Prospects for Higgs Searches at

Gordon Watts University of Washington For the DØ Collaboration

2003 April Meeting DPF

Previous Searches

The LEP & Tevatron Run I Era

15 Years of Precision Measurements Global Fit of SM Measurements 6 theory uncertainty Light SM Higgs Favored $\Delta \alpha_{\rm bad}^{(5)}$ $91_{-37}^{+58} \, \text{GeV/c}^2$ -0.02761+0.00036 ---- 0.02747+0.00012 www.Without NuTeV 4 LEP Direct Searches: N N $M_{\rm H}$ > 114.4 GeV/c² @ 95% CL 2 .EPEWWG Excluded Preliminary 100 400 m_н [GeV]

Run II at the Tevatron

Center Of Mass Energy Increase

 $\sqrt{s} = 1.8 \text{ TeV}$ 1.96 TeV

20-30% Increase in the SM Higgs Cross Section

Accelerator Improvements

Main Injector, Recycler, etc.

Run I Lumi 120 pb⁻¹ Run II Lumi 6-10 fb⁻¹

DØ Has Written ~110 pb⁻¹ to tape

The DØ Detector

The DØ Detector

Forward Muon Chambers

The DØ Upgrade

Added a 2T Magnetic Field

Track p_T , Lepton ID, Jet Calibrations

New Silicon Detector & Central Tracking Detector Displaced Vertex ID, Tracking

Preshower Detector

Improved electron ID

Trigger/DAQ Upgrade

Better Efficiency for difficult signals

Finding the Higgs will require all components of the detector

Regularly collect > 85% of data delivered by the Tevatron

The Higgs in Run II

Higgs Decays

Search strategies are a function of Decay Channel and Production Channel

G. Watts APS 2003

10

Higgs Production

SM Higgs Searches At DØ

SUSY Higgs Searches at End of talk

Electron ID

G. Watts APS 2003

See U14.02 for more!

W Boson $W \rightarrow ev$

Understanding W+Jets

Important for both Top and Higgs

Jet Properties in W+jets

Pythia, Alpgen used to model all signal and background processes

Jets in Z+Jets

Pythia used to generate both signal and background processes

G. Watts APS 2003

See talk by M. Buehler

Tagging a B

B-Quark ID

SM Higgs Searches At DØ

Production Limits

The ee and $e\mu$ Channels

New for DPF

 $H \to WW^* \to \mu^+ \mu^- \nu \nu$

Expected: 0.32 ± 0.01 (stat) Observed: 1 ε_{sig}: 14.6 ± 0.6% (stat) m_H=160GeV/c²

48.4 pb⁻¹

Run 163305 Event 3024474 $\mu \#1 p_T = 23.7 \ GeV/c$ $\mu \#2 p_T = 33.7 \ GeV/c$ $E_T = 45.7 \ GeV$ $\Delta \Phi_{\mu\mu} = 1.84$ $m_{\mu\mu} = 52.5 \ GeV/c^2$

Non Standard Model Higgs Searches

- Ongoing
 - H++
 - hbb at high tan β
 - Talk by A. Haas on Monday
- Two Photon $H \rightarrow \gamma \gamma$
 - SM Decay Process
 - Decay mode in SM extensions that suppress
 Higgs Fermi coupling
 - Fermiphobic Higgs
 - Top Color Higgs

Look Specifically at the Top Color Higgs

Results

Cross over at $M_H = 120 \text{ GeV/c}^2$ BR(h $\rightarrow\gamma\gamma$)=1

With more data will be sensitive to other exotic Higgs Models

Mass Window Cut

Pythia used for Signal

Conclusions

- Analysis Efforts for the Higgs search are well under way
 - Results for the first 50 pb⁻¹ reported here
 - We can clearly see the pre-cursors for the Higgs search
- Next Steps at DØ
 - Improved object ID efficiencies
 - b-quark tagging algorithm maturity
 - Steady progress on di-jet mass resolutions
- What to watch for at Fermilab
 - More Luminosity!
- Prospects for Discovery
 - DØ has work to do in btagging, di-jet resolutions and tau to achieve the working groups levels.
 - Dijet mass distribution will require the most work.
 - Joint CDF/DØ group put together to study all of this now.

