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Abstract 

 
An FPGA-based reconfigurable generalized 
inversion processor is developed for real-time 
physical property retrievals of the atmosphere, 
land and ocean. The processor is based on 
Generalized Non-Linear Regression algorithm and 
trained with radiative transfer simulations and 
observations for autonomous detection of satellite 
measurement signatures and retrievals of 
atmospheric physical properties. The FPGA 
approach is faster than traditional computing 
methods in orders of magnitude. The generalized 
inversion processor is able to automatically adapt 
to multi-platform sensors, eliminate redundant 
algorithm development and provide a vehicle for 
autonomous onboard image analysis and physics-
based data compressions. 

 
 
1.  Introduction 
 
Sensory data fusion and analysis from multiple satellite 
platforms have been increasingly important tasks in 
Atmospheric science research. Unfortunately, seamless 
multi-platform data analysis currently does not exist 
because of difficulties in algorithm development and huge 
cost. For example, developing an ensemble of operational 
algorithms for a single instrument, such as CERES and 
MODIS, took about a decade and cost millions. As a result, 
these Earth observing missions are not fully achieving their 
capabilities and could find more applications.  With the 
growing number of satellites and improving spatial and 
spectral resolutions, users have been coping with massive 
data on daily basis.  
      This study is to build a near real-time tool for solving 
nonlinear inverse problems. It intends to develop a 
generalized inversion processor and significantly reduce 
the cost of physical inversion for combined observations. 
With this tool, scientists do not have to spend too much 
time on repeatedly learning and developing complicated 
mathematical and computational tricks, such as the 
Rodgers iterative methods [7]. GNR requires lots of 
computations, especially for atmospheric remote sensing 
problems with many dimensions of observations. Thus, the 

centerpiece of this study is to implement GNR on custom 
FPGA chips and maximize the computational performance. 
Authors have been investigating the utilization of FPGA 
based computing in the processing of remote sensing 
scientific algorithms.  
 
2.  Physical-Inversion Models 
 
Given physical properties [P] of the atmosphere, most 
multi-spectral observations [O] can be simulated [O = f(P)], 
thanks to known physics models (also called “forward 
models”). Physical-inversion is the process of retrieving 
physical properties from observations [P = f -1(O)]. Physical 
inversion is a key component of an Earth observing 
mission. For example, near sea surface wind-speed (W) can 
be retrieved from the TRMM Microwave Imager (TMI) 
brightness temperatures (B). For given wind speed, 
brightness temperatures can be estimated from physics 
models [B = f(W)]. The simplest inversion to retrieve wind 
speed W from observation B [W = f -1(B)] is a linear 
regression  
 
                              W = C1B1,h + C2B1,v + C3B2,h + +… 
  
For given physical properties, we will generate a huge 
library of high spectral resolution radiative transfer 
calculations for UV, visible, near IR, thermal IR and 
microwave wavelengths. To create the database, we will 
use radiative transfer models such as MODTRAN for gas 
absorption and DISORT for multiple scattering.  
     Most remote sensing related inverse problems are 
nonlinear in nature. A generalized nonlinear regression 
(GNR) method is used specifically for high-performance 
computing implementation. Using GNR, the wind speed W 
can be derived from microwave measurements B as:  
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where ˆ
iW and ˆ

jiB are wind speed and microwave 

brightness temperatures from forward model simulations 
and previous retrieval results. ?  is a correlation factor 
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between the brightness temperature of channel j ( ˆ
jB ) and 

the wind speed, and ?  is measurement error of ˆ
jB . Based 

on radial-bases neural networks, GNR is a non-parametric 
estimation method. Retrievals using GNR are as 
straightforward as linear regressions but yield more 
accurate results. GNR has been tested on other remote 
sensing applications as well [9]. With all the existing 
physics models, we can produce equivalent ˆ

iW and ˆ
jiB for 

all instruments from forward simulation. Comparing with 
other inverse methods, GNR is more universal since it does 
not require a priori information. However, GNR is not 
necessary an ideal candidate for high performance parallel 
computations. To improve the parallelism of the algorithm, 
we modify the GNR to its subset, the Radial Basis Function 
(RBF) model, which is simpler and easy to parallelize. 
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Where each iB̂  is a kernel center and where ()dist is a 

Euclidean distance calculation. The kernel function Dl is 
defined so that it decreases as the distance between Bu and 
Bj,i increases. Here k  is a user-defined constant that 
specifies the number of kernel functions to be included. 
The Gaussian weight function is centered at the point 

iB̂ with some variance σu
2.  The function provides a global 

approximation to the target function, represented by a 
linear combination of many local kernel functions. The 
value for any given kernel function is non-negligible only 

when the input B
v

 falls into the region defined by its 
particular center and width. Thus, the network can be 
viewed as a smooth linear combination of many local 
approximations to the target function. The key advantage 
of RBF networks is that they contain only summation of 
kernel functions rather than compounded calculation so 
that RBF networks are easier to be parallelized. In addition, 
they can be trained much more efficiently with genetic 
algorithms.  
      
3.  System Architecture  
 
We used National Instrument’s FPGA module for rapid 
prototyping. We used a PC processor as a host that 
transfers data into and out of the FPGA board. The two 
interface with a PXI bus. Current reconfigurable FPGA 
boards function like coprocessor cards, which are plugged 
into desktop or large computer systems, called the host. By 
attaching a reconfigurable coprocessor to a host computer, 
the computation intensive tasks can be migrated to the 
coprocessor forming a more powerful system. 
       A prototype of the physical inversion model solver was 
constructed on the NI PXI-7831R FPGA prototyping board. 

The FPGA Vertex II 1000 contains 11,520 logic cells, 720 
Kbits Block RAM, and 40 embedded 18x18 multipliers. This 
board is primarily designed for implementation of custom 
electronic logic probes. It can be programmed using the 
tools provided by National Instruments.  These tools 
convert LabVIEW VI block-diagram code into VHDL, which 
is then comp iled to a layout for the FPGA using the 
standard Xilinx toolset. With this system, rapid prototyping 
of a solution and alteration of the number of parallel 
channels can be done without significant development 
time. 
     In our design, the computation intensive portion of the 
multi-spectral image classification algorithm resides on the 
calculations within the processor. The user interface, data 
storage and IO, and adaptive coprocessor initialization and 
operation are performed on the host computer. The 
inversion algorithm is mapped to the FPGA board. The 
FPGA has a direct connection to the host through the PCI 
bus. Eighteen FPGA boards or other instruments can be 
plugged into the chassis. This architecture allows users to 
integrate sensors and physical inversion systems in one 
place. It is possible to bring the system to an airborne craft 
for onboard experiments. 
 
4.  Implementation 
 
We have overcome the limitations of the current 
development tool Labview™ and developed new functions 
for solving our problems, e.g. exponential functions and 
memory control functions as well as floating point 
functions. We have implemented a parallel neural network 
Generalized Regression Model on FPGA with historical 
satellite data about wind speed and surface temperature. To 
increase the capacity and speed, we have also implemented 
Radial Basis Function, a subset of Generalized Non-linear 
Regression model. The RBF model increased the capacity 
in two folders and up. With fixed point computing, the RBF 
presented ideal parallelism behavior on the FPGA. In 
addition, we have prototyped a Genetic Algorithm (GA) for 
training the neural networks on FPGA. The followings are 
the implementation details: 
4.1 Floating Point Representation 
We have implemented both fixed-point and floating-point 
representations on the FPGA. Due to the limited number of 
gates available on the FPGA chip, it is desirable to use 
fixed-point arithmetic in our implementation of the inversion 
algorithm. However, the sensitivity to small values that was 
demonstrated during testing of the GNR algorithm 
necessitated the development of a floating-point solution. 
The RBF algorithm did not demonstrate such sensitivity 
and therefore allowed fixed-point representation to be used 
in all of its aspects. In our floating-point representation, we 
transform the algorithm into fixed point prior to hardware 
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implementation. The width of the fixed-point data path is 
determined by simulating variable bit operations in 
Labview™ and by comparing the results obtained from the 
original algorithm in floating point. 
4.2 Exponential-Function  
Exponential function is the most computing-intensive 
component of this application. We use a Look-Up Table 
(LUT) for computing the exponential function. A LUT is 
used to determine the value of e – a. 
4.3 Saturated 16-Bit Multipliers 
Due to limited number of the embedded multipliers on the 
FPGA chip, we used 16-bit saturated multipliers instead of 
32-bit full-length multipliers. We trade the accuracy with 
computing resources and time. 
4.4 Memory Control 
A memory initialization utility has been developed to 
arbitrate memory address so that the memory blocks can be 
accessed simultaneously. 
4.5 Training Algorithm Implementation 
We used Genetic Algorithm (GA) to train the weights in the 
inversion models. GA is a general purposes optimization 
algorithm that is inspired by genetics. It normally generates 
better convergence solutions for neural networks. To make 
an efficient implementation of the algorithm on FPGA, we 
focused on gate-based approach rather than matrix-based 
approach. The gate-based approach takes advantages of 
FPGA architecture and yields a simpler and more efficient 
solution for GA implementation. For example, we used bit 
shifting and XOR to implement the random number 
generator that used minimal FPGA resources. Also, we 
used on chip memory to store the chromosome strings, 
rather than the ‘expensive’ arrays. 
4.6 Parallelism Algorithm Implementation 
We have implemented the parallelism algorithms at two 
levels: First, on-chip parallelism, where we use Labview™ 
“Parallel While Loop” to execute the parallel modules. 
Second, we put multiple FPGA boards on the PXI bus 
where they can run in parallel. 
4.7 Host Software 
We use Labview™ to configure the FPGAs and transfer the 
data in and out from FPGAs. A Graphical User Interface is 
developed to accommodate user inputs. In addition, the 
TCP/IP enabled utility allows user to access the FPGA 
server remotely. 
4.8 Inversion Algorithm Implementation 
The example prototype designed used two-dimensional 
input vectors (M=2 in the GNR equation). One hundred of 
these inputs were chosen from a set of 5000 input/output 
pairings and used as the set of known values. The 
remaining inputs were used as test data to generate results, 
which were then compared against the expected results 
paired with the inputs. All values of iρ and iσ were set to 

produce a 2( )i iρ σ value of 0.001. Input values and output 

results were normalized between 0 and 1; all inputs and 
outputs are represented using fixed-point notation. Note 
that fixed-point values will be denoted as x.y, where x is the 
number of bits representing the integer value of the number 
and y the number of bits of precision in the number. For 
example, a 4.1 representation would allow for the numbers 0 
through 15.5 to be represented at a resolution of 0.5. The 
GNR solver algorithm first notes the tick count on the 
FPGA timer, then acquires the input values from the host 
computer and stores them in memory. The solver then 
iterates 100 times to update both the iD value and the 

value of ii DŴ . Finally, these values are summed and 

divided as described by the algorithm, and the result sent 
to the host computer. Another tick count is taken when the 
calculation is complete, and the difference between the two 
tick counts is sent to the host so that the processing time 
could be calculated. This sub-VI takes two inputs: an index 
i to determine which known value is being compared at this 
iteration and an input index that denotes which input is 
being compared. We first tried multiple inputs, but later on, 
we realized that due to storage and input-output limitations 
on the PXI-7831R board, it was more efficient to handle one 
input at a time. The GNR system sets this input to 0. 
     The upper and lower boxed regions are identical 

sections that compute 2
, )ˆ( jij BB − . These results are 

then summed, and the lower twelve bits from 2-6 to 2-17 are 
used as a reference into a lookup table containing solutions 

to the equation .001
x

e
−

. If any of the bits besides the 
reference bits are set, a solution of 0 is returned; this is 

justified because any solution to  .001
x

e
−

for 52x −≥ is less 
than 2-15 , and therefore cannot be represented at the 
resolution of 1.15 used as the final output for iD . Once the 

lookup table generates a value for iD , another lookup 

table is used to retrieve the value of iŴ . These values are 

multiplied together, and the SubVI generates two outputs: 

iD and ii DŴ . 

     The lookup tables used to store the known values and 
calculate the value of iD are constructed using the FPGA 

Memory Extension Utility in the LabVIEW system, which 
allows for RAM to be initialized during the FPGA design 
process. Fig. 5 shows the memory initialization code for the 

iD lookup table and the set of known values, respectively. 

      To convert the fixed-point results to floating-point and 
to verify the results of the GNR calculation, a host VI was 
constructed. This is a program that operates in the 
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Windows environment and interacts with the FPGA, 
sending it input values and retrieving the resulting outputs. 
It consists of an input converter that translates the 
floating-point inputs into 4.12 fixed-point notation, an 
input/output block to communicate with the FPGA, an 
output converter, and a verifier system that calculates the 
expected GNR solution in floating-point notation 
independently of the FPGA. These values can be compared 
to determine the accuracy of the FPGA results. 
     Once the system was constructed, the number of parallel 
processing channels was changed and the processing time 
relative to the changes was observed. The calculation of 

iD was tested both with the parallel version of the 

algorithm as described (2 channels) and another version, 

which calculated the values of 2
, )ˆ( jij BB − using a loop 

through j=0 and j=1. Also, the 100-iteration loop in the main 
body of the FPGA design was divided into multiple loops 
of less iterations: a pair of loops (0-50 and 51-99), four 
loops (0-24, 25-49, 50-74, 75-99), and five loops (0-19, 20-39, 
40-59, 60-79, 80-99). Each of these configurations was 
compiled and tested, and no variation in output values was 
detected between them.  
 

 
     Figure 1: Computation speed: Comparisons between 

FPGA and Pentium. 
 
5. Results 
 
We have the following preliminary results through our 
benchmark experiments:      
      We found that FPGA over-performance Pentium at least 
two to three orders of magnitude in terms of speed. For 
example, for RG model, the FPGA uses 39 ns (with 10 MHz 
clock speed). Pentium uses between 1000 ns and 2000 ns 
(with 1 GHz clock speed) (See Figure 1). 

      We also found that the fixed point Radial Basis 
Function algorithm demonstrated ideal parallelism as the 
number of simultaneous basis compares increases. 
     One limitation in the design of the GNR equation was the 
number of multiplier units available on the Xilinx FPGA. On 
the Xilinx FPGA, multiplication is executed by the use of a 
pre-constructed 18x18 MULT unit on the chip; This unit is 
useful because multiplication is an expensive operation in 
terms of number of gates used. However, with only forty of 
these units on the chip the amount of multiplication 
allowed in the GNR calculation was extremely limited. 
Potential applications of this generalized FPGA -based 
neural network processor include: multi-platform combined 
retrievals; universal application of atmospheric remote 
sensing; real-time data analysis and atmospheric 
corrections for ocean and land image processing; 
improvements in data processing capabilities of 
Atmospheric Science Data Centers (ASDC). An example of 
accelerating atmospheric retrievals in ASDC: currently 
ASDC host computer has all the input “neurons”. The I/O 
of generalized inversion FPGA processor would be linked 
to ASDC using bi-directional “shared memory”.  

 
5.  Conclusions 
 
First, we found that FPGA over-performance Pentium at 
least two to three orders of magnitude in terms of speed. 
For example, for RG model, the FPGA uses 39 ns (with 10 
MHz clock speed). Pentium uses between 1000 ns and 2000 
ns (with 1 GHz clock speed)  
      Second, we found that the fixed point Radial Basis 
Function algorithm demonstrated ideal parallelism as the 
number of simultaneous basis increases. 
      Third, we found the bottlenecks of the FPGA-based 
computing is the data I/O. How to get data in and out of the 
FPGA is on a critical path in terms of speed. Currently we 
use PXI bus that contains only 16-bit parallel channels. It 
can be saturated when the data exchanges are frequent. For 
high-speed data exchange, we plan to build our own board 
with a matrix of inter-connected FPGAs and use the 
available data I/O lines on FPGA chips for inter-chip data 
communication.  
 
 


