B_s Mixing Studies at DØ

Peter Tamburello for the DØ Collaboration

Beauty 2006, Oxford

 $B_s^0 \to \mu^+ D_s^- X, \quad D_s^- \to \phi \pi^- \qquad \text{(published)} \\ B_s^0 \to \mu^+ D_s^- X, \quad D_s^- \to K^{*0} K^- \qquad \text{(preliminary)} \\ B_s^0 \to e^+ D_s^- X, \quad D_s^- \to \phi \pi^- \qquad \text{(preliminary)} \\ \text{Combined results} \qquad \qquad \text{(preliminary)} \end{aligned}$

- Initial state B_q^0 decays as a B_q^0/\overline{B}_q^0 with $p(t) \simeq \frac{\Gamma}{2}e^{-\Gamma t}[1 \pm \cos(\Delta m_q t)]$
- Many measurement for B_d , $\Delta m_d = 0.507 \pm 0.005 \text{ ps}^{-1}$ (RPP 2006)
- In SM expect $\Delta m_s = 20.9^{+4.5}_{-4.2}$ from indirect global CKM fits (RPP 2004)
- End 2005 $\Delta m_s > 16.6 \text{ ps}^{-1} 95\%$ C.L. (hep-ex/0603003)

- March 2006 $17 < \Delta m_s < 21 \text{ ps}^{-1}$ from DØ (PRL 97, 021802, 2006)
- Followed by CDF results including fully reconstructed modes (following talk)
- Measurement of Δm_s constrains V_{td} and CKM unitary triangle

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m(B_s^0)}{m(B_d^0)} \xi^2 |\frac{V_{ts}}{V_{td}}|^2$$

 $\xi = 1.21 \pm 0.04^{+0.04}_{-0.01}$ from lattice QCD (RPP 2006)

• Sensitive to new physics

The DØ Detector

- Muon system
 - low background
 - high coverage
- Calorimeter
 - finely segmented
 - hermetic
- Central tracking
 - silicon
 - fibers
 - 2T solenoid

Strategy

- Identify $B_s \to l^+ D_s^- X$
- Charge of l indicates B_s flavor at decay time
- Decay distance L_T reflects lifetime
- *B*-hadron flavor on opposite side indicates B_s flavor at production time
- Discern oscillations and measure frequency Δm_s

Reconstructed $B_s \to \mu^+ D_s^- X, \ D_s^- \to \phi \pi^-$

Combined selection variable

- Approximate likelihood ratio $y = \prod_i \frac{\operatorname{prob}(x_i|\operatorname{signal})}{\operatorname{prob}(x_i|\operatorname{bckgnd})}$
- Threshold optimized for $S/\sqrt{S+B}$

Reflections

- $D^- \to K^{*0}\pi^-$ shifts onto $D_s^- \to K^{*0}K^-$ peak if π assigned m_K
- Mass shift depends on kinematics, revealing composition

Lifetime

- Decay length L_T
- Proper time $ct = m_{B_s} \frac{L_T}{p_T^{B_s}}$
- But missing ν , and possibly other particles, e.g. $B_s^0 \rightarrow \mu^+ \nu D_s^{*-},$ $D_s^{*-} \rightarrow D_s^- \gamma$
- Use $VPDL = m_{Bs} \frac{\vec{L}_T \cdot \hat{p}_T^{l^+ D_s^-}}{p_T^{l^+ D_s^-}}$
- $ct = \text{VPDL} \cdot K$

Initial state flavor tag

- Tagged = $e, \mu, \text{ or SV}$ found away $(\cos \Delta \phi < 0.8)$ from B_s
- Lepton (jet), SV, and event charges sensitive to flavor
- Combine variables, classify as b or \overline{b} using likelihood ratio test

$$z = \frac{\text{likelihood}(\overline{b})}{\text{likelihood}(b)}$$
$$d_{\text{tag}} = (1 - z)/(1 + z)$$

 $B_s \rightarrow l^+ D_s^- X$ after-tag yields

20% efficiency

Discerning Δm_s

Unbinned likelihood function $\mathcal{L}(\text{data}|\Delta m_s)$

- ▷ Data: for each tagged event
 - VPDL
 - $\operatorname{sign}(d_{\operatorname{tag}})$
 - $|d_{\text{tag}}|$
 - Reconstructed D_s^- mass
 - Selection likelihood ratio
 - VPDL uncertainty
- ▷ Include all relevant signal and background sources

Sources

- $l^+D_s^-$
- l^+D^-
- Reflections
- Combinatorial backgrounds
 - long lived
 - * insensitive to tag
 - * sensitive to tag
 - \cdot non-oscillating
 - · oscillating at Δm_d
 - prompt
 - fake vertices

The signal peak (µ+Ds)

> Estimate using MC simulation, PDG Br's, Evtgen exclusive Br's

VPDL term for signal sources

$$p^{\text{nos/osc}}(x, K, d_{\text{tag}}) = \frac{K}{c\tau_{B_s^0}} \exp(-\frac{Kx}{c\tau_{B_s^0}}) [1 \pm \mathcal{D}(|d_{\text{tag}}|) \cos(\Delta m_s \cdot Kx/c)]/2$$

x = VPDL

 $K = p_T(l^+D_s^-)/p_T(B)$, fold over appropriate K distribution

 $\mathcal{D} = 2 \times \text{prob}(\text{tag is correct}) - 1$

K distributions binned in $M(l^+D_s^-)$

 \mathcal{D} vs d_{tag} measured in B_d^0 data

$\log_{10}(\text{Selection likelihood ratio})$

VPDL Uncertainty

 $(K^+K^-)\pi^+$ Mass

Fit in the entire mass region from 1.72 to 2.22 GeV

Efficiency vs VPDL

B_s Lifetime Fit

Amplitude scan procedure

Insert artificial parameter A

$$p^{\text{nos/osc}}(x, K, d_{\text{tag}}) \propto [1 \pm \mathcal{D}(|d_{\text{tag}}|) \cdot \mathbf{A} \cdot \cos(\Delta m \cdot Kx/c)]$$

Fix Δm and fit for A

- A = 1 for true Δm
- A = 0 otherwise

Amplitude scan of Δm_d in $B^0_d \rightarrow \mu^+ D^- X$

Amplitude scan of Δm_s in D_s^- sideband

Amplitude scan: $B_s \rightarrow \mu^+ \phi \pi^- X$

Likelihood scan: $B_s \rightarrow \mu^+ \phi \pi^- X$

Statistical significance

How often is the $-\log \mathcal{L}$ minimum in the range $16 < \Delta m_s < 22$ ps⁻¹ and at least 1.7 below log \mathcal{L} at $\Delta m_s = 25$ ps⁻¹ if $\Delta m_s = \inf$?

Ensemble tests with sign of flavor tag randomized:

 $5.0\pm0.3\%$

Amplitude scan: $B_s \rightarrow e^+ \phi \pi^- X$

Amplitude scan: $\mu^+ K^{*0} K^- X$

Amplitude scan: combined channels

Combined Likelihood Curve

- Estimated from combined amplitude scan
- Same 90% C.L. interval as $\mu^+ \phi \pi^-$ alone
- Background fluctuation probability approximately 8%

CKM Triangle Before $\mu^+\phi\pi^-$ **Result**

CKM Triangle After $\mu^+\phi\pi^-$ **Result**

Conclusions

• DØ has produced results on $B_s - \overline{B}_s$ oscillations using three decay modes

$$- B_s^0 \to \mu^+ D_s^- X, \ D_s^- \to \phi \pi^-$$
$$- B_s^0 \to \mu^+ D_s^- X, \ D_s^- \to K^{*0} K$$

- $B_s^0 \to e^+ D_s^- X, \ D_s^- \to \phi \pi^-$
- The combined amplitude scan gives a limit $\Delta m_s > 15.0 \text{ ps}^{-1}$ at 95% C.L.
- The combined likelihood curve has a preferred value of $\Delta m_s = 19 \text{ ps}^{-1}$, with a 90% C.L. interval of $17 < \Delta m_s < 21 \text{ ps}^{-1}$.
- The probability of a background fluctuation is about 8%.
- Future results will feature additional decay modes and data with a new layer of silicon at the beampipe.