Laser Based Spark Ignition for Reciprocating Engines

Presenter: Mike McMillian

September 16, 2002 Natural Gas Infrastructure Reliability Industry Forums

Introduction: Why Laser Ignition?

- <u>Regulations</u> on NOx Emissions Have continue to force Operation of Natural Gas Engines to Leaner Air/Fuel Ratios
- Lean Air/Fuel Ratios Are More <u>Difficult to Ignite</u>, Conventional Systems Require High Ignition Energies
- Natural Gas Is More <u>Difficult to Ignite</u> Than Gasoline due to the Strong C-H Bond Energy
 - Laser Light Is Monochromatic, So Selective Chemistry Becomes a Possible Option.
- Due to Increased Ignition Coil Energy, Spark Plug <u>Service Life Is</u> <u>Very Low</u> for Natural Gas Engines
 <u>Laser ignition offers the potential for extended service life</u>
- <u>Rugged lasers</u> are available for numerous industrial processes
- Potential for Improved Durability!

Introduction: Why Laser Ignition? cont.

- Engine Operation at Lean Air/Fuel Ratios Using Spark Plug Ignition Is Limited Due to <u>Misfire</u>, Ignition Delay and Unstable Ignition
 - Again, lean a/f ratio operation pushes spark systems to higher energies, multiple firing or multiple locations are additional options
- Ignition Sites of Spark Plug Ignition Are <u>Fixed</u> Within the Combustion Chamber
 - For laser ignition, multiple-point ignition is achievable and optimum ignition sites can be selected
- Spark Plug Electrodes Interfere With Propagation of the Early Combustion Flame, Compounding Ignition Problems
 - Because of the non-intruding nature, laser ignition has minimum heat loss and flame quenching
- Potential for Improved Engine Performance!

TECHNOLOGY STATUS

- Previous engine work was focused on laser ignition of gasoline (<u>Dale, et al., 1979</u>), or propane (<u>Smith, 1979</u>) no work on laser ignition for a natural gas engine has been reported although <u>Ma, et al., 1998</u>, used a motored slider crank mechanism with methane.
- Past work has demonstrated <u>increased flame speed and</u> <u>combustion pressure</u> over conventional spark systems (<u>Tran</u> <u>and others</u>).
- <u>Mass production of lasers</u> at significantly reduced size and cost is imminent
- Understanding fundamental ignition phenomena in the context of laser radiation is required
- Transfer of laser ignition technology to <u>single cylinder natural</u> <u>gas</u> test engine is next step
- A <u>commercial embodiment</u> for a multi-cylinder engine laser ignition is the ultimate goal

Research Needs

- Fundamental Level
 - Basic science regarding ignition of combustible mixtures
 - Multiple pulse ignition
 - Multiple Point Ignition
- Practical Level: <u>Research Needs Leading to Commercialization</u>
 - Laser induced optical damage/Beam Delivery
 - Particle deposits
 - Laser System
 - Intelligent Control
 - Laser Distribution

Goals and Objectives

- Develop scientific and engineering foundation for laser spark ignition in reciprocating engines
 - Single Cylinder
 - Single Point Ignition
 - -Laser beam distribution
 - Multipoint ignition
 - Multipulse ignition

NETL Activities

•Task 1: Quiescent and Turbulent constant volume, high pressure combustion cell experiments

•Task 2: NETL-single cylinder engine experiments

•Task 3: Laser source selection and evaluation

•Task 4: Fiber Optics Beam delivery study

•Task 5: Optical window damage and cleaning

•Task 6: Integrated System Testing

Summary of NETL Laser Ignition Work to-date

- Laser ignition tests using a constant volume cell and turbulent jet diffusion flames have been carried out
 - Investigated effects of optical properties and fuel properties on the ignition probability and the minimum ignition energy
 - Developed theoretical ignition model for laser ignition
 - Considered benefits of laser ignition and its potential applications for gas engines
 - Identified many technical difficulties and potential solutions

Summary of NETL Laser Ignition Work to-date (cont.)

- Initial testing of a laser spark in an engine
 - A comparison of engine emissions and combustion parameters using a Ricardo Proteous, single-cylinder, 4-stroke, spark ignited natural gas engine using both a <u>conventional spark system and a laser spark system was conducted</u>.
 - The engine was operated at a constant speed of <u>1200 rpm and at</u> <u>moderate load conditions</u>. The emissions and combustion performance data for each ignition system at <u>three equivalence</u> <u>ratios and three timing conditions were compared</u>. Additional testing of the laser spark system at $\phi=0.5$ was also performed.

Engine Testbed Schematic

Laser Arrangement

Initial Single Cylinder Engine Testing Results

Coefficient of Variation (COV) of the Indicated Mean Effective Pressure (IMEP) $IMEP = (Pn_r/V_dN)$

Timing (^o btdc)

Thermal Efficiency

•Thermal Efficiency Factors

•Combustion Efficiency

•Phasing - (Example: Optimum timing at $\phi = 0.55$ differs by 4°CA)

Ignition Delay, 5%-50% Burn Rate and Location of Maximum Heat Release Rate

NOx vs Static Timing

•Phasing Effect

•Example: A 4°CA spark retard (corresponding to Δ in T.E.) for the laser system from 35°CA to 31°CA reduces NOx form 8 to 4 g/hp-hr

THC vs Static Timing

 $Timing \ (\ ^{o} b \ td \ c \)$

CO vs Static Timing

Conclusions: Engine Testing to Date

- Significantly improved to spark system.
- Window fouling du not apparent durin operation.
- NOx emissions we However timing o
- Hydrocarbon emis the lower equivale
- Emissions of CO improvement in C optimization.
- Laser spark opera leaner than achies

Laser	Equivalence Ratio = 0.5		
Timing (^o btdc)	35	25	15
Torque (nm)	130.44	121.35	67.84
Therm eff. (%)	41.85	39.02	21.73
NO _x Rate (g/bhp-hr)	1.05	0.20	0.13
CO Rate (g/bhp-hr)	2.52	2.82	7.09
THC Rate (g/bhp-hr)	10.58	14.44	33.92
Pmax (bar)	39.11	28.69	21.08
Pmax Loc (°CA)	9.50	12.75	1.95
IMEP COV	1.31	3.72	18.25
5%-50% Burn Duration (°CA)	15.98	18.50	23.75
SOC (°CA)	-8.48	-1.75	8.23
Ignition Delay (°CA)	26.53	23.25	23.23
HRR Peak (KJ/M ³)	41.05	28.90	16.25
HRR Peak Loc (°CA)	5.00	12.00	21.00

Future Direction

- Single point ignition with comparisons to correct phasing.
 - Timing optimization (Phasing) vs. Thermal Efficiency
 - Look at NOx Trade off
 - Knock Margin

• Multipoint laser ignition studies

 Higher apparent flame speed may provide additional knock margin as well as higher burn rate

Multipulse Ignition

- May provide improved ignition, leaner combustion and lower emissions
- May provide a way to circumvent beam delivery issue
- Distributed ignition
 - May provide a way to circumvent beam delivery (energy density) issue

Collaboration Efforts

• Laser-spark ignition Working Group

-Initial meeting on or about October 8-9, 2002

-Organized by ANL (David Livengood)

The End.....Thanks!

Technical Barriers/Solutions

Barriers

- Laser Technology (Being Evaluated)
- Optics
- Particulate Deposition
- Focal Length Effects

Potential Solutions

- Distributed System
- Improved Fiber Optics for beam delivery, quality optics
- Multi-pulse Mode

