Intelligent Extruder for Polymer Compounding

DOE OIT Review, New Orleans June 6, 2001

Paul Houpt, Aditya Kumar, Minesh Shah, Norberto Silvi *GE R&D Schenectady, NY* Timothy Cribbs *GE Industrial Systems Solutions, Salem VA* John Curry *Coperian Werner-Pfeiderer, Ramsey, NJ*

Sponsors US Department of Energy / OIT GE Industrial Systems Solutions Coperian Werner-Pfleiderer Corporation USA

Presentation Outline

- Overview of program
- Highlights of Technical Progress
 - Inferential sensing (viscosity)
 - Sensor & Process fault detection (multivariate)
 - Bad lot detection (single sensor)
- Program status, plans and financials

Why Polymer Compounding Advanced Automation?

Where the market was...

- Occasional QA testing
- Large batch runs
- Make to inventory
- Long lead times (30 days)
- Non critical specification limits
- Good price...fewer competitors

...has been recently

- Once per batch QA checks
- More pounds, smaller Lots
- More make to order (--> 100 %)
- Shorter lead times (72 hrs)
- Tighter specification limits
- Lower prices
- Costly waste disposal

Continuous compounding (zero changeover time)

Guaranteed first time quality (100% FPY)

And what's
needed
tomorrowIntra batch quality audit trail...less QA, happy customers
Quality measurements without costly sensors / waste
streams

Feeback control to hold spec limits

Diagnostics to predict problems...no unscheduled repairs

Your team and ours working remotely to achieve plant productivity

Presenting GE's OnSite Support SM Center

(800) 533-5885 Staffed 24 hours/day & 7days/week

Bad material passed (cust. disatisfaction) Good material contaminated (lower FPYield) early and reliably via continuous monitoring and signal analysis

Common Extruder Process / Sensor Faults

Category	Upset / Fault	Impact
Raw Material Variability	Resin IV variation	viscosity shift ==> customer mold flow problems
	Resin Flowability variation	feeder mass flow rate error and composition error
Process Variability	Feeder variation	improper screw filling and composition ratio error
	Screw speed variation	change in residence time and specific energy input to material (usually small)
	Zone Temperature variation	shift in solid-melt transition point, excess or not enough mixing, unmelt passage
	Sceen Pack variation	variation in screen pack clogging from run to run - leads to unknown die pressure bias
Sensor Drift/Bias	Feeder bias/drift	composition and viscosity drift, confounds process diagnostics
	Screw speed bias	screw speed drive not at set point, confounds process diagnostics
	Torque bias	machine runs below capacity, confounds inferential sensing / process diagnostics
	Die Pressure bias	false over-pressure alarms, confounds inferential sension/process diagnostics
	Temperature sensor bias	wrong correction for temperature effects in viscosity estimation (die zone)

Sensor and process anomalies have confounding interactions to be unraveled for proper diagnosis

Inferential Sensing

Objective

Utilize extruder sensor information in combination with process model and estimation techniques to predict product quality information (e.g., viscosity) on-line.

Benefits (a) Rapid upset detection, (b) Continuous QA audit, (c) Basis for closed loop correction

On-line Inferential Viscosity Estimation

Why viscosity?

Measured Inputs

• Feedrates

- key quality parameter for broad range of customers
- directly correlated to composition in most materials
- proportional impact strength in engineering polymer blends

GE CR&D ZSK-25MM Twin Screw Extruder Facility

- Capable of 1200 rpm, 164 Nm of torque, resulting in throughputs of 100 lb/hr
- Computer controlled side feeders
- Utilize K-Tron loss of weight feeders
- 30HP GE Innovation Drive

Data Acquisition Capabilities

- Monitor 24 data channels simultaneously
- Monitor barrel temperatures, barrel heater reactions, feed rates, torque, speed, die pressure, melt temperature
- Motor shaft encoder

Other ZSK twin screw facilities used

- 120 mm ~2000 lb/hr (GEP Selkirk)
- 133 mm (GEP Selkirk)
- 58 mm ~ 500 lb/hr (W-P Ramsey)

Viscosity Measurement

- Flow Rate
- Melt is subjected to constant shear through a capillary
- Measure steady state viscosity at medium-high shear rates
- Measurement accuracy: $\sigma \sim 0.08$ mean

RDS Rheometer

- Melt is subjected to oscillatory shear between parallel disks
- Measure dynamic viscosity at low-medium shear rates
- Measurement accuracy: $\sigma \sim$ 0.02 mean

Viscosity Estimation

- Viscosity of extruded polymer product depends on
 - composition
 - shear rate
 - temperature

Use extruder as on-line rheometer

- estimate viscosity from on-line measurements of machine variables
- necessary to account for variations in composition, shear rate and temperature in extruder
- General form of transfer function fit between measured viscosity and machine variables

$$\mu = \alpha_{0} + \sum (\alpha_{i} * \text{Feedrate}_{i}) + \beta_{1} (\text{Die Pr. * ScrewSpeed}) + \beta_{2} (\text{Barrel Temp.})$$

$$\alpha_{0} + \sum (\alpha_{i} + \beta_{2} (\text{Barrel Temp.}))$$

$$\alpha_{0} + \beta_{2} (\text{Barrel Temp.})$$

$$\alpha_{0} + \beta_{1} (\alpha_{0} + \beta_{2} (\alpha_{0} + \beta_{1}))$$

$$\alpha_{0} + \beta_{2} (\alpha_{0} + \beta_{2})$$

$$\alpha_{0} + \beta_{1} (\alpha_{0} + \beta_{1})$$

$$\alpha_{0} + \beta_{1} (\alpha_{0} +$$

Viscosity Estimation - Summary

Viscosity estimation robust different conditions

- different raw materials
- small / large extruder
- varying operating conditions (feedrates, screwspeed, barrel temp.)
- capillary / RDS rheometer calibration

Typical Results

			/º EIIOI
ZSK 25 *	RDS	n/a	5
ZSK 25 *	RDS	0.894	5-7
ZSK 25 *	RDS	0.7	6
ZSK 120 **	RDS	0.64	5
ZSK 120 **	capillary	0.856	6.5
ZSK 25 *	capillary	0.964	8
	ZSK 25 * ZSK 25 * ZSK 25 * ZSK 120 ** ZSK 120 ** ZSK 25 *	ZSK 25 *RDSZSK 25 *RDSZSK 25 *RDSZSK 120 **RDSZSK 120 **capillaryZSK 25 *capillary	ZSK 25* RDS IVa ZSK 25* RDS 0.894 ZSK 25* RDS 0.7 ZSK 120** RDS 0.64 ZSK 120** capillary 0.856 ZSK 25* capillary 0.964

(*) - 100 lb/hr

(**) - 2000 lb/hr

Good correlation between measured viscosity and machine variables using same general form of TF, with prediction error between 5-8%

Viscosity Estimation 25mm Research Extruder - Noryl PX5511

Viscosity TF: $\mu = \alpha_0 + \alpha_1^*$ Blend_FR + α_2^* (PS+XPS)_FR + α_3^* (DieP*ScrewSpeed) + α_4^* BarrelT

Viscosity at 250 s⁻¹, $R^2 = 0.894$ 11000 Measured Predicted **ZSK25** extruder viscosity (poise) 10000 - 2 feeders for Blend, (PS+XPS) 9000 - varied barrel temperature 8000 Viscosity of samples measured with RDS at 4 shear rates (100, 150, **250**, 400 s⁻¹) 7000 2 3 4 5 6 7 8 9 37 38 39 40 41 42 43 44 Run No 5 (\mathbf{I}) 0 (\cdot) \bigcirc % error μ ()Ċ -5 Good correlation obtained - prediction error $\sim 5-7\%$ -10 3 5 7 8 9 37 38 39 40 41 42 43 44 2 6 4 Run No

16

Stability of Viscosity Estimation over time - Noryl PX5511

Viscosity TF:

 $\mu = \alpha_0 + \alpha_1^*Blend_FR + \alpha_2^*(PS+XPS)_FR + \alpha_3^*(DieP^*ScrewSpeed) + \alpha_4^*BarrelT$

ZSK25 extruder

- 2 feeders for Blend, (PS+XPS)
- experiments done over different days with very different operating conditions
 - 4/2/2001 Runs 1-15 Blend_FR=23(lb/hr), (PS+XPS)_FR=21(lb/hr), ScrewSpeed = 480rpm, BarrelT = 285 C
 - 5/8/2001 Runs 16-25 Blend_FR=16(lb/hr), (PS+XPS)_FR=15(lb/hr), ScrewSpeed= 250rpm, BarrelT = 275 C

Viscosity of samples measured with <u>capillary rheometer</u> at shear rates 100-1000 s⁻¹

Good prediction with same model over ~ month

- prediction error $\sim 8\%$

Production scale (2000 lb/hr) - Noryl PX5511

Viscosity TF:

 $\mu = \alpha_0 + \alpha_1^* (\text{Torque*ScrewSpeed}) + \alpha_2^* \text{Blend}_FR + \alpha_3^* \text{PS}_FR + \alpha_4^* \text{XPS}_FR$

Experiment done at GEP Selkirk on production scale ZSK120 extruder

- 3 feeders for Blend, PS, XPS

Viscosity of samples measured with <u>RDS</u>

Die pressure measurements are unreliable due to screenpack clogging - used Torque instead of Die Pr in model

Fairly good correlation with prediction error $\sim 5\%$ (event for runs 10.11)

- error $\sim 5\%$ (except for runs 10,11)
 - shows impact of partially clogged die screen
- torque works in place of die pressure

Using inferential sensing for 'bad material' detection

Viscosity Estimation from Machine Variables

Key Challenge: Detecting and correcting sensor errors

Model Based Diagnostics

• drive faults (speed, torque.)

- Dynamic model to capture expected variations in outputs due to known / planned variations in inputs
- Use residuals generated by the model to identify abnormal variations

Dynamic Model

Develop Dynamic Input/Output Models for Extruder Variables

<u>Inputs</u> (u)

- Master (total) Feedrate (u₁)
- Blend % (u₂)
- ScrewSpeed (u₃)
- Die Zone Temperature (u₄)

Dynamic model for each output y_i of the form

$$y_i = \sum_j G_{ij} u_j$$

where the transfer function G_{ii} is of the form

$$G_{ij} = K \frac{(s - z_1)...(s - z_m)e^{-T_d s}}{(s - p_1)...(s - p_n)} \qquad \begin{array}{l} K : gain \\ Z_i : zeros \\ p_i : poles \\ T_d : delay \end{array}$$

Model parameters are identified using input/output data from experiments

<u>Ou</u>	<u>tpι</u>	<u>its</u> ((y)

- Torque (y₁)
- Die Pressure (y₂)

Model for Torque

- Input/Output data collected from large extruder at GEP Selkirk (2000 lb/hr)
- Dynamic model: fit from one data set and validate against two other data sets

Dynamic model for Torque fits well against measured data

Model Validation

Model for Die Pressure

- Input/Output data collected from large extruder at GEP Selkirk (2000 lb/hr)
- Dynamic model: fit from one data set and validate against two other data sets

Dynamic model for Die Pressure fits well against measured data

Use Input/Output Models for Residual Generation and Fault Detection

Model Validation

Residuals for Sensor Fault Detection

- Issue : Measured signals and thus residuals have noise
 - Simple approach: Filter and data optimized threshold tuning for "zero"/ "non zero"
 - Rigorous approach: Multiple model or generalized likelihood ratio based on modefs

Model Based Fault Detection Block Diagram

Detection of Sensor Bias or Drift

Sensor Bias Detection will Improve Reliability of Viscosity Estimation and Detection of Good/Bad Product

Die Pressure/ Screen Pack ProblemCase study

When can a <u>single</u> machine variable and its <u>statistics</u> or spectral features be used to detect out spec production?

- Problem: Screen packs commonly used upstream of die to filter un-melted junk
- Impact: Variable % blockage corrupts die pressure measurement
 - Large lot-to-lot variability in the <u>initial</u> die pressure
 - Large <u>within lot</u> variability due to process variability and maintenance practices (e.g. when screen pack changed)
 - Inconsistency in die pressure change rate
- Result: SPC on die pressure alone unreliable
- Approach: Could adopt model based methods above, but are there simpler ways?.

Here Illustrate diagnostic methodology developed using data from a 120mm production scale extruder producing NoryI[™] (PX0844).

Kalman filter based bad lot detection

- Data from different production runs shows significant variability in die pressure signal even though only one lot is considered out of product viscosity spec
- Diagnostic technique must be robust to uncertain initial condition and maintenance impacts such as screen pack changes.
- Chosen diagnostic approach is to optimally estimate the slope and the intercepts using a Kalman Filter. The estimates and the confidence of these estimates is compared with a threshold to differentiate between good and bad lots.

Example of Diagnostic Approach

- Comparison of measured and estimated die pressure signal
- Optimal estimates of slope and intercepts
- Uncertainty (I.e., covariance) in the estimates of slope and intercept.
- Diagnostic approach is based on information fusion of:
 - Monitor slope estimate and compare with threshold
 - Monitor covariance of intercept estimate and if intercept uncertainty remains large for a prolonged period of time, then high probability that the lot is bad.

Kalman filter bad lot detection

Approach Applied to A Bad Lot

Approach Applied to A Good Lot

Bad lot detection summary

- Die pressure may be used to differentiate between good and bad lots.
- Table below provides summary of various predictors that help to differentiate good and bad lots based on die pressure data for PX0844:

Property	Good Lots	Bad Lots	
Die Pressure	<650	>650	
Slope estimate	< 0.006	>0.01	
% Time with high	<30	>70	
covariance	(Estimates not reset	(Estimates reset often	
	often – process stable)	 process unstable) 	

- Performance: 28 correct bad lot detections, one false alarm and one possible miss with non optimized threshold settings.
- To improve robustness, the basic approach is extended by incorporating a process model and identifying a more optimal threshold for resetting of estimates due to screen pack changes.
- Thresholds can be determined easily by using historical data.

Program Summary: Key 2000-2001 Results

Inferential sensing from machine variables

- multivariate viscosity estimation with no waste calibration works for multiple polymer materials on research extruder
- repeatable 5-7% viscosity accuracy suitable for continuous quality audit
 On-Line Process diagnostics
- new model based strategies for detecting feeder and extruder "drift" and "bias" type system faults
- demonstration on lab extruder and production scale (Selkirk Line 8)
- new "bad lot" detection algorithm

Commercialization

- Working closely with GEIS in Salem and GE Fanuc sales team to develop Services strategy based on algorithm developments
- First cut at computer architecture to support computational needs

Demonstrations

- Invited to participate in "x_based" controls team at GEP (Selkirk)
- Validate viscosity estimator on commercial scale Noryl production line in Selkirk
- Validated on-line bad-lot detection on Noryl
- 7/01 visit to GEP BOZ (Netherlands) planned for additional demonstrations

Building software tools for machine sensor data fusion for fault diagnostics, inferential sensing and control

Ongoing and Future Work

- Continue viscosity estimation/diagnostics demonstration on production scale machines from new or available data (including Mt. Vernon, BOZ)
- Implement and test closed loop control based on inferential sensor in 25mm research extruder
- Evaluate new high bandwith 'clamp-on-shaft' torque sensors ("FACTS") for use as alternative to drive based torque estimation for screw torque distribution estimation
- Downselect and software algorithms and data handling/interface and storage requirements for use in initial service offerings
- Implement selected algorithms on industrial grade platform as prototype for commercial system
- Develop and transition commercialization plan and integrate with GEIS tollgate and multigenerational product planning cycle
- Final project reporting
- Continue dialog with third party sensor suppliers (e.g., ultrasound, dielectric, transient infrared spectrometry) for possible integration into Intelligent Extruder platform (with resources outside scope of DOE funding)

Intelligent Extruder Implementation Platform

Intelligent Extruder Project Plan

GE Industrial Systems Dev't

More Information (see handout) or contact

Tim Cribbs, GE Industrial Systems Adv. Process Services (540)-387-8639 ~ Timothy.Cribbs@indsys.ge.com Paul Houpt, GE CR&D Principal Investigator (518)-387-5341 ~ houpt@crd.ge.com Randy Wyatt, GE CR&D Business Development (518)-387-5281 ~ wyatt@crd.ge.com