Gravitational Physics using Atom Interferometry

Prof. Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA

Young's double slit with atoms

FIG. 2. Schematic representation of the experimental setup:

Young's 2 slit with Helium atoms

FIG. 5. Atomic density profile, monitored with the 8-µm grating in the detector plane, as a function of the lateral grating displacement. The dashed line is the detector background. The line connecting the experimental points is a guide to the eye.

Interference fringes2691

One of the first experiments to demonstrate de Broglie wave interference with atoms, 1991 (Mlynek, PRL, 1991)

(Light-pulse) atom interferometry

Resonant optical interaction

Recoil diagram

Momentum conservation between atom and laser light field (recoil effects) leads to spatial separation of atomic wavepackets.

Laser cooling

Laser cooling techniques are used to achieve the required velocity (wavelength) control for the atom source.

Image source: www.nobel.se/physics

Laser cooling:

Laser light is used to cool atomic vapors to temperatures of ~10⁻⁶ deg K.

Ø

USA

1948 -

The Nobel Prize in Physics 1997

"for development of methods to cool and trap atoms with laser light"

Steven Chu **Claude Cohen-**William D. Phillips Tannoudji Ø Ø France USA Collège de France National Institute of Stanford University Paris, France Standards and Stanford, CA, USA and École Normale Technology Supérieure Gaithersburg, Paris, France Maryland, USA 1933 -1948 -

Three contributions to interferometer phase shift:

STANFORD UNIVERSITY

See Bongs, et al., quant-ph/0204102 (April 2002) also App. Phys. B, 2006.

Laboratory gyroscope

fringes:

a

Atom flux (arb.)

10-2

(b

Gyroscope interference

AI gyroscope

Sensor 10⁻³ PSD^{1/2} (deg/hr^{1/2}) noise $3 \mu deg/hr^{1/2}$ Noise: Lab technical 10-4 noise Bias stability: $< 60 \mu deg/hr$ 10-5 Scale factor: < 5 ppm Atom shot noise 20 60 40 80 0 Frequency (Hz) Gustavson, et al., PRL, 1997,

3

100

2

Time (sec)

Durfee, et al., PRL, 2006 STANFORD UNIVERSITY

Compact gyroscope/accelerometer

Multi-function sensor measures rotations and linear accelerations along a single input axis.

Interior view

Interference fringes are recorded by measuring number of atoms in each quantum state

Measurement of Newton's Constant

Pb mass translated vertically along gradient measurement axis.

Measurement of G

Systematic	$\delta G/G$
Initial Atom Velocity	1.88×10^{-3}
Initial Atom Position	1.85×10^{-3}
Pb Magnetic Field Gradients	1.00×10^{-3}
Rotations	0.98×10^{-3}
Source Positioning	0.82×10^{-3}
Source Mass Density	0.36×10^{-3}
Source Mass Dimensions	0.34×10^{-3}
Gravimeter Separation	0.19×10^{-3}
Source Mass Density inhomogeneity	0.16×10^{-3}
TOTAL	3.15×10^{-3}

Systematic error sources dominated by initial position/velocity of atomic clouds.

 $\delta G/G \sim 0.3\%$

Fixler, et al., Science, 2007

Next generation experiment (in progress)

Theory in collaboration with S. Dimopoulos, P. Graham, J. Wacker. Using new sensors, we anticipate $\delta G/G \sim 10^{-5}$.

This will also test for deviations from the inverse square law at distances from $\lambda \sim 1 \text{ mm}$ to 10 cm.

$$V(r) = -G \frac{m_1 \ m_2}{r} \left[1 + \alpha \ e^{-r/\lambda} \right]$$

Sensors in use for next generation G measurements.

Experiment in progress

Currently achieved statistical sensitivity at $\sim 2x10^{-4}$ G.

Airborne Gravity Gradiometer

Existing technology

Land: 3 wks.

AI sensors potentially offer 10 x – 100 x improvement in detection sensitivity at reduced instrument costs.

Equivalence Principle

Co-falling ⁸⁵Rb and ⁸⁷Rb ensembles

Evaporatively cool to < 1 μ K to enforce tight control over kinematic degrees of freedom

Statistical sensitivity

 $\delta g \sim 10^{-15} g$ with 1 month data collection

Systematic uncertainty

 $\delta g \sim 10^{-16}$ limited by magnetic field inhomogeneities and gravity anomalies.

Also, new tests of General Relativity

STANFORD UNIVERSITY

10 m atom drop tower

10 m drop tower

Post-Newtonian Gravitation

Light-pulse interferometer phase shifts for Schwarzchild metric:

- Geodesic propagation for atoms and light.
- Path integral formulation to obtain quantum phases.
- Atom-field interaction at intersection of laser and atom geodesics.

Post-Newtonian trajectories for classical particle:

$$\frac{d\mathbf{v}}{dt} = -\nabla(\phi + 2\phi^2 + \psi) - \frac{\partial\zeta}{\partial t} + \mathbf{v} \times (\nabla \times \zeta) + 3\mathbf{v}\frac{\partial\phi}{\partial t} + 4\mathbf{v}(\mathbf{v}\cdot\nabla)\phi - \mathbf{v}^2\nabla\phi$$

From Weinberg, Eq. 9.2.1

Collaborators: Savas Dimopoulos, Peter Graham, Jason Hogan.

Prior work, de Broglie interferometry: Post-Newtonian effects of gravity on quantum interferometry, Shigeru Wajima, Masumi Kasai, Toshifumi Futamase, Phys. Rev. D, 55, 1997; Bordé, et al.

Post-Newtonian Gravitation

Light-pulse interferometer phase shifts for Schwarzchild metric:

- Geodesic propagation for atoms and light.
- Path integral formulation to obtain quantum phases.
- Atom-field interaction at intersection of laser and atom geodesics.

Post-Newtonian trajectories for classical particle:

$$\frac{d\vec{v}}{dt} = -\nabla\phi \qquad -\nabla\phi^2 \qquad -\vec{v}^2\nabla\phi$$

Newton'sGravityGravityGravitates

Kinetic Energy Gravitates

From weinberg, Eq. 9.2.1

Collaborators: Savas Dimopoulos, Peter Graham, Jason Hogan.

Prior work, de Broglie interferometry: Post-Newtonian effects of gravity on quantum interferometry, Shigeru Wajima, Masumi Kasai, Toshifumi Futamase, Phys. Rev. D, 55, 1997; Bordé, et al.

Theory

Initial

- Define metric
- Calculate geodesic equations for photons and atoms

Atom interferometer phase shift

- Initial coordinates for optical pulses, atom trajectories
- Find intersection coordinates for atom and photon geodesics (2 photons for Raman transitions)
- Evaluate scalar propagation phase
- Coordinate transformation to local Lorentz frame at each atom/photon intersection (Equivalence Principle) to for atom/photon interaction (eg. apply Sch. Eq.).
- Coordinate transformation to local Lorentz frame at final interferometer pulse to evaluate separation phase

Parameterized Post-Newtonian (PPN) analysis

Schwazchild metric, PPN expansion:

$$\begin{split} ds^2 &= (1+2\phi+2\beta\phi^2)dt^2 - (1-2\gamma\phi)dr^2 - r^2d\Omega^2\\ \frac{d\vec{v}}{dt} &= -\vec{\nabla}[\phi+(\beta+\gamma)\phi^2] + \gamma[3(\vec{v}\cdot\hat{r})^2 - 2\vec{v}^2]\vec{\nabla}\phi\\ &+ 2\vec{v}(\vec{v}\cdot\vec{\nabla}\phi). \end{split}$$

Corresponding AI phase shifts:

	Phase Shift	Size (rad)	Interpretation	
1.	$-k_{\text{eff}}gT^2$	3×10^8	gravity	
2.	$-k_{\text{eff}}(\partial_r g)T^3v_L$	-2×10^3	1st gradient	
3.	$-3k_{\text{eff}}gT^2v_L$	4×10^{1}	Doppler shift	
4.	$(2 - 2\beta - \gamma)k_{\text{eff}}g\phi T^2$	2×10^{-1}	GR	
5.	$-\frac{7}{12}k_{\text{eff}}(\partial_r^2 g)T^4v_L^2$	8×10^{-3}	2nd gradient	
6.	$-5k_{\rm eff}gT^2v_L^2$	3×10^{-6}	GR	
7.	$(2-2\beta-\gamma)k_{\text{eff}}\partial_r(g\phi)T^3v_L$	2×10^{-6}	${ m GR}$ 1st grad	
8.	$-12k_{\text{eff}}g^2T^3v_L$	-6×10^{-7}	GR	

Projected experimental limits:

Tested	$\operatorname{current}$	AI	AI	AI	AI far
Effect	limit	initial	upgrade	future	future
PoE	3×10^{-13}	10^{-15}	10^{-16}	10^{-17}	10^{-19}
PPN (β, γ)	$10^{-4} - 10^{-5}$	10^{-1}	10^{-2}	10^{-4}	10^{-6}

Steady path of apparatus improvements include:

- Improved atom optics
- Taller apparatus
- Sub-shot noise interference readout
- In-line, accelerometer, configuration (milliarcsec link to external frame NOT req'd).

STANFORD UNIVERSILI

Equivalence Principle Installation

Cosmology

Are there (local) observable phase shifts of cosmological origin?

Analysis has been limited to simple metrics:

- FRW: $ds^2 = dt^2 a(t)^2(dx^2 + dy^2 + dz^2)$
- McVittie: ~Schwarzchild + FRW

$$g = \left(\frac{1 - m(t)/2r}{1 + m(t)/2r}\right)^2 dt^2 - \left(1 + \frac{m(t)}{2r}\right)^4 a^2(t) \left(dr^2 + r^2 d\Omega^2\right).$$

- Gravity waves

Giulini, gr-qc/0602098

Work in progress ...

Future theory: Consider phenomenology of exotic/speculative theories (after validating methodology)

Acknowledgements

- Todd Gustavson, Research Scientist
- Boris Dubetsky, Research Scientist
- Todd Kawakami, Post-doctoral fellow
- Romain Long, Post-doctoral fellow
- Olaf Mandel, Post-doctoral fellow
- Peter Hommelhoff, Post-doctoral fellow
- Ari Tuchman, Research scientist
- Catherine Kealhoffer, Graduate student, Physics
- Wei Li, Graduate student, Physics
- Hui-Chun Chen, Graduate student, Applied Physics
- Ruquan Wang, Graduate student, Physics
- Mingchang Liu, Graduate student, Physics
- Ken Takase, Graduate student, Physics
- Grant Biedermann, Graduate student, Physics
- Xinan Wu, Graduate student, Applied physics
- Jongmin Lee, Graduate student, Electrical engineering
- Chetan Mahadeswaraswamy, Graduate student, Mechanical engineering
- David Johnson, Graduate student, Aero/Astro engineering
- Geert Vrijsen, Graduate student, Applied physics
- Jason Hogan, Graduate student, Physics
- Nick Ciczek, Graduate student, Applied Physics
- Mike Minar, Graduate student, Applied Physics
- Sean Roy, Graduate student, Physics
- Larry Novak, Senior assembly technician
- Paul Bayer, Optomechanical engineer
- + THEORY COLLABORATORS!

