

Neutral Beam Injection

H. W. Kugel NCSX Physics Validation Review March 26-28, 2001

HWK-1: NCSX PVR 3/26-28/2001

NCSX NBI Physics Requirements

Requirement	Baseline	<u>Upgrade</u>	Long Term	
H ⁰ Power	3 MW	6 MW	6 MW	
Pulse Length	300 msec	500 msec	1.2 sec	
Voltage	50 kV	50 kV	50 kV	
Orientation	1-Co,1-Cntr	2-Co,2-Cntr	TBD	
Focusing	3 MW to Plasma	6 MW to Plasma	6 MW to Plasma	

The PDX, PBX, and PBX-M Projects Used a High Performance Neutral Beam Injection System

- <u>Some PBX-M Highlights Achieved</u> <u>With the NBI System (88-93)</u>
 - High Beta (6.8% Beta total)
 - High confinement (3-3.5 x "ITER-P")
 - High stability (Beta normal of 4.5)
 - MHD instability control with close-fitting, conducting shell..
 - H-mode power threshold reduction with "m=1" edge biasing..
 - New core high-confinement ("CH")mode
 - Peaked density & high bootstrap fraction with IBW

- NBI Specifications
 - 6 MW H⁰, 50kV, 100A
 - 300-500 msec pulse
 - 4 Beamlines
 - 30 cm Circular Grids
 - 440 cm Focal Length
 - Power Density HWHM~1.2°
 - P⁰(E):P⁰(E/2):P⁰(E/3) = 80:13:7
 - Total Computer Control for conditioning & operation -reliable economical operation

• The NCSX Neutral Beam Heating Design Adopts the Available PBX-M NBI Systems

The NCSX NBI Design Has the Required Heating Power

PBX-M Injected Power Capability

- ORNL Qualification of Individual Ion Sources (Without Fringe Fields) **NBI** (H^0) = 6 MW (4 x 1.5 MW), **NBI** (D^0) = 8 MW (4 x 2.0 MW)
- PDX Simultaneous Testing of 4 NBI (Without Fringe Fields)
 NBI (D⁰) = 8.3 MW (4 NBI @ > 52 kV)
- Neutral Power Reionization Loss Fractions in PBX-M Due to Duct Neutral Gas (~1-4x10⁻⁴ T) Due to No Front End Cryopumping
 Perp ducts = 0.88 P₀ (12% loss), Tangential ducts = 0.83P₀ (17% loss)
- NSCX NBI Design Will Reinstall NBI Front End Cryopumping for Maximum Power Injection and Enhanced Torus Pumping NBI (H^0) = 6 MW (4 x 1.5 MW), NBI (D^0) = 8 MW (4 x 2.0 MW)

The NCSX NBI Design Has the Required Pulse Length

- The NB power handling surfaces are engineered to operate to 500 msec pulse lengths at the full power, peak power density of 3 kW/cm².
- PBX-M NBI systems pulse lengths were typically ~300 ms
 - testing to 500 msec did not start until toward the end of PBX-M.
- \bullet ORNL operated one ion source with H^0 to 500 msec at ~1.5 MW . (Ion source I_{decel} rose beyond 400 ms and a control technique was applied)
- PBX-M demonstrated 500 msec at reduced power (4MW total)
 - Each NBI demonstrated to operate with D^0 at ~40 KV, 1 MW, to 500 msec. Operation to higher powers at 500 msec feasible for both H⁰ and D⁰.
- MAST using similar ORNL NBI plans to upgrade to 1.5-3 pulse lengths.
 NCSX will adopt this technology for long pulse NBI.

The NCSX NBI Design Has Co- and Cntr- Injection for Beam Balance Studies and Control of Beam Driven Currents

The NCSX NBI Design Has Power Density Profiles to Transit the Available Ports and Heat the Oblate Target Plasma

- The ion sources have a focal length of 440 cm
- Power density profiles were measured in the 440 cm focal plane

NBI System ^{a)}	θ _{HW@HM} ^{b)}	W HW@HM C)	$\theta_{HW@1/e}$ d)	W HW@1/e e)
S	1.5°	11.58 cm	1.8°	13.9 cm
Е	1.13°	8.75 cm	1.36°	10.5 cm
NW	1.2°	9.25 cm	1.44°	11.1 cm
SW	0.94°	7.25 cm	1.13°	8.7 cm

The Width of the Candidate NB Transition Duct is Comparable to the PBX-M Tangential Duct Diameter

• During the Conceptual Design Phase it appears possible to increase the duct height for greater conductance

The Envelope of the Oblate Target Plasma Encloses More than 90% of Injected Power from Most Poorly Focused NB

- The NCSX Neutral Beam design adopts the high performance NBI system of the PDX, PBX, and PBX-M projects
 provided automated, reliable, economical operation.
- The design has the required heating power and pulse Length.
- The design has power density profiles that can transit the available ports and heat the oblate target plasma.
- The design has co- and cntr- NBI for beam balance studies, and control of beam driven currents.
- The NCSX NBI design will support the NCSX Physics Program.