

Water Conserving Cooling Status and Needs

Energy-Water Needs Western Region Workshop Salt Lake City January 10 – 11, 2006

> John S. Maulbetsch Maulbetsch Consulting

We're here to talk about....

✓Water-Energy trade-offs

• A big, multi-faceted problem

More people/more water/more energy

✓My intent

Take a narrow slice and simplify it

✓ Use less water to generate electricity

Why is this easy?

We know where the water gets used
Cooling: condense steam from the turbines

We know how we do it now Usually wet cooling towers

We have technologies that use less water
Commercially available, proven technologies
Can reduce plant water use by 80 to 90+%

So what's the problem?

✓ It almost always costs more

✓ How much more depends on

- Type of plant
- Climate at plant site
- Cost of fuel
- Price for electricity (especially at peak times)

The rest of the talk

- Show you some cooling systems
- Present some cost comparisons
- Show some advancements that may help reduce cost

Cooling systems

The old movie---once-through cooling
Common practice---wet cooling towers
Water conservers---dry cooling/air-cooled condensers

Once-through

Air cooled condenser

Cooling system costs

Capital costs

- Operating costs
 - Cost of power for pumps and fans
 - Cost of water
 - Cost of maintenance
- Penalty costs
 - Effect on plant efficiency
 - Cost of reduced output on hot days

Trade-off/ optimization

Size of Cooling System

Cost differentials

 Increased capital cost---500 MW plants 0.4% to 12.5%
Increased cooling system power 0.5 to 3.0 MW
Increased plant heat rates 0.4 to 4.0 %
Increased power production costs 1.9 to 4.9%

Capital Cost---500 MW Steam Plant

Hot Day Heat Rate Increase---500 MW Steam Plants

"Equivalent" cost of water

\$3.50 to \$6.00 per 1,000 gallons \$1,000 to \$2,000 per acre-foot

Some things that might help....

- Use a little bit of water a little bit of the time
 - -Hybrid (wet/dry) systems
 - -Spray enhancement
- Recover some of the water from wet systems

✓ Marley's Air-to-Air[®] concept

Hybrid wet/dry system

Tucuman 450 MW Combined Cycle (Argentina) PAC SYSTEM® (Air Cooled Condenser & Wet Cooling System)

Spray enhancement

 Spray water into inlet air stream of air-cooled condenser

Low capital cost approach

- Low annual water use
- ✓ Reduce inlet temperature by 5 to 10 F
- Restore "hot day" capacity loss

Possible retro-fit

Finally....

✓ Is the prize worth the price?

- Your call
- <u>Very</u> site specific

\checkmark Is this a good way to do it?

- I state without proof
 - About the same as reclaimed water use
 - Cheaper (now at least) than "water-free" renewables (wind or solar)