Gravitational Physics using Atom Interferometry

Prof. Mark Kasevich
Dept. of Physics and Applied Physics Stanford University, Stanford CA

Young's double slit with atoms

FIG. 2. Schematic representation of the experimental seter:

Young's 2 slit with Helium atoms

FIG. 5. Atomic deasily profie, monitored with the 8 - $\mu \mathrm{m}$ grating in the detector plane, iss if function of the lateral gratitg displicement. The dashasd line is the detector background. The line connecting the experimental points is a guide to the cye.

One of the first experiments to demonstrate de Broglie wave interference with atoms, 1991 (Mlynek, PRL, 1991)

(Light-pulse) atom interferometry

Resonant optical interaction

Recoil diagram

Momentum conservation between atom and laser light field (recoil effects) leads to spatial separation of atomic wavepackets.

Laser cooling

Laser cooling techniques are used to achieve the required velocity (wavelength) control for the atom source.

Laser cooling: Laser light is used to cool atomic vapors to temperatures of $\sim 10^{-6}$ deg K .

Image source: www.nobel.se/physics

Semi-classical approximation

Three contributions to interferometer phase shift:

$$
\Delta \phi_{\text {total }}=\Delta \phi_{\text {prop }}+\Delta \phi_{\text {laser }}+\Delta \phi_{\text {sep }}
$$

Propagation shift:

$$
\frac{S_{\mathrm{cl}, \mathrm{~B}}-S_{\mathrm{cl}, \mathrm{~A}}}{\hbar}
$$

Laser fields
(Raman interaction):

$$
k\left(z_{c}-z_{b}+z_{d}-z_{a}\right)+\phi_{I}-2 \phi_{I I}+\phi_{I I I}
$$

Wavepacket separation at detection:

$$
\vec{p} \cdot \Delta \vec{r} / \hbar
$$

Laboratory gyroscope

Al gyroscope

Noise:
$3 \mu \mathrm{deg} / \mathrm{hr}^{1 / 2}$
Bias stability: $\quad<60 \mu \mathrm{deg} / \mathrm{hr}$
Scale factor: $<5 \mathrm{ppm}$

Atom shot noise
Gustavson, et al., PRL, 1997,
Gyroscope interference fringes:

Durfee, et al., PRL, 2006

Compact gyroscope/accelerometer

Multi-function sensor measures rotations and linear accelerations along a single input axis.

Interior view

Interference fringes are recorded by measuring number of atoms in each quantum state

Measurement of Newton's Constant

Pb mass translated vertically along gradient measurement axis.

Measurement of G

Systematic	$\delta G / G$
Initial Atom Velocity	1.88×10^{-3}
Initial Atom Position	1.85×10^{-3}
Pb Magnetic Field Gradients	1.00×10^{-3}
Rotations	0.98×10^{-3}
Source Positioning	0.82×10^{-3}
Source Mass Density	0.36×10^{-3}
Source Mass Dimensions	0.34×10^{-3}
Gravimeter Separation	0.19×10^{-3}
Source Mass Density inhomogeneity	0.16×10^{-3}
TOTAL	3.15×10^{-3}

> Systematic error sources dominated by initial position/velocity of atomic clouds.
> $\delta \mathrm{G} / \mathrm{G} \sim 0.3 \%$

Fixler, et al., Science, 2007

Next generation experiment (in progress)

Theory in collaboration with S. Dimopoulos, P. Graham, J. Wacker.

Using new sensors, we anticipate $\delta \mathrm{G} / \mathrm{G} \sim 10^{-5}$.

This will also test for deviations from the inverse square law at distances from $\lambda \sim 1 \mathrm{~mm}$ to 10 cm .

$$
V(r)=-G \frac{m_{1} m_{2}}{r}\left[1+\alpha e^{-r / \lambda}\right]
$$

Sensors in use for next generation G measurements.

Experiment in progress

Currently achieved statistical sensitivity at $\sim 2 \times 10^{-4} \mathrm{G}$.

Airborne Gravity Gradiometer

Existing technology

Land: 3 wks.

Al sensors potentially offer 10 x $100 \times$ improvement in detection sensitivity at reduced instrument costs.

Equivalence Principle

Co-falling ${ }^{85} \mathrm{Rb}$ and ${ }^{87} \mathrm{Rb}$ ensembles
Evaporatively cool to $<1 \mu \mathrm{~K}$ to enforce tight control over kinematic degrees of freedom

Statistical sensitivity
$\delta \mathrm{g} \sim 10^{-15} \mathrm{~g}$ with 1 month data collection

Systematic uncertainty
$\delta g \sim 10^{-16}$ limited by magnetic field inhomogeneities and gravity anomalies.

Also, new tests of General Relativity

10 m atom drop tower

Post-Newtonian Gravitation

Light- pulse interferometer phase shifts for Schwarzchild metric:

- Geodesic propagation for atoms and light.
- Path integral formulation to obtain quantum phases.
- Atom-field interaction at intersection of laser and atom geodesics.

Post-Newtonian trajectories for classical particle:

$$
\begin{aligned}
\frac{d v}{d t}= & -\nabla\left(\phi+2 \phi^{2}+\psi\right)-\frac{\partial \zeta}{\partial t}+\mathbf{v} \times(\nabla \times \zeta) \\
& +3 \mathbf{v} \frac{\partial \phi}{\partial t}+4 \mathbf{v}(\mathbf{v} \cdot \nabla) \phi-\mathbf{v}^{2} \nabla \phi
\end{aligned}
$$

From Weinberg, Eq. 9.2.1

Collaborators: Savas Dimopoulos, Peter Graham, Jason Hogan.

Prior work, de Broglie interferometry: Post-Newtonian effects of gravity on quantum interferometry, Shigeru Wajima, Masumi Kasai, Toshifumi Futamase, Phys. Rev. D, 55, 1997; Bordé, et al.

Post-Newtonian Gravitation

Light-pulse interferometer phase shifts for Schwarzchild metric:

- Geodesic propagation for atoms and light.
- Path integral formulation to obtain quantum phases.
- Atom-field interaction at intersection of laser and atom geodesics.

Post-Newtonian trajectories for classical particle:

$$
\begin{array}{cc}
\frac{d \vec{v}}{d t}=-\nabla \phi & -\nabla \phi^{2} \\
\begin{array}{c}
\text { Newton's } \\
\text { Gravity }
\end{array} & \begin{array}{c}
\text { Gravity } \\
\text { Gravitates }
\end{array}
\end{array}
$$

Fiom verminery, cy. y.८.ı

Collaborators: Savas Dimopoulos, Peter Graham, Jason Hogan.

Prior work, de Broglie interferometry: Post-Newtonian effects of gravity on quantum interferometry, Shigeru Wajima, Masumi Kasai, Toshifumi Futamase, Phys. Rev. D, 55, 1997; Bordé, et al.

Theory

I nitial

- Define metric
- Calculate geodesic equations for photons and atoms

Atom interferometer phase shift

- Initial coordinates for optical pulses, atom trajectories
- Find intersection coordinates for atom and photon geodesics (2 photons for Raman transitions)
- Evaluate scalar propagation phase
- Coordinate transformation to local Lorentz frame at each atom/photon intersection (Equivalence Principle) to for atom/photon interaction (eg. apply Sch. Eq.).
- Coordinate transformation to local Lorentz frame at final interferometer pulse to evaluate separation phase

Parameterized Post-Newtonian (PPN) analysis

Schwazchild metric, PPN expansion:

$$
\begin{aligned}
d s^{2}= & \left(1+2 \phi+2 \beta \phi^{2}\right) d t^{2}-(1-2 \gamma \phi) d r^{2}-r^{2} d \Omega^{2} \\
\frac{d \vec{v}}{d t}= & -\vec{\nabla}\left[\phi+(\beta+\gamma) \phi^{2}\right]+\gamma\left[3(\vec{v} \cdot \hat{r})^{2}-2 \vec{v}^{2}\right] \vec{\nabla} \phi \\
& +2 \vec{v}(\vec{v} \cdot \vec{\nabla} \phi) .
\end{aligned}
$$

Corresponding Al phase shifts:

	Phase Shift	Size (rad)	Interpretation
1.	$-k_{\text {eff }} g T^{2}$	3×10^{8}	gravity
2.	$-k_{\text {eff }}\left(\partial_{r} g\right) T^{3} v_{L}$	-2×10^{3}	1st gradient
3.	$-3 k_{\text {eff }} g T^{2} v_{L}$	4×10^{1}	Doppler shift
4.	$(2-2 \beta-\gamma) k_{\text {eff }} g \phi T^{2}$	2×10^{-1}	GR
5.	$-\frac{7}{12} k_{\mathrm{eff}}\left(\partial_{r}^{2} g\right) T^{4} v_{L}^{2}$	8×10^{-3}	2nd gradient
6.	$-5 k_{\text {eff } g} g T^{2} v_{L}^{2}$	3×10^{-6}	GR
7.	$(2-2 \beta-\gamma) k_{\text {eff }} \partial_{r}(g \phi) T^{3} v_{L}$	2×10^{-6}	GR 1st grad
8.	$-12 k_{\text {eff }} g^{2} T^{3} v_{L}$	-6×10^{-7}	GR

Projected experimental limits:

Tested	current	AI	AI	AI	AI far
Effect	limit	initial	upgrade future future		
PoE	3×10^{-13}	10^{-15}	10^{-16}	10^{-17}	10^{-19}
PPN (β, γ)	$10^{-4}-10^{-5}$	10^{-1}	10^{-2}	10^{-4}	10^{-6}

Equivalence Principle Installation

Cosmology

Are there (local) observable phase shifts of cosmological origin?

Analysis has been limited to simple metrics:

- FRW: $\quad d s^{2}=d t^{2}-a(t)^{2}\left(d x^{2}+d y^{2}+d z^{2}\right)$
- McVittie: ~Schwarzchild + FRW

$$
g=\left(\frac{1-m(t) / 2 r}{1+m(t) / 2 r}\right)^{2} d t^{2}-\left(1+\frac{m(t)}{2 r}\right)^{4} a^{2}(t)\left(d^{2}+r^{2} d \Omega^{2}\right)
$$

- Gravity waves

Giulini, gr-qc/0602098

Work in progress ...

Future theory: Consider phenomenology of exotic/ speculative theories (after validating methodology)

Acknowledgements

- Todd Gustavson, Research Scientist
- Boris Dubetsky, Research Scientist
- Todd Kawakami, Post-doctoral fellow
- Romain Long, Post-doctoral fellow
- Olaf Mandel, Post-doctoral fellow
- Peter Hommelhoff, Post-doctoral fellow
- Ari Tuchman, Research scientist
- Catherine Kealhoffer, Graduate student, Physics
- Wei Li, Graduate student, Physics
- Hui-Chun Chen, Graduate student, Applied Physics
- Ruquan Wang, Graduate student, Physics
- Mingchang Liu, Graduate student, Physics
- Ken Takase, Graduate student, Physics
- Grant Biedermann, Graduate student, Physics
- Xinan Wu, Graduate student, Applied physics
- J ongmin Lee, Graduate student, Electrical engineering
- Chetan Mahadeswaraswamy, Graduate student, Mechanical engineering
- David J ohnson, Graduate student, Aero/Astro engineering
- Geert Vrijsen, Graduate student, Applied physics
- Jason Hogan, Graduate student, Physics
- Nick Ciczek, Graduate student, Applied Physics
- Mike Minar, Graduate student, Applied Physics
- Sean Roy, Graduate student, Physics
- Larry Novak, Senior assembly technician
- Paul Bayer, Optomechanical engineer
+ THEORY COLLABORATORS!

