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Plan of the talk:

• The 3+1 split of the spacetime

• Important ingredients necessary for numerical evolutions

• Binary black holes & quasi-circular orbits

• Comoving coordinates

• Results from the first binary black hole orbit simulation

• Summary
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The 3+1 Split of spacetime
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• Spacetime is foliated by t = const slices

• Einstein’s equations then split into evolution equations and constraint
equations

• The evolution equations tell us how to evolve forward in time, from one
slice to the next.

• The relation between the coordinates on the different slices is described
by lapse α and shift βi.

3



Ingredients for numerical evolution

• as before:

– Puncture initial data for two orbiting black holes

– Modified BSSN evolution system (i.e. replace all undifferentiated Γ̃i

by derivatives of the metric, subtract trace of Ãij from Ãij after each
ICN step)

– Outer boundary of the shape of a “lego sphere”, with Sommerfeld
type outer boundary conditions for all evolved quantities:

∂tF = £βF − v
xk

r
(F − F∞),k − v

F − F∞
r

,

– Simple excision of the black holes inside the horizon (i.e. simply
copy time derivative at next interior point onto excision boundary)
extended to “lego spheres”

– Singularity avoiding gauge (i.e. prevent slice from running into phys-
ical singularities)

• new:

– our BAM code uses fixed mesh refinement (FMR) for efficiency

– comoving coordinates, which compensate for black hole orbital mo-
tion
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About FMR in BAM

• 7 nested boxes around each
black hole

• For 48 points in x-direction:
– resolution between

2M and 0.03125M
– outer boundary at
R = 48M

• 3D quadrant symmetry for
non-spinning equal mass
black holes

• AMR not needed, because we
use corotating coordinates

• ICN time stepping scheme
similar as in Carpet (Schnet-
ter, Hawley and Hawke
2003), but with lowered
Courant factor on coarser
grids, due to superluminal
corotation

⇒ Runs can be done on a workstation!
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Quasi-circular orbits

In principle, we want initial data, which represent a black hole binary
that has slowly been inspiraling already for a long time, due to the
emission of gravitational waves.

Post-Newtonian calculations predict that the black holes are moving on quasi-
circular orbits with slowly shrinking radius, i.e. there are the two timescales:

Torbit � Tinspiral

⇒ a comoving coordinate system exists in which

∂tgij ≈ ∂tKij ≈ 0

• we should be able to find a lapse α and shift
βi which realize these comoving coordinates,
so that the time evolution of the system is
minimized.
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Questions:

• How fast do the black holes rotate?

• How fast do they drift toward each other?
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Black hole puncture initial data, for quasi-circular orbits

• We use initial data from a binary black hole sequence (WT, B. Brügmann,
P. Laguna, 2003), which tells us the angular velocity Ω for circular orbits
at any given black hole separation.
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• ADM mass agrees with post-
Newtonian results for
low Ω ⇔ large separations

• but disagreement for large Ω ⇔ small
separations

• We choose initial data in the regime where numerical and post-Newtonian
predictions still agree.

• We focus on: Ω = 0.055/M ⇔ Torbit = 114M and R = 3M

• The goal is to evolve for about one orbit, i.e. for at least 114M .
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Gauge or coordinate choice for numerical evolution

• Initial lapse and shift: α = 1, βi = 0

• Choose a singularity avoiding local gauge:
T
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– ”1+log” lapse:

∂tα = −2αKψ4

– ”Gamma-driver” shift:

∂tβi =
3
4
αψ−2Bi, ∂tBi = ∂tΓ̃i − (2/M)Bi

• This local gauge works well for a single black hole, but it knows nothing
about the orbital motion and does not lead to comoving coordinates.

• With this alone the run crashes after ∼ 8M .

• Since the black holes are in quasi-circular orbits,
comoving coordinates should exist in which time
evolution is minimized.

• We should be able to shift βi which realizes these
comoving coordinates. Space
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Global gauge choice - comoving coordinates

• Add a comotion shift which counters the global rota-
tion and also the drift of the two holes toward each
other, i.e. βi → βi + βicom with

βicom = ψ−3
[
(Ω× x)i −AVrxi

]
• For point particles this would work perfectly.

t=t 2

t=t 1

d
dt

nα

x=0

β x=0

How well does this work for black holes?

• We have several parameters in the attenuation functions ψ and A, which
determine the form of the shift near the black holes and also far away
(i.e. zero at puncture → rigid rotation far away).

• With our best choice of parameters and with Ω taken from our initial
data sequence:

– the apparent horizon stays near its initial location for a while, but
then starts drifting away

– the simulation lasts up to ∼ 60M and dies when the apparent horizon
drifts too far
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Using the lapse to find approximate black hole horizons

• When we use a “1+log” lapse, α is a good indicator of the location of
the black hole horizons:
apparent horizon is located roughly at α ≈ 0.3

• If we add the comotion shift:

– initially the lapse α near the
black holes is quite symmetric

⇒ initially the apparent horizon is
centered on excision region

– the run lasts up to ∼ 60M and
dies when the lapse becomes
too asymmetric, i.e. when the
apparent horizon starts drift-
ing away
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• Note: excision was used here, but up to ∼ 60M it is not needed

10



Dynamically adjusted comoving coordinates

• Dynamically adjust Ω and Vr in the comotion shift βicom = ψ−3
[
(Ω× x)i −AVrxi

]
– Define the asymmetry in the lapse α by its “center of mass”

di :=
∑

xi∈ exc. B.

(xiBH, initial − x
i)α/

 ∑
xi∈ exc. B.

α

 .

This asymmetry indicates if and in which direction the black hole is
moving.

– From time to time (every ∆t = 2M) we change Ω and Vr in βicom by

∆Ω = ∆vt/R ∆Vr = ∆vr

where ∆vi is computed from the estimated coordinate distance di by
which the black hole has moved with respect to our coordinates.

– We use a damped harmonic oscillator equation

∆vi = (−kdi − γ∂tdi)∆t

to compute the changes in the shift.

• Now we can evolve to around 125M , which is more than the orbital
timescale of Torbit = 114M , inferred from the initial data.
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Evolution of the shift

x- and y-components of the shift along the y-axis
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• shift is dynamically adjusted in order to keep the BHs from moving with
respect to our coordinates

• |βx|: first increase, then slow decrease, then increase toward end

• βy: first becomes positive, then negative again
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Apparent horizons and lapse after about one orbit

orbital plane

• comoving coordinates keep the BHs centered at their initial coordinate
locations

• location of apparent horizon is where α ∼ 0.3
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Residual motion of the apparent horizon

apparent horizon (AH) of one of the two black holes in the orbital plane

−0.50 0.00 0.50

−0.50

0.00

0.50

−0.50

0.00

0.50

−0.50 0.00 0.50 −0.50 0.00 0.50

t = 24M t = 48M t = 72M

t = 96M t = 120M t = 144M

• due to our comoving coordinates the AH and thus the black hole stays
more or less in place

• the coordinate size of the AH changes over time

• the AH shape becomes non-spherical in the chosen coordinates

• until the end of the simulation, no common apparent horizon was found
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Apparent horizon area and mass
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• 7 nested boxes

• resolution between
2M and 0.03125M

• several runs with:
cubical and spher-
ical outer bound-
aries at 24M , 48M ,
96M

• The proper horizon area A and the black hole mass defined by
MAH =

√
A/16π remain approximately constant during the evolution.

• Our evolution time is longer than one orbital period (as predicted by our
initial data sequence).

• We obtain similar but shorter lived results without excision.
→ excision seems OK
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Numerical accuracy and current limitations
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• The apparent horizon mass and area stay approximately constant. The
slow downward drift decreases for finer resolutions h.

• The ADM mass at infinity as estimated by assuming a Schwarzschild
background fluctuates on the order of 5%.

⇒ Further improvements are needed before accurate gravitational waves
can be extracted.
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Summary

• We have found a dynamic gauge choice which for the first time allows
us to evolve a black hole binary for about one orbit.

• The initial separation is large enough to expect the black holes to really
orbit and not to just plunge toward each other.

• Until the end of our numerical simulation, no common apparent horizon
was found.

⇒ Likely, the 2 black holes have not merged until then.

• It seems that the gauge alone was the ingredient necessary to achieve
this, even though there were many other suspects (such as: the BSSN
evolution system or inner and outer boundary conditions)

• Our dynamic gauge is far from perfect, since the apparent horizons still
drift around, which could be the reason for the crash in the end.
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———————————— END ———————————–
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