Evolution of standards In
modeling software

V. Balaji
SGI/GFDL Princeton University

4th International Workshop on High-End Climate
Modeling
National Center for Atmospheric Research
Boulder, Colorado
12 March 2002

GFDL Computing

e Reliance on Cray vector architecture in previous decades.

e Transition to scalable computing begun in 1997 with the
acquisition of Cray T3E.

e Current computing capability: 2 x 256 + 6 x 128 + 2 x 64p
Origin 3000.

Technological trends

In climate research... increased emphasis on detailed represen-
tation of individual physical processes governing the climate;
requires many teams of specialists to be able to contribute
components to an overall coupled system;

In computing technology... increase in hardware and software
complexity in high-performance computing, as we shift to-
ward the use of scalable computing architectures.

The GFDL response:
modernization of modeling software

Abstraction of underlying hardware to provide uniform pro-
gramming model across vector, uniprocessor and scalable
architectures;

Distributed development model: many contributing authors.
Use high-level abstract language features to facilitate devel-
opment process;

Modular design for interchangeable dynamical cores and phys-
ical parameterizations, development of community-wide stan-
dards for components.

FMS: the GFDL Flexible Modeling
System

Jeff Anderson, V. Balaji, Matt Harrison, Isaac Held, Paul Kushner, Ron
Pacanowski, Pete Phillipps, Bruce Wyman,

e Develop high-performance kernels for the numerical algorithms underlying
non-linear flow and physical processes in complex fluids;

e Maintain high-level code structure needed to harness component mod-
els and representations of climate subsystems developed by independent
groups of researchers;

e Establish standards, and provide a shared software infrastructure imple-
menting those standards, for the construction of climate models and
model components portable across a variety of scalable architectures.

e Benchmarked on a wide variety of high-end computing systems;

e Run in production on very different architectures: parallel vector (PVP),
distributed massively-parallel (MPP) and distributed shared-memory (NUMA).

4

FMS shared infrastructure:
machine and grid layers

MPP modules communication kernels, domain decomposition and update,
parallel 1/0O.

Time and calendar manager tracking of model time, scheduling of events
based on model time.

Diagnostics manager Runtime output of model fields.

Scientific libraries Uniform interface to proprietary and open scientific library
routines.

Parallel programming models
e Shared memory parallelism.
e Distributed memory parallelism.

e Hybrid parallelism.

Shared memory parallelism

P P P P

e Canonical architecture: shared memory (UMA), limited scalability.
e Private and shared variables.

e Critical regions.

Distributed memory parallelism

N N e N

e Canonical architecture: distributed memory (NUMA).

e Decompose global domain (1:I,1:J) into npes subdomains. (is:ie, js:je)
defines subdomain start and end.

e Copy data between PEs (message-passing or remote memory access).

8

Hybrid parallelism

s s H s

e Canonical architecture: cluster of SMPs.

e Divide global domain (1:I,1:J) into nthreads*npes threads on npes pro-
cessors. Each processor receives nthreads threads.

e Each processor could also be a node on an SMP.

Computer architecture and
programming models

e Memory speed will always lag processor speed.
e Shared memory will scale only so far.

Exotic new architectures (HTMT, MTA, etc) attempt various means of la-
tency hiding. PIM attempts to reduce physical distance to memory. But
physically distributed memory is a fact of life for the foreseeable future.

To deal with physically distributed memory, one must either have explicit com-
munication (message-passing or remote memory access) or rely on compilers
to do the dirty work (ccNUMA).

The MPP modules define a clean interface to various hardware models of
physically distributed memory.

10

The MPP modules

GFDL has a homegrown parallelism API written as a set of 3
FO90 modules:

e mpp_mod iS a low-level interface to message-passing APIs (cur-
rently SHMEM and MPI; MPI-2 and Co-Array Fortran to
come);

e mpp_domains_mod iS a set of higher-level routines for domain
decomposition and domain updates;

e mpp_io_mod is a set of routines for parallel I/O.

http://www.gfdl.gov/ " vb
11

mMpp_mod design iIssues

e Simple, minimal API, with free access to underlying API for
more complicated stuff.

e Design toward typical use in climate/weather CFD codes
(rectilinear grid, halo update, data transpose).

e Performance to be not significantly lower than any native
API.

12

mpp_mod API

e Basic calls:
— mpp_init ()
— mpp_exit()

— mpp_transmit(): basic message passing call. Typical use assumes two
transmissions per domain, e€.g halo update.

— mpp_sync ()

— mpp_error ()

e Reduction operators:
— mpp_max ()
— mpp_sum()

— etc.

13

Implementation of mpp _transmit

call mpp_transmit(send_buf, n, to_pe, recv_buf, m, from_pe)

e MPI: MPI_Isend() and MPI_Recv().

e SHMEM: shmem_get.

e On shared memory: direct copy.

e on cCNUMA: send address, then direct copy.

14

mpp_domains_mod : domain class library

Definition of domain:
e Global domain: the entire model grid.
e Compute domain: set of points calculated by a PE.

e Data domain: set of points required by the computation (i.e including
halo).

All the information required for domain-related operations are maintained in
compact form in the domain types supplied by mpp_domains_mod . Complicated
grids, such as the bipolar grid and the cubed sphere can be represented in
this class, so long as they are logically rectilinear.

15

The domain type

(ni,nj)

N

1TH
P

..mv

™
s

[aT
[d)]
.
[¢)]

IS
e

(1,

16

mpp _domains mod calls:

e mpp_define_domains()

e mpp_update_domains()

type(domain2D) :: domain
call mpp_define_domains((/1,ni,1,nj/), domain, xhalo=2, yhalo=2)

lallocate f(i,j) on data domain
lcompute f(i,j) on compute domain

call mpp_update_domains(f, domain)

17

mpp_io_mod: a parallel I/0O interface

mpp_io_mod is a set of simple calls to simplify I/O from a parallel
processing environment. It uses the domain decomposition and
communication interfaces of mpp_mod and mpp_domains_mod . It is
designed to deliver high-performance I/O from distributed data,
in the form of self-describing files (verbose metadata).

18

Features of mpp_io_mod

Simple, minimal API, with freedom of access to native APIs.
Strong focus on performance of parallel write.

Accepts netCDF format, widely used in the climate/weather community.
Extensible to other formats.

May require post-processing, generic tool for this to be provided by
GFDL.

Compact dataset (comprehensively self-describing).

Final dataset bears no trace of parallelism.

19

mpp_ 10 mod output modes

mpp_io_mod supports three types of parallel I/O:

e Single-threaded I/O: a single PE acquires all the data and
writes it out.

e Multi-threaded, single-fileset I/O: many PEs write to a single
file.

e Multi-threaded, multi-fileset I/O: many PEs write to inde-
pendent files (requires post-processing).

20

mpp_io mod API
mpp_io_init ()
mpp_open ()
mpp_close ()
mpp_read ()
mpp_write ()

mpp_write_meta()

21

mpp_1o_mod calling sequence

type(domain2D) :: domain(O:npes-1)

type(axistype) :: x, y, z, t
type(fieldtype) :: field
integer :: unit
character*(*x) :: file

real, allocatable :: f£(:,:,:)

call mpp_define_domains((/1,ni,1,nj/), domain)

call mpp_open(unit, file, action=MPP_WRONLY, format=MPP_IEEE32, &
access=MPP_SEQUENTIAL, threading=MPP_SINGLE)

call mpp_write_meta(unit, x, ’X’, ’km’, ...)

call mpp_write_meta(unit, field, (/x,y,z,t/), ’Temperature’, ’kelvin’, ...)

call mpp_write(unit, field, domain(pe), f, tstamp)

22

Summary

It is possible to write a data-sharing layer spanning flat shared memory,
distributed memory, ccNUMA, cluster-of-SMPs. The API is not as ex-
tensive as, say, MPI, but has been designed to serve the climate/weather
modeling community.

It is possible to write another layer that expresses these operations in
a manner natural to our algorithms (“halo update”, “data transpose”
instead of “buffered send”, “thread nesting”).

The current standardization efforts (ESMF, PRISM) departs from BLAS,
MPI, etc in that they are xplicitly formulated in high-level language con-
structs (classes, modules, types).

The HPC industry must be actively involved if this is to be a success.

23

