI
bus. Eighteen FPGA boards or other instruments can be
plugged into the chassis. This architecture allows users to
integrate sensors and physical inversion systems in one
place. It is possible to bring the system to an airborne craft
for onboard experiments.

4. Implementation

We have overcome the limitations of the current
development tool Labview™ and developed new functions
for solving our problems, e.g. exponential functions and
memory control functions as well as floating point
functions. We have implemented a parallel neural network
Generalized Regression Model on FPGA with historical
satellite data about wind speed and surface temperature. To
increase the capacity and speed, we have also implemented
Radial Basis Function, a subset of Generalized Non-linear
Regression model. The RBF model increased the capacity
in two folders and up. With fixed point computing, the RBF
presented ideal parallelism behavior on the FPGA. In
addition, we have prototyped a Genetic Algorithm (GA) for
training the neural networks on FPGA. The followings are
the implementation details:
4.1 Floating Point Representation
We have implemented both fixed-point and floating-point
representations on the FPGA. Due to the limited number of
gates available on the FPGA chip, it is desirable to use
fixed-point arithmetic in our implementation of the inversion
algorithm. However, the sensitivity to small values that was
demonstrated during testing of the GNR algorithm
necessitated the development of a floating-point solution.
The RBF algorithm did not demonstrate such sensitivity
and therefore allowed fixed-point representation to be used
in all of its aspects. In our floating-point representation, we
transform the algorithm into fixed point prior to hardware

International Conference on Field-Programmable Technology, Dec. 15-17, 2003, Tokyo, Japan.

implementation. The width of the fixed-point data path is
determined by simulating variable bit operations in
Labview™ and by comparing the results obtained from the
original algorithm in floating point.
4.2 Exponential-Function
Exponential function is the most computing-intensive
component of this application. We use a Look-Up Table
(LUT) for computing the exponential function. A LUT is
used to determine the value of e – a.
4.3 Saturated 16-Bit Multipliers
Due to limited number of the embedded multipliers on the
FPGA chip, we used 16-bit saturated multipliers instead of
32-bit full-length multipliers. We trade the accuracy with
computing resources and time.
4.4 Memory Control
A memory initialization utility has been developed to
arbitrate memory address so that the memory blocks can be
accessed simultaneously.
4.5 Training Algorithm Implementation
We used Genetic Algorithm (GA) to train the weights in the
inversion models. GA is a general purposes optimization
algorithm that is inspired by genetics. It normally generates
better convergence solutions for neural networks. To make
an efficient implementation of the algorithm on FPGA, we
focused on gate-based approach rather than matrix-based
approach. The gate-based approach takes advantages of
FPGA architecture and yields a simpler and more efficient
solution for GA implementation. For example, we used bit
shifting and XOR to implement the random number
generator that used minimal FPGA resources. Also, we
used on chip memory to store the chromosome strings,
rather than the ‘expensive’ arrays.
4.6 Parallelism Algorithm Implementation
We have implemented the parallelism algorithms at two
levels: First, on-chip parallelism, where we use Labview™
“Parallel While Loop” to execute the parallel modules.
Second, we put multiple FPGA boards on the PXI bus
where they can run in parallel.
4.7 Host Software
We use Labview™ to configure the FPGAs and transfer the
data in and out from FPGAs. A Graphical User Interface is
developed to accommodate user inputs. In addition, the
TCP/IP enabled utility allows user to access the FPGA
server remotely.
4.8 Inversion Algorithm Implementation
The example prototype designed used two-dimensional
input vectors (M=2 in the GNR equation). One hundred of
these inputs were chosen from a set of 5000 input/output
pairings and used as the set of known values. The
remaining inputs were used as test data to generate results,
which were then compared against the expected results
paired with the inputs. All values of iρ and iσ were set to

produce a 2()i iρ σ value of 0.001. Input values and output

results were normalized between 0 and 1; all inputs and
outputs are represented using fixed-point notation. Note
that fixed-point values will be denoted as x.y, where x is the
number of bits representing the integer value of the number
and y the number of bits of precision in the number. For
example, a 4.1 representation would allow for the numbers 0
through 15.5 to be represented at a resolution of 0.5. The
GNR solver algorithm first notes the tick count on the
FPGA timer, then acquires the input values from the host
computer and stores them in memory. The solver then
iterates 100 times to update both the iD value and the

value of ii DŴ . Finally, these values are summed and

divided as described by the algorithm, and the result sent
to the host computer. Another tick count is taken when the
calculation is complete, and the difference between the two
tick counts is sent to the host so that the processing time
could be calculated. This sub-VI takes two inputs: an index
i to determine which known value is being compared at this
iteration and an input index that denotes which input is
being compared. We first tried multiple inputs, but later on,
we realized that due to storage and input-output limitations
on the PXI-7831R board, it was more efficient to handle one
input at a time. The GNR system sets this input to 0.
 The upper and lower boxed regions are identical

sections that compute 2
,)ˆ(jij BB − . These results are

then summed, and the lower twelve bits from 2-6 to 2-17 are
used as a reference into a lookup table containing solutions

to the equation .001
x

e
−

. If any of the bits besides the
reference bits are set, a solution of 0 is returned; this is

justified because any solution to .001
x

e
−

for 52x −≥ is less
than 2-15 , and therefore cannot be represented at the
resolution of 1.15 used as the final output for iD . Once the

lookup table generates a value for iD , another lookup

table is used to retrieve the value of iŴ . These values are

multiplied together, and the SubVI generates two outputs:

iD and ii DŴ .

 The lookup tables used to store the known values and
calculate the value of iD are constructed using the FPGA

Memory Extension Utility in the LabVIEW system, which
allows for RAM to be initialized during the FPGA design
process. Fig. 5 shows the memory initialization code for the

iD lookup table and the set of known values, respectively.

 To convert the fixed-point results to floating-point and
to verify the results of the GNR calculation, a host VI was
constructed. This is a program that operates in the

International Conference on Field-Programmable Technology, Dec. 15-17, 2003, Tokyo, Japan.

Windows environment and interacts with the FPGA,
sending it input values and retrieving the resulting outputs.
It consists of an input converter that translates the
floating-point inputs into 4.12 fixed-point notation, an
input/output block to communicate with the FPGA, an
output converter, and a verifier system that calculates the
expected GNR solution in floating-point notation
independently of the FPGA. These values can be compared
to determine the accuracy of the FPGA results.
 Once the system was constructed, the number of parallel
processing channels was changed and the processing time
relative to the changes was observed. The calculation of

iD was tested both with the parallel version of the

algorithm as described (2 channels) and another version,

which calculated the values of 2
,)ˆ(jij BB − using a loop

through j=0 and j=1. Also, the 100-iteration loop in the main
body of the FPGA design was divided into multiple loops
of less iterations: a pair of loops (0-50 and 51-99), four
loops (0-24, 25-49, 50-74, 75-99), and five loops (0-19, 20-39,
40-59, 60-79, 80-99). Each of these configurations was
compiled and tested, and no variation in output values was
detected between them.

 Figure 1: Computation speed: Comparisons between

FPGA and Pentium.

5. Results

We have the following preliminary results through our
benchmark experiments:
 We found that FPGA over-performance Pentium at least
two to three orders of magnitude in terms of speed. For
example, for RG model, the FPGA uses 39 ns (with 10 MHz
clock speed). Pentium uses between 1000 ns and 2000 ns
(with 1 GHz clock speed) (See Figure 1).

 We also found that the fixed point Radial Basis
Function algorithm demonstrated ideal parallelism as the
number of simultaneous basis compares increases.
 One limitation in the design of the GNR equation was the
number of multiplier units available on the Xilinx FPGA. On
the Xilinx FPGA, multiplication is executed by the use of a
pre-constructed 18x18 MULT unit on the chip; This unit is
useful because multiplication is an expensive operation in
terms of number of gates used. However, with only forty of
these units on the chip the amount of multiplication
allowed in the GNR calculation was extremely limited.
Potential applications of this generalized FPGA -based
neural network processor include: multi-platform combined
retrievals; universal application of atmospheric remote
sensing; real-time data analysis and atmospheric
corrections for ocean and land image processing;
improvements in data processing capabilities of
Atmospheric Science Data Centers (ASDC). An example of
accelerating atmospheric retrievals in ASDC: currently
ASDC host computer has all the input “neurons”. The I/O
of generalized inversion FPGA processor would be linked
to ASDC using bi-directional “shared memory”.

5. Conclusions

First, we found that FPGA over-performance Pentium at
least two to three orders of magnitude in terms of speed.
For example, for RG model, the FPGA uses 39 ns (with 10
MHz clock speed). Pentium uses between 1000 ns and 2000
ns (with 1 GHz clock speed)
 Second, we found that the fixed point Radial Basis
Function algorithm demonstrated ideal parallelism as the
number of simultaneous basis increases.
 Third, we found the bottlenecks of the FPGA-based
computing is the data I/O. How to get data in and out of the
FPGA is on a critical path in terms of speed. Currently we
use PXI bus that contains only 16-bit parallel channels. It
can be saturated when the data exchanges are frequent. For
high-speed data exchange, we plan to build our own board
with a matrix of inter-connected FPGAs and use the
available data I/O lines on FPGA chips for inter-chip data
communication.

