A Time Projection Chamber for precision ²³⁹Pu(n,f) cross section measurement

Mike Heffner LLNL

Compound-Nuclear Reactions Workshop 25th October 2007

Why measure ²³⁹Pu(n,f)

- Current errors on ²³⁹Pu(n,f) are at least 2-3% (below 14MeV) and not completely understood
- Better measurements of ²³⁹Pu(n,f) supports:
 - The Stockpile Stewardship program
 - GNEP/AFCI has needs for better cross sections measurements, including ²³⁹Pu(n,f)
- The TPC is a powerful instrument that has not been applied to this problem

Current ²³⁹Pu(n,f) measurements

Fig. 3. Ratio of neutron-induced fission cross sections for ²³⁹Pu/²³⁵U to 30 MeV compared to other measurements (Refs. 1, 7, 8, 17, 19, 20, 23, 24, 25, 26, and 28) and ENDF/B-VI (solid line).

NUCLEAR SCIENCE AND ENGINEERING VOL. 129 JUNE 1998

Systematic differences of 10-20% are not unusual

Table 38							
Results of	the target	accuracy	study	for the	LFR	reactor	

Isonope	Cross-	Energy range	Uncertainty		Isotope	Cross-	Energy range	Cocert	laiwty	Isotope	Cross-	Energy cange	Uncertainty	
	section		Initial	Required		section		Initial	Required	Required			Initial	Require
U-238	Page	1.35 MeV-498 keV	5	2.9	Po-240	(Cape	1.35 MeV-498 keV	20	8.4	Zr-90	64	498-183 keV	20	.9.8
	1000	498-183 keV	5	2.4		10.52	498-183 kgV	29	5.8		114.1	183-67.4 keV	20	10.8
		183-67.4 kzV	5	2.4			183-67.4 keV	20	5.4			67.4-34.8 keV	20	10.3
		67.4-34.8 keV	5	2,4			67.4-24.8 keV	20	5.7		Paul	6.07-2.23 MeV	20	8.6
		24.8-9.12 keV	5	2.7			24.8-9.32 keV	10	6.8	Pb-206	Page	183-67.4 keV	20	9.8
	e fan	6.07-2.23 MeV	5	2.6		Sec.	6.07-2.23 MeV	5	4.1		64	1.35 MeV-498 keV	20	6.5
		2.23-1.35 MeV	5	2.6			2.23-1.35 MeV	. 5	3.7			498-183 keV	20	7
	fast	6.07-2.23 MeV	15	3.8			1.35 MeV 498 keV	1 5	2.1		σ_{mel}	19.6-6.07 MeV	40	15.9
		2.23-1.35 MeV	10	3.1			498-183 kzV	5	4.1			6.07-2.23 MeV	40	4.6
		1.35 MeV 498 keV	10	2.9		¥	1.35 MeV-498 keV	/ 2	.1.8			2.23-1.35 MeV	40	4.4
		498-183 keV	10	4.2	Pp-241	640	1.35 MeV-498 keV	/ 50	4.9			1.35 MeV-498 keV	45	5.3
		183-67.4 keV	10	4.8			498-183 keV	- 10	3.5	Pb-207	64	1.35 MeV-498 keV	20	6.8
Pu-238	(Pass	1.35 MeV-498 keV	10	4.5			183-67.4 keV	30	3.5			498-183 keV	20	7.5
		498-183 keV	10	4.5			67.4-24.8 keV	10	4.2		Paul	19.6-6.07 MeV	40	26.6
		183-67.4 keV	10	6.2			24.8-9.12 keV	0.0	4.9			6.07-2.23 MeV	40	5.5
		67.4-24.8 keV	30	7.4			9.12-2.03 keV	10	7,3			2.23-1.35 MeV	40	6.7
		24.8-9.12 keV	30	8.7	Pp-242	464 C	1.35 MeV-488 keV	/ 30	5.3			1.35 MeV-498 keV	45	4
		9.12-2.03 keV	30	12.8	Am-241	diagt	498-183 kgV	10	7.3	Pb-308	04	6.07-2.23 MeV	20	8.4
Pu-239	d'une	495-183 keV	15	5.7			183-67.4 keV		7.1		12200	2.23-1.35 MeV	20	7.7
	0.0	183-67.4 keV	15	5.4		6 Mar.	1.35 MeV-498 keV	/ 50	.7.1			1.35 MeV-498 keV	20	3.7
		62 4 21 2 4 4		6	Am-242m	d'Alex	498-183 keV	29	10.9			498-183 keV	20	4.7
		24.8-9.12 keV	10		Cm-244	diam.	1.35 MeV-498 keV	40	8.6		Paul	19.6-6.07 MeV	40	9.4
	1	6.07-2.23 MeV	5	3.3	Cm-245	dia.	1.35 MeV-498 keV	40	13.8			6.07-2.23 MeV	40	4.9
,		2.23-1.35 MeV	5	2.9			498-183 keV	-40	9.6		Pala	19.6-6.07 MeV	100	. 53.1
	/	1.35 MeV-498 keV	5	1.4			183-67.4			2.12	-2.05 K	- JU		12.0
		498-183 keV	5	1.1			67.4-24.8 Pu	. 220		108	102 10			57
		183-67.4 keV	5	1.2	17100 11226		24.8-9.12	-239	σ_{capt}	490-	105 KC	/ 15		5.7
		67.4-24.8 keV	5	1.5	8 > 56	24	183-67.4			183-	67.4 ke	V 15		5.4
	A	24.8-9.12 keV	3	1.9		dimit.	6.07-2.23			67.4	24 8 k	•V 10		6
•		9.12-2.03 keV	5	3			2.23-1.35			01.1	-24.0 kc	N 10		0
		498-183 keV	1	8.9	/		1.35 MeV		[24.8-	-9.12 ке	V 10	8	6.1
-			-						$\sigma_{ m fiss}$	6.07-	-2.23 M	leV 5		3.3
										2.23-	-1.35 M	leV 5		2.9
										1.35	MeV-4	98 keV 5		1.4
										498-	183 ke	J 5		11
										193	67 A ka	5		1.1
										185	07.4 Ke	V S		1.2
										67.4	-24.8 Ke	:V 5		1.5
										24.8-	-9.12 ke	eV 5		1.9
										9.12	-2.03 ke	eV 5		3
									v	498-	-183 ke	√ 1		0.9
	Wren	ce Livermon	e						- 10	1983-1993 - 19	1000 Co. 1000	/ 200		
🗖 N?	ationa	I Laboratory	/			•								

The Time Projection Chamber

- Introduction to a TPC
- How it could improve ²³⁹Pu(n,f)
- Other measurements with the fissionTPC
- Status and plan for the fissionTPC projects

TPCs have been used in Particle Physics for 25+ years

EOS TPC Heavy Ion Physics 1980's ~1 m³

Star TPC Relativistic Heavy Ion Phy. 1990's ~50 m³

nTPC Homeland Security 2004 ~.036m³

PEP-4 TPC Particle Physics e⁺e⁻ Inventor David Nygren 1979 ~6m³

CNR Oct 2007

Typical TPC

Event

How the fission TPC works

TPC Capabilities

- •3D event reconstruction
- •High background rejection
- Particle identification
- •Standalone or incorporation to existing detectors

Possible Measurements

- •Precision ²³⁹Pu(n,f), other (n,f) cross sections (e.g. 235,238)
- •Fission fragment energy, mass and direction
- •Neutron energy, direction, number
- •Correlations with γ -rays
- Lawrence Livermore National Laboratory

Requires specially designed

TPC and/or additional

equipment

Top Systematic Errors using a Fission Chamber

TPC/Fission Chamber Comparison: Geant Simulation of α Rejection

Significant α /fragment resolution even before using dE/dx(x)

Simple Simulation of Fragment Identification

energy/length:length

National Laboratory

Project Status

		was.	Task Elctionary	Labor	-	Total
Final an T			Pasion TPC Experiment frage, but, and species and otherce WC is research to restar index of species and the species of the spe	\$4,638 K	\$1,338 K	\$5,974 K
FISSION I	PC Draft Project		Referringent mesors even debetations			
Dian			Design, field and commission the THC	5500 K	\$295 K	SLIPPER
Fian		11	First challed design that contains defails such as wall thebreases, person which contained contains and have of fails, fails over containing all			
		12	Pressure Vessel Despy, built and pressure centry. Should be trade up to tobar with presentar the same ment without additional taments. SouthY, and signs	\$75 K	510 K	545 K
		1.2.5	Design	953 K	50 K	953 K
		1.2.5.5	Invitial Design	\$15 K	90 K	515 K
	UCRL- TR- 217600	1212	Safety Design Review Anven design with safety organism. Out engrowing safety role for pressure operation, formour, and phoneses. Review Design	\$15 K	50 K	\$15 K
LAWRENCE			False desprise accommodate salisty spot. Decument desprise an allowables considered. Have productive drawing made	e		
UNERWORK.		122	But parts, have then webal		BEOK	825 K
LABORATORIA		1.2.3	Send in the pressure ship to be higher-leased, and then ultraconcally deared after	10 K	101	-01
Construction of the second	Inner ative Finales Managements	13	HV/ field cage Design, built and vesify breakdown live operation	\$105 K	932 K	\$137 K
	Innovative Fission Measurements	1.3.4	Design Design and decomment.	\$83 K	\$2 K	585 ×
\$25525220255	with a Time Projection Chamber	1.3.1.3	Invited Design Design to regenerated seech.	_ 545 X	92.6	847 K
	with a fifthe filogeoutori orianitoer	1.3.1.1.	Generative a physical description that meets the reads of the experiment.	130 5	92.6	932 6
		1312	Service dedecates with Navellor service Selety Design Review Review design risk salety organism. Candido decorrect design review for Allow salety review.	\$15 K	50 K	515 K
000000000		1.3.1.3	Real Design Refere design to accommodate safety input. Desurrori design cheates an	\$23 K	50 K	\$23 K
	P. D. Barnes, Jr. M. Heffner, J. Klav	1.3.2	alternatives considered. Yaive productive drawing made Construction (b) path, and mattern and/or have coalings made as reason. Furthere (W supply and cable	- 58 K	\$20 K	\$28 K
		1.3.3	Text field cape for proper operation and breakdown free		STOK	\$25 K
Real Property lies		141	Design, gent requests Design, gent requests Prostingen text	11135	123 5	3136 5
	December 6, 2005	1411	Build pretering to verify construction federations and performance. Find pane	\$23 K	92 K	925 K
		1412	Design, leyest pdb, and have consected. Nicostregas	515 K	53 K	\$16 K
		1413	Design, and increased inspectingues on pds Test stand Balls a test stand for the microscopes/per plane. This and data shall value gas existing, HV, and some amplifient and scope. Safety review and HVS solutions have	545 K	\$20 K	565 K
		14.1.4	Partermanue texting Aur the system and drash for high volkage scalably, gain, signal is more.	\$30 K	50 K	\$30 K
		1.4.2	Design	\$23 K	90 K	923 K
		Overse 31, 386	Official the Only			p. 8 (C)

NERI-c funded !

Universities Abilene Christian University - Rusty Towell California Polytechnic State University at San Luis Obispo - Jenn Klay Colorado School of Mines - Uwe Greife Georgia Institute of Technology - Nolan Hertel, Eric Burgett, Ian Ferguson Ohio University - Tom Massey, Steve Grimes, Carl Brune Oregon State University - Walter Loveland **National Laboratories** Idaho National Laboratory - John Baker Lawrence Livermore National Laboratory - Michael Heffner Los Alamos National Laboratory - Tony Hill

A paper study and WBS of the

TPC is done

TPC specific Laboratory funding

•Significant support for work at LLNL starts FY08 with internal money

•INL, LLNL, and LANL also expect Nuclear Energy money FY08

Prototyping and initial detailed mechanical design has begun

3D Solid Model

Plan

Summary

- A need exists for better ²³⁹Pu(n,f) measurement
- The TPC has been selected as the instrument to make this measurement and is now funded
- How can the investment in this instrument be leveraged to further the science goals of the nuclear physics community?

EXTRA SLIDES

²³⁹Pu(n,f) evaluation

TPC Design Spec's

Parameter Value Drift gases 1H 3He (neutron measurement) P10 (as in fission chambers) 5 bar. nominal Gas pressure (0–10 bar range) Typical fragment track length 18 mm Magnetic field None Beam diameter 20 mm Readout structure 0.9 mm X 0.9 mm square pads Typical samples per track 20 20 mm Target diameter Fiducial area guard radius 9 mm, (50% of track length) Drift length, including fiducial guard radius 27 mm = 18 mm + 9 mmPad plane diameter $74 \text{ mm} = 20 \text{ mm} + 2 \times 27 \text{ mm}$ Number of pads per side $5300 = (74 \text{ mm}/0.9 \text{ mm})2 \pi/4$ Gas amplification **MICROMEGAS or GEM** Drift field 5 kV/cm Maximum field 27 kV @ 10 bar Drift velocity 11.5 mm/us Drift time 2.35 μs Sampling rate 13 Mhz

2.5bar

36mm

2mm X 2mm hex

4.7μs 70Mhz ²³⁹Pu(n,Fission)

Example TPC Data: STAR

The TPC Readout Section

Gas Amplifier/Frisch Grid

LLNL pcb shop can work with the old dry film soldermask

Fig. 1. A schematic view of MICROMEGAS: the 3 mm conversion gap and the amplification gap separated by the micromesh and the anode strip electrode.

National Laboratory

Fig. 2. Schematic setups for normalization and absolute effective-gain measurement in semitransparent (a,c), reflective (b,d) and double TGEM (a,e) modes.

Fission chamber

How a TPC Works

Possible TPC Improvements

Gaseous Pu target:

Removes target energy loss problems

³He drift gas:

measure neutrons

CNR Oct 2007

gain,pads, readout