
© 2007 Barton P. Miller August 2007 SDTPC 2007

Tool Futures:
A Look Back and a Look Forward

Barton P. Miller
University of Wisconsin

bart@cs.wisc.edu

(with thanks to John Mellor-Crummey and Jeff Vetter

– 2 –© 2007 Barton P. Miller SDTPC 2007

Background
“Recent survey of distributed memory system
users
• “80% have never even tried to use the parallel

debugger
• “90% still rely primarily on hand-coded

instrumentation.”
How recent?

October 1992,
Supercomputing Debugging Workshop
Dallas, TX

– 3 –© 2007 Barton P. Miller SDTPC 2007

Outline
Technical Challenges:
• Old
• New
• Other

Enablers
Recommendations from me
Recommendation from CScADS workshop

NB: These comments are my own and likely
biased. I look forward to your input.

– 4 –© 2007 Barton P. Miller SDTPC 2007

Approaching the Technical Challenges
We are here because:

• We have important and difficult problems to solve.
• We are motivated to produce effective solutions: we have

pride in what we do.

We will have to work differently than we have in the
past to make progress that keeps up with changes in
technology.

We will have to leave our egos at the door.

– 5 –© 2007 Barton P. Miller SDTPC 2007

Technical Challenges: Old
Scale: We have been fighting size for many years:
• Number: nodes/processors/cores.
• Code size: e.g. 250MB executables
• Run length: short runs may be representative, but often are not.
• Other resources: communicators, file descriptors, etc.

Detail: Sometimes there is no substitute for precise information,
which is expensive and can be hard to obtain.
Multiple platforms: Systems differ in OS, processor, compilers,
interconnect, I/O system, scheduler, MPI, OpenMP, and libraries.
Parallel languages: We fought with HPF and now UPC (and it’s
cousins). The greater the semantic gap between the language and
its machine code, the greater the tool challenge.
Automation: I was working on this in my dissertation (1984) and
I’m still work on it…sigh. (As are many of you.)

– 6 –© 2007 Barton P. Miller SDTPC 2007

Technical Challenges: New(er)
Deepening memory hierarchies:
Difference between having something
local vs. not local is getting much worse.
Scale exacerbates it.

Heterogeneity:
• Mixed mode in one platform: SMP (CMP) nodes, threads, and

message-passing between nodes. CMP’s are getting bigger.
Roadrunner is a cluster with Cells; Tokyo has cluster with
Clearspeed processors.

• Mixed nodes: Cascade will have scalar, CMP, vector nodes.
We can’t solve the problem well with one mode, so let’s add more!?

Extreme scale: Machine sizes are growing at a bewildering
rate. Nobody bats an eye when they say 1 million
processors. Eek!

– 7 –© 2007 Barton P. Miller SDTPC 2007

Technical Challenges: Other Things
New programming languages: Matlab, Excel, other
specialized descriptive languages.
And more automation: Apply advanced statistical,
learning, and data mining to the problem.
• What was a luxury at 1000 nodes becomes a survival

necessity at 100,000 nodes (1 million cores).

– 8 –© 2007 Barton P. Miller SDTPC 2007

The Basics
We still need to …

Instrument
Collect
Analyze
Reduce
Store
Visualize

… statically, dynamically, for the source, binary, application, OS,
runtime, interconnect, I/O system, etc.

But I’m not going to talk further about the technical solutions or
areas, but rather the path to bringing these solutions to the
people that need them.

– 9 –© 2007 Barton P. Miller SDTPC 2007

Some Concerns
There has been some extremely good work done in this

research community, but we’re not keeping up.
Point solutions are only short-term victories (however

they are victories ☺)
Avoid a “5-year plan” mentality (declaring victory and

moving on):
Many of the old problems are still here. Even though it’s

not sexy, we can’t pretend they’ve all been solved.
Real solutions to real problems are sexy.

Bottom line: Five years from now, will we still be
complaining about the same things (only point
solutions)? Or can we effect a paradigm shift?

– 10 –© 2007 Barton P. Miller SDTPC 2007

Enablers:
To keep the pipeline of tools flowing, we need:

1. A steady supply of new technical ideas
2. A means for testing them in the context of

real applications.
3. A means for “hardening” them such that they

are robust enough for others to use.
4. An infrastructure for distributing,

proselytizing, training, and supporting the
tools.

The flow through the pipe will be interrupted if
you’re missing any of these steps.

– 11 –© 2007 Barton P. Miller SDTPC 2007

1. A Steady Flow of New Ideas
The problem space is too big for any one group to

succeed alone
⇒ Big groups should stop trying for end-to-end

solutions.
⇒ Collaboration is crucial.

• Reduces redundant efforts
• Enables us to agree upon interfaces so that we experiment

with technical variations.
⇒ Basic functionality must be encapsulated in clean,

concise components.
• Requires well-defined interfaces.
• Allows other groups to leverage our work.
• Allows other groups to improve upon our work.
• Provides a more equal opportunity for small groups.

– 12 –© 2007 Barton P. Miller SDTPC 2007

1. A Steady Flow of New Ideas

If we can plug-n-play software in the same way
that we plug-n-play hardware, we have some
hope of keeping up, and maybe even
supporting heterogeneous systems.

Groups need to span national boundaries.
• Teams and technologies are international, so

research funding should reflect this.

– 13 –© 2007 Barton P. Miller SDTPC 2007

– 14 –© 2007 Barton P. Miller SDTPC 2007

2. A Means for Testing on Real Programs
Testing on real programs requires:

⇒ A supply of real applications.
• This is getting easier as big groups work with real

application groups. Need a clearinghouse for making
these more generally available.

⇒ More general access to large systems.
• We need to create the expectation the your

research results are not interesting unless they are
demonstrated on a significantly sized problem (open
question as to how big is “significant”).

• Funding programs should include machine access;
not as a separate (e.g., INCITE) proposal.

– 15 –© 2007 Barton P. Miller SDTPC 2007

3. A Means for Hardening our Tools
This step is difficult for most groups:

⇒ Requires software engineering skills for which most
researchers do not have the training or experience.

⇒ Significant time overhead in the progression:
• Fragile demo prototype
• Prototype that runs on a couple of real applications
• Tool that you can run reliably on many applications
• Tools that also runs on a variety of systems
• A significant and ongoing test regime.

⇒ Incompatible with academic promotion
“Nice software … good luck in your new job!”

⇒ Most grants don’t provide funding for such activities.

– 16 –© 2007 Barton P. Miller SDTPC 2007

4. Infrastructure for Distribution and Support
If the previous step is difficult for most

groups, then this one is even harder:
⇒ Not academia: these skills are even further

from those of our students and staff.
⇒ Not industry: ideally, each vendor should want

to do this . . .
. . . but tools don’t sell systems because the

procurement specs don’t include significant tool
requirements.

⇒ Not the labs:
• Limited funding to support this activity and each lab

usually has only a subset of systems.

– 17 –© 2007 Barton P. Miller SDTPC 2007

A Few Recommendations

1. Team projects are crucial.

2. We need to identify the fundamental
components:

Functionality boundaries and interfaces
Divide the work so that sharing becomes the
default, not extra-effort special case.

– 18 –© 2007 Barton P. Miller SDTPC 2007

A Few Recommendations
3. Funding should provide opportunity for a

spectrum of proposals:
Basic concepts
Basic concepts + significant demonstration
Basic concepts + significant demonstration +
distribution of software

The further along you go, the larger the team
and funding needed.

4. Application group engagement continues to
be important (both technically and
politically).

– 19 –© 2007 Barton P. Miller SDTPC 2007

A Few Recommendations
5. Producing stable, usable software will require a new

vision:
An organization that transcends individual labs,
research groups, and companies.
Each of these has its own agenda and limitations.
Stable long-term funding (at least a 5-year initial
window)
A virtual center with:

A core team with key expertise
Incremental support (½ FTE?) to each participating software
group.
Commitment in the form of a ¼ to ½ FTE from each vendor.

20CScADS Petascale Performance Tools Workshop, July 2007

Funding Priorities

New techniques
• Anomaly detection
• Mining large performance database archives
• Analysis techniques for new architectures – GPUs, multi-core
• Integration of analysis into visualization
• Integration of system level data into application level analysis
• Data reduction - for both analysis and visualization

21CScADS Petascale Performance Tools Workshop, July 2007

Funding Priorities

• Support for augmentation & componentization of existing
infrastructure
– rewarding developers whose software is reusable/reused

• Support for standardization
• Support for international collaborations

– joint programs with other countries?
• supercomputing infrastructure is a priority in the EU

– travel and coordination represent a minimum investment which should
yield good ROI

• APART model

• Training support
– fund engagement with application teams
– workshops to help application teams learn to use tools productively

• benefit for tool developers: having users adopt tools provides ROI to DOE

22CScADS Petascale Performance Tools Workshop, July 2007

Funding Issues

Model for long term maintenance of software?

• Tools built by academic groups: how to support them in the long term?
– tension in academia: innovation vs. support
– who owns the tool?

• awkward if owner is not original developer
– co-locating innovators with maintainers is essential

• maintenance programmers will burn out if divorced from innovation
• Examples: measurement support

– support PAPI group to port and maintain on leadership class machines?

• pro: the UTK folks are best qualified
• con: should be vendor’s responsibility (LLNL)

– standard OS interface is important too, e.g. perfmon
• Model for government and industry partnership in funding?

– government + HPC vendors
– alternate HPC revitalization message

• those who buy the machines own the problem

	Tool Futures:�A Look Back and a Look Forward
	Background
	Outline
	Approaching the Technical Challenges
	Technical Challenges: Old
	Technical Challenges: New(er)
	Technical Challenges: Other Things
	The Basics
	Some Concerns
	Enablers:
	1. A Steady Flow of New Ideas
	1. A Steady Flow of New Ideas
	Slide Number 13
	2. A Means for Testing on Real Programs
	3. A Means for Hardening our Tools
	4. Infrastructure for Distribution and Support
	A Few Recommendations
	A Few Recommendations
	A Few Recommendations
	Funding Priorities
	Funding Priorities
	Funding Issues

