Simulations of orbiting black holes

Wolfgang Tichy

Department of Physics Florida Atlantic University

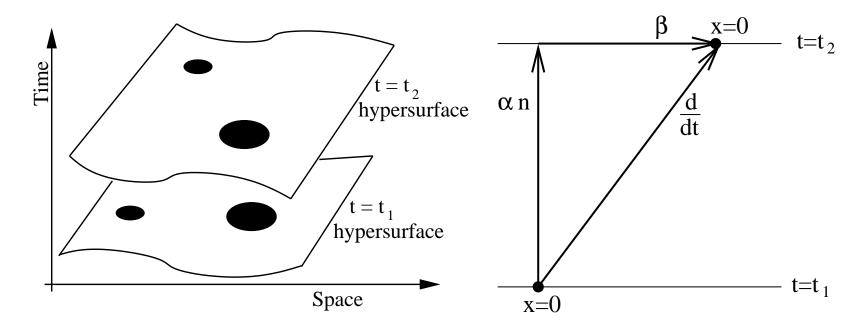
Collaborators: Bernd Brügmann, Nina Jansen

NASA Goddard Space Flight Center, 11/3/2005

Plan of the talk:

- The 3+1 split of the spacetime
- Important ingredients necessary for numerical evolutions
- Binary black holes & quasi-circular orbits
- Comoving coordinates
- Results from the first binary black hole orbit simulation
- Summary

The 3+1 Split of spacetime



• Spacetime is foliated by t = const slices

- Einstein's equations then split into evolution equations and constraint equations
- The evolution equations tell us how to evolve forward in time, from one slice to the next.
- The relation between the coordinates on the different slices is described by lapse α and shift β^i .

Ingredients for numerical evolution

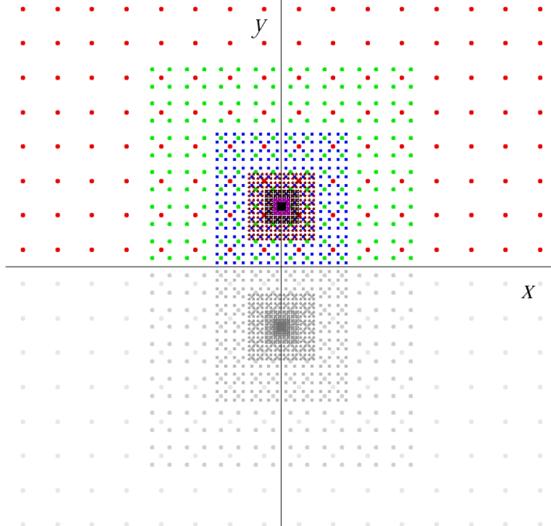
- as before:
 - Puncture initial data for two orbiting black holes
 - Modified BSSN evolution system (i.e. replace all undifferentiated $\tilde{\Gamma}^i$ by derivatives of the metric, subtract trace of \tilde{A}_{ij} from \tilde{A}_{ij} after each ICN step)
 - Outer boundary of the shape of a "lego sphere", with Sommerfeld type outer boundary conditions for all evolved quantities:

$$\partial_t F = \pounds_\beta F - v \frac{x^k}{r} \left(F - F_\infty \right)_{,k} - v \frac{F - F_\infty}{r},$$

- Simple excision of the black holes inside the horizon (i.e. simply copy time derivative at next interior point onto excision boundary) extended to "lego spheres"
- Singularity avoiding gauge (i.e. prevent slice from running into physical singularities)
- new:
 - our BAM code uses fixed mesh refinement (FMR) for efficiency
 - comoving coordinates, which compensate for black hole orbital motion

About FMR in BAM

- 7 nested boxes around each black hole
- For 48 points in *x*-direction:
 - resolution between 2M and 0.03125M
 - outer boundary at R = 48M
- 3D quadrant symmetry for non-spinning equal mass black holes
- AMR not needed, because we use corotating coordinates
- ICN time stepping scheme similar as in Carpet (Schnetter, Hawley and Hawke 2003), but with lowered Courant factor on coarser grids, due to superluminal corotation



 \Rightarrow Runs can be done on a workstation!

Quasi-circular orbits

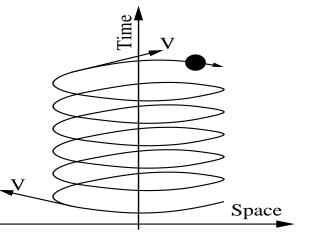
In principle, we want initial data, which represent a black hole binary that has slowly been inspiraling already for a long time, due to the emission of gravitational waves.

Post-Newtonian calculations predict that the black holes are moving on quasicircular orbits with slowly shrinking radius, i.e. there are the two timescales:

 \Rightarrow a comoving coordinate system exists in which

 $\partial_t g_{ij} \approx \partial_t K_{ij} \approx 0$

• we should be able to find a lapse α and shift β^i which realize these comoving coordinates, so that the time evolution of the system is minimized.

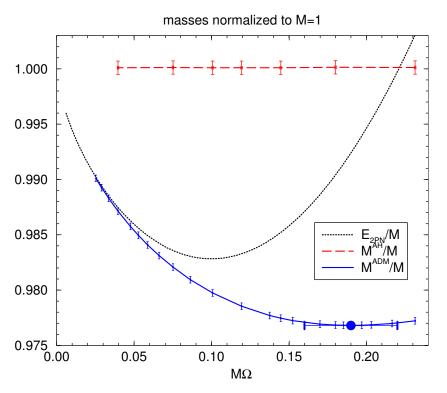


Questions:

- How fast do the black holes rotate?
- How fast do they drift toward each other?

Black hole puncture initial data, for quasi-circular orbits

 We use initial data from a binary black hole sequence (WT, B. Brügmann, P. Laguna, 2003), which tells us the angular velocity Ω for circular orbits at any given black hole separation.

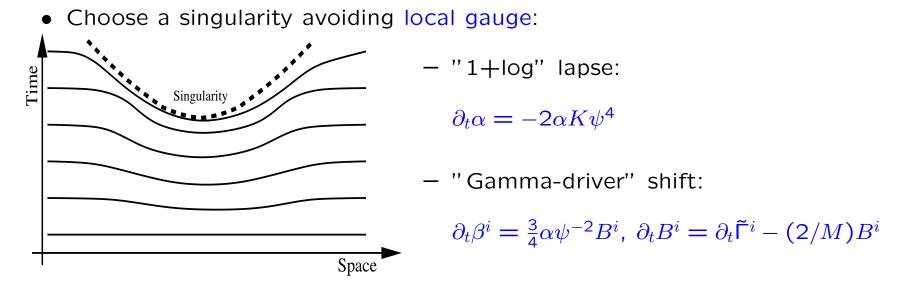


- ADM mass agrees with post-Newtonian results for low $\Omega \Leftrightarrow$ large separations
- but disagreement for large $\Omega \Leftrightarrow$ small separations

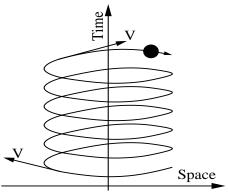
- We choose initial data in the regime where numerical and post-Newtonian predictions still agree.
- We focus on: $\Omega = 0.055/M \Leftrightarrow T_{orbit} = 114M$ and R = 3M
- The goal is to evolve for about one orbit, i.e. for at least 114M.

Gauge or coordinate choice for numerical evolution

• Initial lapse and shift: $\alpha = 1$, $\beta^i = 0$



- This local gauge works well for a single black hole, but it knows nothing about the orbital motion and does not lead to comoving coordinates.
- With this alone the run crashes after $\sim 8M$.
- Since the black holes are in quasi-circular orbits, comoving coordinates should exist in which time evolution is minimized.
- We should be able to shift β^i which realizes these comoving coordinates.

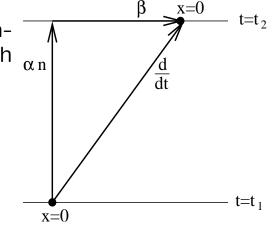


Global gauge choice - comoving coordinates

• Add a comotion shift which counters the global rotation and also the drift of the two holes toward each α_n other, i.e. $\beta^i \rightarrow \beta^i + \beta^i_{com}$ with

$$\beta_{com}^{i} = \psi^{-3} \left[(\Omega \times x)^{i} - AV_{r}x^{i} \right]$$

• For point particles this would work perfectly.

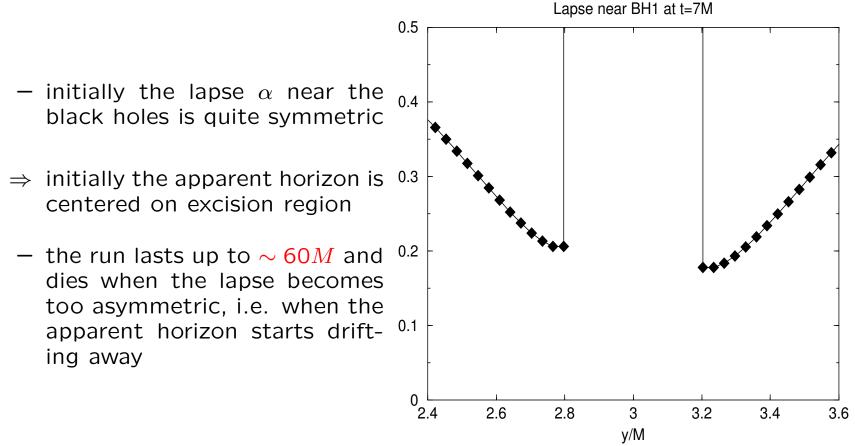


How well does this work for black holes?

- We have several parameters in the attenuation functions ψ and A, which determine the form of the shift near the black holes and also far away (i.e. zero at puncture \rightarrow rigid rotation far away).
- With our best choice of parameters and with Ω taken from our initial data sequence:
 - the apparent horizon stays near its initial location for a while, but then starts drifting away
 - the simulation lasts up to $\sim 60M$ and dies when the apparent horizon drifts too far

Using the lapse to find approximate black hole horizons

- When we use a "1+log" lapse, α is a good indicator of the location of the black hole horizons: apparent horizon is located roughly at $\alpha \approx 0.3$
- If we add the comotion shift:



• Note: excision was used here, but up to $\sim 60M$ it is not needed

Dynamically adjusted comoving coordinates

- Dynamically adjust Ω and V_r in the comotion shift $\beta_{com}^i = \psi^{-3} \left[(\Omega \times x)^i AV_r x^i \right]$
 - Define the asymmetry in the lapse α by its "center of mass"

$$d^{i} := \sum_{x^{i} \in \text{ exc. } B.} (x^{i}_{\text{BH, initial}} - x^{i})\alpha / \left(\sum_{x^{i} \in \text{ exc. } B.} \alpha\right).$$

This asymmetry indicates if and in which direction the black hole is moving.

– From time to time (every $\Delta t = 2M$) we change Ω and V_r in β_{com}^i by

$$\Delta \Omega = \Delta v_t / R \qquad \Delta V_r = \Delta v_r$$

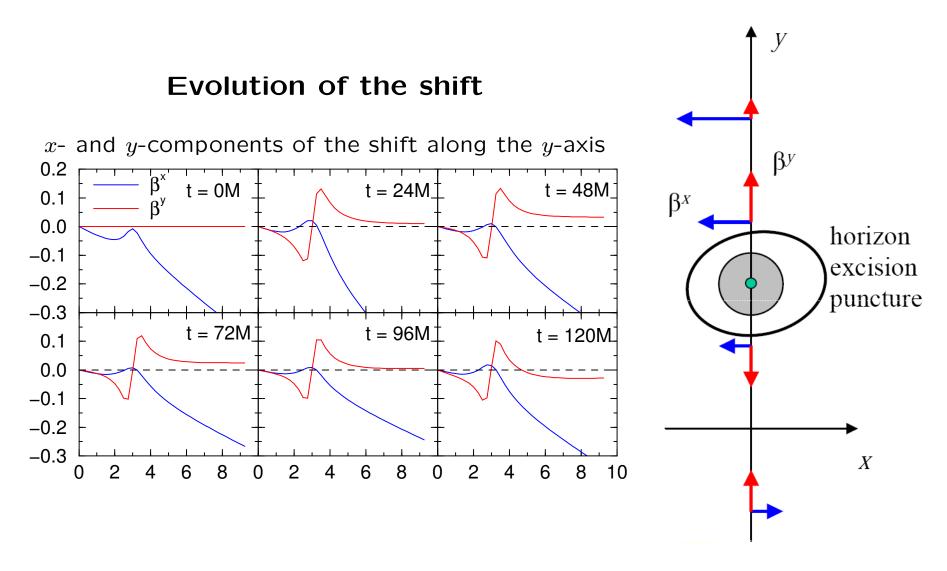
where Δv^i is computed from the estimated coordinate distance d^i by which the black hole has moved with respect to our coordinates.

- We use a damped harmonic oscillator equation

$$\Delta v^i = (-kd^i - \gamma \partial_t d^i) \Delta t$$

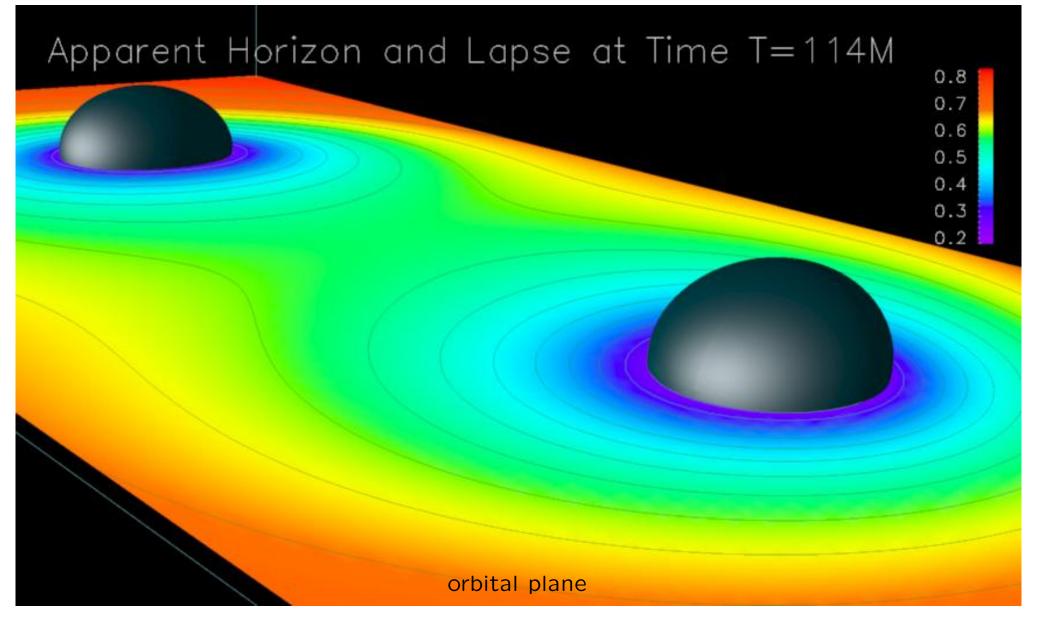
to compute the changes in the shift.

• Now we can evolve to around 125M, which is more than the orbital timescale of $T_{orbit} = 114M$, inferred from the initial data.



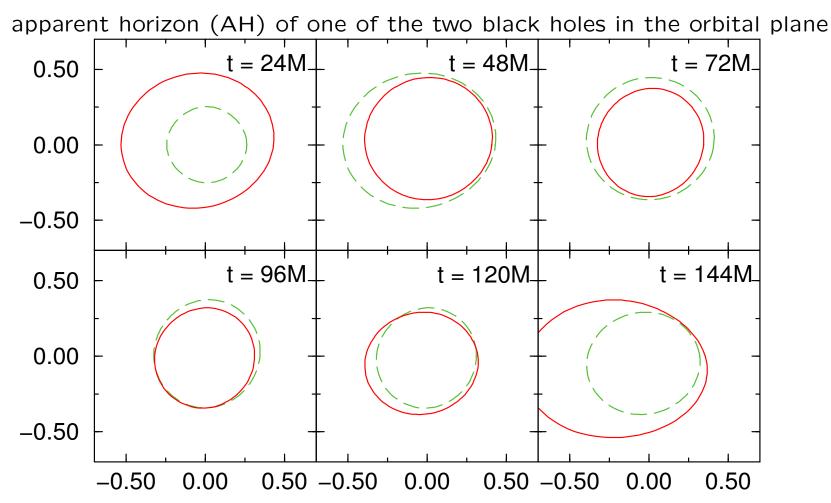
- shift is dynamically adjusted in order to keep the BHs from moving with respect to our coordinates
- $|\beta_x|$: first increase, then slow decrease, then increase toward end
- β_y : first becomes positive, then negative again

Apparent horizons and lapse after about one orbit



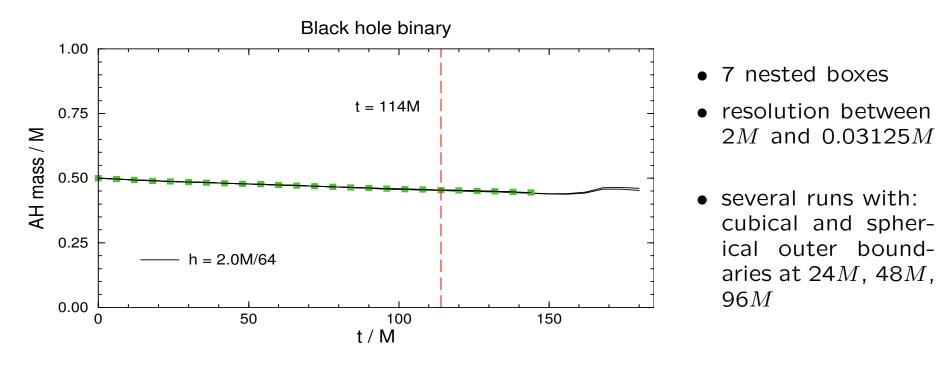
- comoving coordinates keep the BHs centered at their initial coordinate locations
- location of apparent horizon is where $\alpha \sim 0.3$

Residual motion of the apparent horizon



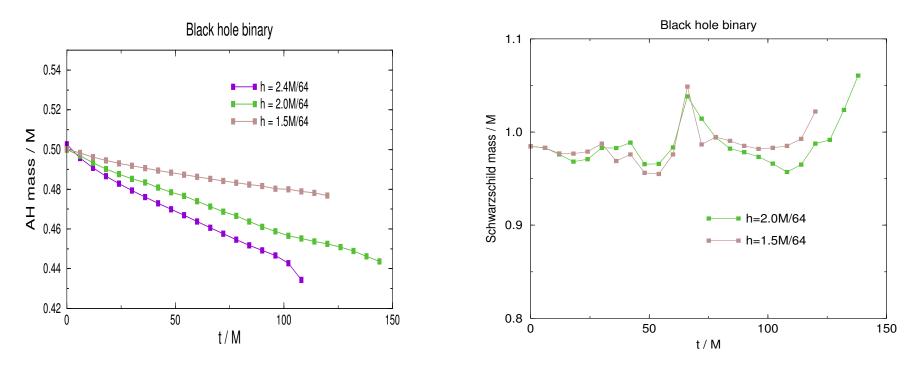
- due to our comoving coordinates the AH and thus the black hole stays more or less in place
- the coordinate size of the AH changes over time
- the AH shape becomes non-spherical in the chosen coordinates
- until the end of the simulation, no common apparent horizon was found

Apparent horizon area and mass



- The proper horizon area A and the black hole mass defined by $M_{AH} = \sqrt{A/16\pi}$ remain approximately constant during the evolution.
- Our evolution time is longer than one orbital period (as predicted by our initial data sequence).
- We obtain similar but shorter lived results without excision. \rightarrow excision seems OK

Numerical accuracy and current limitations



- The apparent horizon mass and area stay approximately constant. The slow downward drift decreases for finer resolutions h.
- The ADM mass at infinity as estimated by assuming a Schwarzschild background fluctuates on the order of 5%.
- \Rightarrow Further improvements are needed before accurate gravitational waves can be extracted.

Summary

- We have found a dynamic gauge choice which for the first time allows us to evolve a black hole binary for about one orbit.
- The initial separation is large enough to expect the black holes to really orbit and not to just plunge toward each other.
- Until the end of our numerical simulation, no common apparent horizon was found.
- \Rightarrow Likely, the 2 black holes have not merged until then.
- It seems that the gauge alone was the ingredient necessary to achieve this, even though there were many other suspects (such as: the BSSN evolution system or inner and outer boundary conditions)
- Our dynamic gauge is far from perfect, since the apparent horizons still drift around, which could be the reason for the crash in the end.

----- END ------