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Foreword

Aeronautics, aprincipal research area for NASA from its inception as NACA, has also been the primary focus
for the NASA Lewis Research Center since the 1940's. In the 1970’s, the Army established drive systems
technology as part of its research to support its ever increasing use of helicopters. This effort has continued to
the present and is now a shared activity of the Army and NASA because of the need for civilian applications,

NASA and Army goals for this research are similar and emphasize reduced weight, noise, and cost with
increased safety, life, and reliability. Meeting these competing goals requires that improvements be made in
the way components are designed and manufactured. These goals are being met by in-house programs,
contracts, and university grants, through which the talents of world-class university researchers have an impact
on aerospace technology and products of the future.

Dr. Faydor L. Litvin, one of the innovators in the gear geometry field for many decades, best exemplifies the
effective use of NASA funds for research. Dr. Litvin's methods and theories have been the catalyst to change
the design and manufacture of gears so as to achieve major operational improvements in helicopter gear
systems. He effected these improvements by applying principles based on the geometry of meshing gear
surfaces to correct many problems associated with alignment and manufacturing errors that shift bearing contact
and cause transmission errors.

This book presents recent developments in the theory of gearing and the modifications in gear geometry
necessary to improve the conditions of meshing. Highlighted are low-noise gear drives that have astable contact
during meshing and a predesigned parabolic transmission error function that can handle misalignment during
operation without sacrificing the low-noise aspects of operation.

This book also provides a comprehensive history of the development of the theory of gearing through
biographies of major contributors to this field. The author’s unique historical perspective was achieved by
assiduous research into the lives of courageous, talented, and creative men who made significant contributions
to the field of gearing. Very often they came from humble backgrounds, sought an education in the face of great
obstacles, made personal sacrifices to attain goals, and worked hard for many years to fulfill their creative
aspirations. The task of accumulating information about these men was extremely difficult, for many were
deceased and facts existed only in family records, library archives, and their companies’ files. Perhaps the most
significant indication of this difficult task is the collection of portraits, many of which were obtained from family
albums held by descendents many generations later. This collection is unique and exists nowhere else.

I believe that this book will be useful to students, engineers, and researchers who work in gearing and that
it will help them to appreciate the genius of those who were pioneers in this field.

John J. Coy
NASA Lewis Research Center

NASA RP-1406 iii






Preface

There yet remains but one concluding tale
And then this chronicle of mine is ended. . .—A. S. Pushkin, “Boris Godunov,” p. 19

This book consists of three chapters: chapter 1 presents the developments in the theory of gearing; chapter 2,
the geometry and technology of gears; and chapter 3, the biographies of the inventors, scientists, and founders
of gear companies. The goal of the third chapter is to credit the contributions made by our predecessors and to
combine the separate historical pieces of the development of gear technology and gearing theory.

Although the author has tried to be objective in judging the history of the development of gear technique, it
is not a certainty that he has achieved his desire. If this happened, it was not deliberate.

The history of gear development was the subject of research by H.-Chr. Graf v. Seherr-Thoss (1965), Darle
W. Dudley (1969), and Dr. Hermann J. Stadtfeld (1993). In the present book, the author tried to complement
these previous publications with new materials and hopes that the reader will find it enlightening.

The history of developments in any area, including gear technology and theory, is the history of creativity,
which has often gone unrecognized during one’s lifetime. The aspiration to create is a passion that enriches the
life but requires unconditional devotion. Usually, creativity is associated with the arts (music, literature,
painting), possibly because they have the greatest influence on our emotions. However, we do not realize the
extent to which this passion conquers the daily activities of many in all levels of society. The desire of gifted
personstocreate is the driving force in their lives, bringing them joy and suffering and often no fame. For, Fame,
a capricious goddess, does not award in the proper time and may not award at all.

My sympathy is for those who failed to achieve recognition for their accomplishments, and I share
Dostoyevsky’s philosophy that suffering is necessary for spiritual achievement, but the price to be paid is
sometimes too high. However, an individual who gives his heart to create should not look for fame. This was
expressed with great emotion by Pasternak (1960) in his famous verse “To Be That Famous Is Hardly
Handsome™:

Creation’s aim—yourself to give,
Not loud success, appreciation.
To mean round nothing—shames to live,
On all men’s lips an empty sermon.

I sympathize with the heroes of Pasternak’s verse.

AlthoughJ. Henry Fabre’s area of activity was different from the author’s, he is an example of someone whose
life deeply touched the author. Fabre (1949) was a famous entomologist who exemplified the unconditional
devotion that creativity required. He was very poor, and struggled to support his family. However, every day
he was in the field to observe the social life and habits of insects—the subject of his research. He made a modest
confession that all he wanted was “a bit of land, oh, not so very large, but fenced in” where he could study insects.
Fabre puzzled not only his neighbors but also his contemporaries by spending his time studying insects, but
through his devotion to this subject, he became the founder of entomology. Unfortunately, Fabre became known
only at the end of his long life (1823 to 1915), and he received a pension for only his last 5 years.
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Another example is the Ttalian mechanic and clockmaker Juanelo Torriano (1501 to 1575), the inventor of
the first known gear cutting machine (Dudley, 1969). He spent 20 years on this project and paid a high price
for his intensive work. He was sick twice and almost died before he successfully created his manually operated
machine. Maybe his reward was self-satisfaction.

The theory and technology of gearing is a narrow branch of science, but the author believes that what was
said about the creative process holds true here. Who knows how many sleepless nights an inventor, a scientist,

acthe founder of a rew gear campany had? How.often did thev ponder Hamlet's question “To be or notto be?”
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Chapter 1

Development of Theory of Gearing

1.1 Introduction

The theory of gearing is the branch of science related to differential geometry, manufacturing, design,
metrology, and computerized methods of investigation. The first developers of the theory of gearing (Olivier
and Gochman) related it to projective and analytical geometry. Later, with the development of gear technology
and the application of computers to gearing, researchers modified it to the modern theory of gearing and

extended its methodology and industrial applications.

One of the most important problems the theory of gearing considers is the conjugation of profiles in planar
gearing and surfaces in spatial gearing. De la Hire, Poncelet and Camus (Seherr-Thoss, 1965) deserve credit for
developing cycloidal gearing. Euler (1781), in addition to his tremendous contribution to mathematics and
mechanics, proposed involute gearing that was later found to have a broad application in industry (fig. 1.1.1).

The Swiss government issued currency with
Euler’s picture and an involute curve to
celebrate his achievements. Olivier (1842)
and Gochman (1886) developed the basic
ideas underlying the conjugation of gear
tooth surfaces and their generation. N.I.
Kolchin (1949) applied Gochman’s ideas
to develop the geometry of modern gear
drives.

Willis, Buckingham, Wildhaber, and __

Dudley are very well-known names in
English-speaking countries. Willis (1841)
proposed the law of meshing of planar
curves. Buckingham’s book (1963) became
a well-known reference on gears.
Wildhaber, an inventor who held many
patents, developed the theory of hypoid
gear drives and the Revacycle method

(Wildhaber, 1926, 1946a, 1946b, 1946¢,

1956). Dudley (1943, 1954, 1961, 1962,
1969, 1984, 1994) was the chief editor of
the first edition of the Gear Handbook,
the foremost work on gears at that time.
He became a prominent gear expert and

well known for his contributions to gear

technology.

NASA RP-1406
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where ¢ is the generalized parameter of motion. When ¢ is fixed, equation (1.2.2) represents the surface Z,in
the S, coordinate system.

Envelope Z, is in tangency with all surfaces of the family of surfaces (eq. (1.2.2)). Surface Z, can be
determined if vector function ry(u,6,¢) of the family of surfaces will be complemented by

f(u,6,¢)=0 (1.2.3)

In 1952 in the theory of gearing, equation (1.2.3) had received the term “equation of meshing” (Litvin, 1952).
Several alternative approaches have since been proposed for the derivation of equation (1.2.3).

Approach 1. The method of deriving the equation of meshing was proposed in differential geometry and is
based on the following considerations:

(1) Assume that equation (1.2.3) is satisfied with a set of parameters P(u°, &, ¢°). It is given that f € C' and
that one of the three derivatives (f,, f,, o) say f,, is not equal to zero. Then, in accordance with the theorem
of implicit function system existence (Korn and Korn, 1968), equation (1.2.3) can be solved in the neighbor-
hood of P = (u°,6°,¢°) by function u(6,¢).

(2) Consider now that surface )ZZ may be represented by vector function ry( 6,¢,u(6,¢)) and that the tangents
1o 2, may be represented as

Tz:ﬁ.,.ar 9u T*zﬂ 9ry o

, Ll 1.2.4
9 w1 ouap .29
(3) The normal N{") to surface Z; that is represented in S, is determined as
ary or
NED = 22 ¢ 22 1.2.5
2 " w00 (1:2:5)

The subscript 2 in the designation N indicates that the normal is represented in S,; the superscript (1)
indicates that the normal to Z, is considered.

(4) If the envelope Z, exists, it is in tangency with X, and Z, and Z, must have a common tangent plane. A
tangent plane H&z) to 2, is determined by the couple of vectors T, and T4. A tangent plane I'Ig” o X, is
determined by the couple of vectors Jr,/du and dr,/96. Vector T, lies in plane IT§!) already. Surfaces Z, and
Z; will have a common tangent plane if vector dr,/dgalso lies in TT§1. The requirement that vectors

(9ry/0u,r, /36 and Ir,/I) belong to the same plane (ﬂz(l)) is represented by

o ﬁ).éﬁ_ - 126
(auxae o= f0.6,9)=0 (1.2.6)

Remember that (1.2.6) is the equation of meshing and that equations (1.2.2) and (1.2.6) considered
simultaneously represent surface Z,, the envelope to the family of surfaces Z,.

Approach 2. This approach is based on the following considerations:
(1) The cross product in equation (1.2.6) represents in S, the normal to I, (see eq. (1.2.5)).
(2) The derivative dr,/d¢is collinear to the vector of the relative velocity v§!2), which is the velocity of a
point of Z; with respect to the coinciding point of Z,. This means that equation (1.2.6) yields
NS vi? = f(u,0,4)=0 (.27

(3) The scalar product in (1.2.7) is invariant to the coordinate systems S I Sf, and S,. Thus

N(» _vglz) = f(u,0,0)=0 (i=1£.2) (1.2.8)
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The derivation of the equation of meshing becomes more simple if i =1, ori =f.

Equation (1.2.8) was proposed almost simultaneously by Dudley and Poritsky, Davidov, Litvin, Shishkov,
and Saari. Litvin has proven thatequation (1.2.8) is the necessary condition for the envelope’s existence (Litvin,
1952 and 1989).

The determination of the relative velocity v{!2) can be accomplished using well-known operations applied
in kinematics (see appendix A). In the case of the transformation of rotation between crossed axes, an alternative
approach for determining v(!2) may be based on the application of the concept of the axis of screw motion
(appendix B).

In the case of planar gearing, the derivation of the equation of meshing may be represented as

T xv{1D =0 (1.2.9)
or
(TOxv?) k=0, (=121 (1.2.10)

where, T(1)is the tangent to the generating curve, v{12is the sliding velocity, k; is the unit vector of the z,-axis
(assuming that the planar curves are represented in plane (x;, y;)).

In the cases of planar gearing and gearing with intersected axes, the normal to the generating curve (surface)
at the current point of tangency of the curves (surfaces) passes through (1) the instantaneous center of rotation
for planar gearing (first proposed by Willis (1941)), and (2) the instantaneous axis of rotation for gears with
intersected axes. The derivation of the equation of meshing for gearing with intersected axes is based on

Xi—x _Y-y_Zi-%
NO NN

(i=L2/f) 1.2.11

where (X, Y;, Z,) are the coordinates of a current point of the instantar(lﬁous( 1e§xis (l)f rotation; (x;, y;, z;) are the
coordinates of a current point of the generating (driving) surface; N N, ’N(Zi) are the projections of the
normal to surface Z;.

1.3 Basic Kinematic Relations

Basic kinematic relations proposed in Litvin (1968 and 1989) relate the velocities (infinitesimal displace-
ments) of the contact point and the contact normal for a pair of gears in mesh.

The velocity of a contact point is represented as the sum of two components: in the motions with and over
the contacting surface, respectively. Using the condition of continuous tangency of the surfaces in mesh, we
obtain

v =yl 4 y(12) (1.3.1)

where v,“’ (i = 1,2) is the velocity of a contact point in the motion over surface X;. Similarly, we can represent
the relation between the velocities of the tip of the contact normal

2 =" +(0!? xn) (1.3.2)

where, h(ri) (i = 1,2) is the velocity of the tip of the contact normal in the motion over the surface (in addition
to the translational velocity of the unit normal n that does not affect the orientation of n), and @12 s the relative
angular velocity of gear 1 with respect to gear 2.

The advantage in using equations (1.3.1) and (1.3.2) is that they enable the determination of vrm and r'l(,z)
without having to use the complex equations of the generated surface Z,.

By applying equations (1.3.1) and (1.3.2) for the solutions of the following most important problems in the
theory of gearing, the application of the complex equations of X, has been avoided:
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Problem 1: Avoidance of singularities of the generated gear tooth surface %,
Problem 2: Determination of the principal curvatures, the normal curvatures, and the surface torsions of Z,
Problem 3: Determination of the dimensions and the orientation of the instantaneous contact ellipse

1.4 Detection and Avoidance of Singularities of Generated Surface

Generating tool surface Z, is already free from singularities because the inequality (dr /du) x (dr,/96) # 0
was observed. Tool surface Z| may generate surface Z,, which will contain not only regular surface points but
also singular ones. The appearance of singular points on Z, is a warning of the possible undercutting of Z, in
the generation process.

The discovery of singular points on Z, may be based on the theorem proposed in Litvin (1968): a singular
point M on surface X, occurs if at M the following equation is observed:

v =y 4 02 g (1.4.1)

Equation (1.4.1) and the differentiated equation of meshing

%[f(u,e, y)]=0 (1.4.2)
yield
ondu ondé_ _ az 1.4.3
o dr A (145
i%+iﬂ=_if.% (1.4.4)
ou dr 26 dt op dt
Taking into the account that X, is a regular surface, we may transform (1.4.3) as
o\ du_(dn) (dr)de (‘9’1) (12)
— | —+| == |—=- =L 1.4.5
(8u] dt+(3u](39 x5 )7 (1.4.5)
EANEALY er_l)@__[ﬁ). ) 146
(ae] (3ujdt+(99 =) M) (149

Equations (1.4.4) to (1.4.6) form an overdetermined system of three linear equations in two unknowns:
du/dt, d&/dr. The rank of the system matrix is r = 2, which yields

fu fe f¢

2
or o, ar, o, 12
0.9)= |=L —')(—') (—‘] viD) =0 (1.4.7)
£1(4,6,9) (&4) (3u = 5] (%)
2
(ifn.] . (ﬁ] [ﬁ) (ﬁ] (+0?)
d6 ) \ du 20 L]

We have assigned in v(!2) that d¢/dr = 1 rad/sec.

Equations f=0and g, =0 allow us to determine on Z; curve L, which is formed by surface “regular” points
that generate “singular” points on Z,. Using the coordinate transformation from §, to S,, we may determine
curve L,, which is formed by singular points on surface Z,. To avoid the undercutting of Z,, it is sufficient to
limit X, and to eliminate L, while designing the gear drive.

Itis easy to verify that the theorem proposed above yields a surface normal sz equal to zero at the surface
Z, singular point. The derivations procedure follows:

NASA RP-1406 5



Step 1: Equation (1.4.7) means that

o o
£(1,6,9)=NP -(g'q;—) (1.4.8)
where
2 _(on a2 12 or o or
N{ )=(—a£; x v )]fu+(v x—a; )fw(—&: x_ae;)f"’ (1.4.9)

Step 2: Taking into account that the generating surface Z, performs its relative motion as a rigid body (Z, is
not changed during such a motion), we may represent in coordinate system S, the normal to surface X, as

N(zz)=(%%x?—;]fu+(%x%]fe+(%—x%)f¢ (1.4.10)

or _ or
Step 3: Equation g, = 0 yields N{?) = 0, since (éulx bé) # 0 (see eq. (1.4.8)). Respectively, we obtain

N2(2) = 0. This means that equation (1.4.10) also yields a normal to surface %, that is equal to zero.

Step 4: We may easily verify that the surface Z, singularity equation can be represented in terms of X,:

Ju fo f¢
e R

.0,¢)= Z2 Z2 22 |22

£20,6.9) ( u au ) (o0 70
(ﬁ).(ﬁ) (ﬁf (2)(&
d0 ou a6 o9

However, equation (1.4.7) is much simpler and therefore preferable.

We illustrate the phenomenon of undercutting with the generation of a spur involute gear by a rack-cutter
(figs. 1.4.1 to 1.4.3). The rack-cutter (fig. 1.4.1) consists of a straight line I that generates the involute curve

of the gear, a straight line 2 that generates the dedendum circle of the gear, and the rack fillet that generates the
gear fillet.

(8

0 1.4.11)

¥ &

\ N "
\ “— Fillet
—2

Figure 1.4.1.—Profiles of rack-cutter tooth.
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Figure 1.4.3(b) shows that the fillet of the rack-cutter has undercut the gear involute shape: the gear fillet and
involute shape are no more in tangency but intersect each other. The undercutting occurred as a result of the
magnitude of parameter setting a being too large.

Examples of the application of equation (1.4.7) in order to avoid undercutting are presented in Litvin (1989

and 1994).

1.5 Direct Relations Between Curvatures of Meshing Surfaces:
Instantaneous Contact Ellipse

The solutions to these related problems are based on the application of the proposed kinematic relations
discussed in section 1.3.

Direct relations between the curvatures of meshing gears are necessary for the local synthesis of gear tooth
surfaces, the determination of an instantaneous contact ellipse, and other problems. The main difficulty in
solving such problems is that the generated surface Z, is represented by three related parameters, therefore
making the determination of the curvatures of 2, a complex problem. The approach proposed by Litvin (1968,
1969, 1994) enables one to overcome this difficulty because the curvatures of Z, are expressed in terms of the
curvatures of generating surface X| and the parameters of motion. Using this approach makes it possible to
determine the direct relations between the principal curvatures and the directions of Z; and Z,. An extension
of this approach has enabled one to detemine the relations between normal curvatures of surfaces 2, and 2, and
the torsions (Litvin, Chen, and Chen, 1995). The solution is based on the application of equations (1.3.1) and
(1.3.2) and on the differentiated equation of meshing.

The developed equations allow one to determine the relationship between the curvatures of surfaces in line
contact and in point contact.

The possibility of the interference of surfaces in point contact may be investigated as follows. Consider that
two gear tooth surfaces designated X and Z, are in point tangency at point M. The principal curvatures and
directions of _and Z_are known. The imerfsérence of surfaces in the neighborhood of point M will not occur
if the relative normal curvature K,(,' ) does not change its sign in any direction in the tangent plane. Here,

K = P c® (1.5

We are reminded that the normal curvature of a surface can be represented in terms of the principal curvatures
in Euler’s equation.

2b -—

Figure 1.5.1.—Instantaneous contact ellipse.
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The approach presented in Litvin (1994) and in Litvin, Chen, and Chen (1995) enables one to determine the
dimensions of the contact ellipse and its orientation by knowing the principal curvatures and directions of the
contacting surfaces and the elastic deformation of the tooth surfaces. An alternative approach is based on the
application of the surface normal curvatures, their torsions, and the tooth elastic approach (Litvin, Chen, and
Chen, 1995).

Figure 1.5.1 shows the instantaneous contact ellipse and its center of symmetry, which coincides with the
point of tangency M; the unit vectors e{P) and e{# of the respective principal directions; the major and minor
axes of the contact ellipse 2a and 2b; angle ¢!, which determines the orientation of the contact ellipse with
respect to the unit vector ef”); angle o, which is formed by unit vectors e/ and ef®).

1.6 Sufficient Conditions for Existence of Envelope to Family of
Surfaces

Sufficient Conditions for Existence of Envelope to Family of Surfaces Represented in Parametric
Form

The sufficient conditions for the existence of an envelope to a family of surfaces guarantee that the envelope
indeed exists, that it be in tangency with the surfaces of the family, and that it be a regular surface. These
conditions are represented by the following theorem proposed by Zalgaller (1975) and modified by Litvin
(1968, 1994) for application in the theory of gearine.

’ﬁ=

i ‘

‘

]

|

-

.

[

L

.
—— — — —— — ———
r,(u,0) e C, %le%;ao, (u,0)e E (1.6.1)

The family 24, of surfaces Z; generated in S, is represented by ry(u, 6, ¢),a<¢<b.
Suppose that at a point M (i, 6, @), the following conditions are observed:

9r2 9!'2].&2 _ _ 1 1.6.2
[—x—ag y = f(u,0,¢)=0, feC (1.6.2)
or
o 9'1). 12) _ = 1.6.3
( x=g | = f(u,0,)=0 (1.6.3)

=0 (1.6.4)



X1

Z4

B4
Figure 1.6.1.—Contact lines on tooth surface.

r(u,6,4), f(u6,¢)=0 (1.6.6)
The contact lines of Z, and Z, are represented as
r;(4,0,¢), f(u,6,4)=0, ¢ =Constant (1.6.7)
nwo), fub¢)=0, ¢= Constant (1.6.8)
Figure 1.6.1 shows contact lines on surface Z; determined by equations (1.6.8) while constant values of

o= (¢), ¢2),...) were taken.
The tangent to the contact line is represented in S, and S, by

or. or
T, = 2 _92
wh %n (1.6.9)
and
o, o

The surface of action is the family of contact lines in the fixed coordinate system Sfthat is rigidly connected
1o the frame. The surface of action is represented by

rp=r;w0.¢), fu,6,4)=0 1.6.11)

where
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l'f (u, 9’ ¢) = Mfl (¢)l‘l (u,e) (16]2)

The 4x4 matrix Mﬂ describes the coordinate transformation in transition from S | to Sf

Sufficient Conditions for Existence of Envelope to Family of Surfaces Represented in Implicit Form
The family of generating surfaces in S, is
G(xy.z$)=0, GeC? (G,)*+(G,)?+(G,)* =0 (1.6.13)
(x,y.20€A, a<¢<b

The theorem of sufficient conditions for the envelope existence proposed by Zalgaller (1975) states that at point
M (ug, 6, ¢y), the following requirements are observed:

G(Xo, Yo, 2g» ¢0) = O, G¢ = 0, GW # O,

4 |DXG.Cp)| |PXG.Gp)| DIG.Gy)

= + # (1.6.14)
| Dx,y) || D(x2) || D2y |
Thus, the envelope exists locally in the neighborhood of point M and is a regular surface:
G(xy.2¢)=0, Gy(x2¢)=0 (1.6.15)

The surface of action for the case just discussed can be represented by using equations similar to (1.6.11) and
(1.6.12).

1.7 Envelope E, to Contact Lines on Generated Surface Z, and Edge of
Regression

Sufficient Conditions for Existence of Envelope E, to Contact Lines

Singular points on generated surface Z, may form a curve that is the envelope (designated E,) to the family
of contact lines (characteristics) on Z,. Envelope E, is simultaneously the “edge of regression” of Z,, which
means that envelope E, is simultaneously the common line of two branches of 2, determined by the same
equation. If the conditions necessary for the existence of E, as an envelope are not satisfied, singular points on
generated surface Z, just form an edge of regression. _

Sufficient conditions for the existence of E, to a family of contact lines on generated surface Z, represented
by an implicit function were determined by Favard (1957). In this work, it was proven that envelope E,isalso
the edge of regression.

Our goal is to present the sufficient conditions for the existence of E, toa family of contact lines on generated
surface Z, that is determined parametrically by three related parameters. In addition, we will show that E,, if
it exists, is also the edge of regression.

Sufficient conditions for the existence of E, are formulated by the following theofem based on investigations
conducted by Zalgaller (1975), Zalgaller and Litvin (1977), and Litvin (1975).

Theorem. A family of generated surfaces E¢ is considered:

rw0,0)eC’, Ww60eG a<p<b (1.7.1)

The family ).74, is generated by surface X; represented by
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r(u,0) e C>, %’uix%;eo (1.7.2)

The following conditions are observed at point M(u, 8y o)

(o il_). 12) _
f(u,9,¢)-(auxae v =0 (1.7.3)
fu fe f.p
_| (Y (if_j(i) (ﬁ). )
g1(u,6.¢)= (9u) ~ |\ 28 ey (v )—0 (1.7.4)
2@ & @e
a0 du 08 20
‘? Tl 40 1.7.5)
w 86
ol TCLT G
du d0
Hi=|f, fo [f]20 (1.7.6)
8 8 &

Thus, the envelope E, exists locally at point M(u, 0, ¢, and is within the neighborhood of M. Envelope
E, is a regular curve and is determined by

r,=nu6.¢), fu6¢=0 gub¢=0 (1.7.7)

The tangent to E, is collinear to tangent T, to the contact line at point M of the tangency of E, and T,. Envelope
E, does not exist if at least one of the inequalities ((1.7.5) and (1.7.6)) is not observed.

The above theorem was applied by F.L. Litvin, A. Egelja, M. De Donno, A. Peng, and A. Wang to determine
the envelopes to the contact lines on the surfaces of various spatial gear drives.

Structure of Curve L on Generated Surface X, Near Envelope E,

We consider curve L on surface X, that starts at point M of envelope E, to the contact lines. Since M is a
singular point of surface Z,, the velocity v,(z) in any direction that differs from the tangent to E, is equal to zero.
Therefore, we may expect that M is the point of regression. A detailed investigation of the structure of curve
L requires that the Taylor series be applied to prove that M is the point of regression and that envelope E, is
simultaneously the edge of regression.

Example 1.7.1. The generationof ahelical involute gear by arack-cutteris considered. The approachdiscussed
above is applied to determine the envelope E, to the contact lines on the generated screw surface X, and the edge
of regression.

Step J: We anplv coordinate systems S, S5, and S, that are rigidly connected to the rack-cutter, the gear, and

the frame, respectively (fig. 1.7.1).
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Step 2: The generating surface is plane Z) (fig. 1.7.2). The position vector O;M of point M of the generating
plane is

OM =0A+0B (1.7.8)
where IO_IA-I =8 and |@|= u.
X,
% |
rp¢ ]
Xp 01 Y1 -—
Y2
W
'11’ Yt
rp 02. Of

Figure 1.7.1.—Coordinate systems applied for gener-
ation of screw involute surface.

Figure 1.7.2.—Generating plane: ;6{71[: 6 and [(TE’: u.
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Then, we obtain the following equation for the generating plane X

fcosa,
@sina, +ucosA
r(u,0)= g P (1.7.9)
usin lp
1
The normal N to X, is
x o -sina, sin 4,
N, =Ztx=L=| cosq,sini 1.7.10
= % e S0 Ay (1.7.19
—cos, cos i,
) a0l angle of ;bw;k-gmtﬁi IE EE% %ﬁnivirse section, and A, is the lead angle on the pitch
[

Step 3: To derive the equation of meshing, we use the scalar product

NP =Ny (v - vP) = fw6.0)=0 (1.7.11)

Here (fig. 1.7.1)
v =-rj (1.7.12)
v =k, x1, +0,0; Xk, (1.7.13)

where k, is the unit vector of the z,-axis. While deriving equations (1.7.12) and (1.7.13), we have taken

w=1rad/sec.
After transformations, we obtain the equation of meshing

f(u.9,¢)=ucos/1psina,+9—rp¢=0 (1.7.14)

Step 4: The generated surface ,, which is the envelope to the family of generating surfaces Z;, is represented
in coordinate system S, by

ry(4,0,9) = M, (9)r;(u,0) (1.7.15)
f(u,6,9)=0 (1.7.16)

where M, is the matrix for the coordinate transformation from S| to S,.
Equations (1.7.15) and (1.7.16) parametrically represent Z, by three related parameters as

x(u,0,0) = O cosr, cos¢ —sin ¢(Bsin a, +ucos lp) +r,(cosg+¢sin ) 1.7.17)

y2(4,0,¢)=0cosa, sing + cos¢(95in o, + U cos /‘Lp) + rp(sin ¢ —pcos¢) (1.7.18)
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Surface branches —;

/
/

!

— Envelope
to contact
lines

(b)

@

Figure 1.7.3.—Involute helical gear. (a) Contact lines and envelope to contact lines. (b) Surface
branches.

Step S5: Equation (1.7.4) of singularities yields

81(4,8,¢) = —ucos lp cosa; +rypcosa; + Iy sina, =0 (1.7.2DH

Step 6: The conditions for the existence of envelope E, to contact lines on Z, formulated by the above theorem
are satisfied in the case discussed; particularly, there are observed inequalities (1.7.5) and (1.7.6). Therefore,
envelope E, indeed exists and is determined by

n,6,¢9), fu,0,)=0, gu6,¢)=0 (1.7.22)

Equations (1.7.17) to (1.7.22) yield envelope E,, the helix on the base cylinder of radius 7, and the lines of
contact, tangents to the helix (fig. 1.7.3(a)) that is represented by

Xy =1, cos(or, +¢) (1.7.23)
y2 = nysin(a, +¢) (1.7.24)
p =pp+tana;) (1.7.25)

where ry = r, €0s Q,, the screw parameter p = r,tan A
Two branches of the generated surface are shown in figure 1.7.3(b).

Step 7: The generation of a spur gear may be considered a particular case of the generation of a helical gear by

taking A = 90°. In such a case, envelope E, to the contact lines does not exist since inequality (1.7.5) is not
observed. Only the edge of regression exists, as shown in figure 1.7.4.
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r— Branches
i of =,

Base

cylinder . - Edge of

regression

Figure 1.7.4.—Edge of regression of spur involute surface.

1.8 Necessary and Sufficient Conditions for Existence of Envelope E, to
Contact Lines on Generating Surface X,

Necessary Condition

Contact lines on generating surface X, may also have an envelope E,. This envelope divides the generating
surface into two parts: A, which is covered with contact lines, and B, which is empty of contact lines (fig. 1.8.1).
Envelope E| was discovered by Litvin (1975) and the necessary conditions for the existence of E, were
formulated. In addition, sufficient conditions for the existence of E are formulated in this book.

The family of contact lines on X is represented in §; by the expressions

r(u,6) € C2, %rulx%g—;eo, fu,6,)=0, 0)eG, a<op<b (1.8.1)

The necessary condition for the existence of envelope E is f¢ = (. The proof is based on the following

considerations (Litvin, 1975):
(1) Vector or, of displacement along the tangent to a contact line may be represented by

or or,
or, =—§u1—6ux§9l89, f,0u+ f,60=0 (1.8.2)

(2) Vector dr of displacement along the tangent to envelope E| may be represented by

dry = %r—uldu + %%d@, fudu+ fod6@+ f5d¢ =0 (1.8.3)

_(3) Vectors or; and dr| must be collinear if envelope E, exists. This requirement is satisfied if f¢d¢ =0,
which yields f¢ =0 (d¢ = 0 since ¢ is a varied parameter of motion).

Sufficient Conditions
The generating surface Z, is represented as

(w0 eC?, arxg%#o, .0 eG, a<¢<bh (1.8.4)

o
ou
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Figure 1.8.1.—Envelope to contact lines.

The following conditions are observed at a point (u,,6,,¢,) designated M:

f(u,6,9)=0 (1.8.5)
f¢(u1 e’¢) =0 (1.86)
Joo #0 (1.8.7)

fu fG
1.8.8
fou S0 *0 (1.8.8)

Then, envelope E, exists, is a regular curve, and is determined by
r](uve)s f(uae9¢)=0s f¢(u,9,¢) =0 (18’9)
The proof of the theorem of sufficient conditions is based on the following procedure:

Step 1: Consider the system of equations (1.8.5) and (1.8.6) and apply the theorem of implicit equation system
existence. We can solve these equations in the neighborhood of point (4, 8,,¢,) by functions {u(¢), adte C !
since inequality (1.8.7) is observed. Then, we may determine a curve on surface Z; to be

R(¢) = 1 (u(¢),6(¢)) (1.8.10)

Step 2: The tangent to curve R(¢) is determined as

R _ondu dndé 1.8.11)
36 oudg 98 d¢

Step 3: We may determine the derivatives du/d¢ and d6/d¢ as follows: differentiating equations (1.8.5) and
(1.8.6), we obtain

du d9__
fu@+fega— fo (1.8.12)

d de
f@d—;+f¢ed7=—f¢¢ (1.8.13)

Solving equations (1.8.12) and (1.8.13), we obtain du/d¢ and d6/d¢.
Equations (1.8.5), (1.8.10), and (1.8.11) to (1.8.13) yield

R Joo .(ﬁ _on ) 4
20 T Jollau @ 20 1519

fou  Joo
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Figure 1.8.3.—Contact lines in space of surface
parameters.

1.9 Axes of Meshing

Initial Considerations

The concept of the axes of meshing and their derivation was first presented by Litvin in 1955 and was then
published in the works (Litvin, 1968, 1989). The revised and complemented concept is now presented in this
book.

We consider that a gear drive transforms rotations with angular velocities @f!” and ®(? between crossed axes.
The angular velocities ®! and @? lie in parallel planes and form a crossing angle y, with the shortest distance
between (! and 0@ being E (fig. 1.9.1).

The relative motion of gear 1 with respect to gear 2 is renresented bv vector !? = (1) - 9 and hv vggtor

moment m(—mm) =070, x (—m(z)}
A point M is the current point of tangency of gear tooth surfaces X, and Z, if the following equation (the
equation of meshing) is observed:

nvi?=n -{(m(”) xr)-&-[@;x(—m(z))]} =0 (1.9.1)

where r is the position vector of M, and n is the unit normal to surface 2. The normal N to surface X, instead
of unit normal n may be applied in equation (1.9.1). Henceforth, we will consider that vectors in equation (1.9.1)
and those derived below are represented in the fixed coordinate system Sf (fig. 1.9.1).

It is known from kinematics that the same relative motion will be provided if vectors @1 and @@ are
substituted by vectors ©” and @’? and if the following conditions are observed:

(1) Vectors @) and @" lie in planes ITU) and 11D, which are parallel to @(! and .
(2) Vectors 0D and 0P are correlated and satisfy these equations:

o) — oD = 12 (1.9.2)

(7 (I —_—
0,0 x 0" +5;0"" x(-'") = 0;0, x(-w®) (1.9.3)
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Figure 1.9.1.—Derivation of axes of meshing.

General Concept of Axes of Meshing

A manifold of couples of vectors P and 0D satisfy equations (1.9.2) and (1.9.3). We will consider a
submanifold of vectors @D and @D that not only satisfy equations (1.9.2) and (1.9.3) but also satisfy the
requirement that the common surface normal N (or the unit normal n) intersect the lines of action LD and LUD
of @” and P (fig. 1.9.2).

If the normal (unit normal) at point M intersects at least one of the couple of lines LD and LUD, say LD, it
is easy to prove that two equations of meshing are satisfied and that the normal intersects the other line, Lun,
The proof is based on these considerations:

(1) An equation of meshing similar to equation (1.9.1) can be represented as
n v =n (v —yM)=0 (1.9.4)
(2) If the normal intersects LD, we can represent viD by
viD = @D x pth (1.9.5)

where p'? is a position vector drawn to M from any point on the line of action L. Not losing the generality,

p' can be represented as PUYM , where P is the point of intersection of L) and the extended unit normal n.
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Figure 1.9.2.—Intersection of axes of meshing by the
normal to the contacting surfaces.

Thus, we have

fp(u,6,0)=0 (1.8.6)

(3) Considering the scalar product n - v{0, we obtain

n-vD = n-(@ x 1) =0 (1.9.7)

(4) Equations (1.9.4) and (1.9.7) yield
n-vi =0 (1.9.8)

The foregoing discussions mean that (a) if the surface normal at point M (the candidate for the point of
tangency of surfaces) intersects at least one line of the couple of lines L() (i = [1]), it intersects the other line
as well; (b) two equations of meshing, (1.9.7) and (1.9.8), are satisfied simultaneously; and (c) point M is the
point of tangency of the surfaces if at least one equation of meshing of the couple (1.9.7) and (1.9.8) is satisfied.

We call lines L and LUD the axes of meshing. However, we emphasize that the couple of lines LP and LI
must satisfy not only equations (1.9.2) and (1.9.3) but also the requirement that L? and LU be intersected by
the surface normal. Lines L? and LU7 that satisfy requirements (a) to (c) are called the axes of meshing.
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Correlation Between Parameters of Axes of Meshing

Our goal is to prove that the parameters of the axes of meshing are correlated, that they depend on the position
vector ¢ and the surface normal N, and that the solution for determining the parameters of L{? and LUD is not
unique.

The determination of the sought-for parameters of the axes of meshing is based on the following procedure:

(1) The axes of meshing lie in planes that are perpendicular to the );{-axis (fig. 1.9.1), and we designate the
sought-for parameters X, K (i = I, I1). The algebraic parameter X determines the location of 0¥ on axis
Xg; parameter KW is determined as

. ()
K =22 (1.9.9)
@y

(2) The requirement that the surface unit normal pass through the axes of meshing is presented in the
following equations (Litvin, 1968):

X0 _x ¥y z0 -4
ny ny n,

(=51 (1.9.10)

Here (fig. 1.9.2)
Ofp(f) = (X(i), y®, 70 = K(i)y(i))(i =Ll OM=r=(xy2); n=(ng,nu.n,)

where P is the point of intersection of the normal with the axis of meshing.
After eliminating ¥ in equations (1.9.10), we obtain

XOk O, — xDn, + KO(yn, = xny)+xm, —zn, =0 G =LID (1.9.11)
Equation (1.9.11) yields
(x”)K(” - X(”)K(”))ny —(x‘” - X(”))nz +(kP - K(”))(ynx —xn,)=0 (1.9.12)

(3) Additional relations between parameters X, K0 (i = L17) can be obtained by using equations (1.9.2) and
(1.9.3). These equations yield the following four dependent scalar equations in the unknowns wy”) and wy(’ h,

oD — i = —my, siny (1.9.13)

KDo(D - koD =1-my; cosy (1.9.14)
xNgWeD - xUD gD = Emy; cosy (1.9.15)
xDeyD — x {10 = Epmy siny (1.9.16)

While deriving these equations, we assign the value of ©(1) to be 1 rad/sec and @2 to be m;, rad/sec, where
m,, is the gear ratio. The system of equations (1.9.13) to (1.9.16) in the unknowns wy”) and a)y(”) may exist if
the rank of matrix
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1 -1 —my siny

D ~KUD 1-my cosy (1.9.17)
xDgD _xUDgUD  pr cosy -
x(D -x{D Emy;siny

is two,
Taking into consideration that in matrix (1.9.17) the four respective determinants of the third order are equal
to zero, we obtain after transformations the relations

Emzl(cosy - K sin y)

xD = (1.9.18)

1—my, cosy+K(”)m2|siny

Em cosy—K(”siny
XD = 2 ) (19.19)

I—M2‘ Cosy + K([)mn siny

(4) By analyzing the system of equations (1.9.12), (1.9.18), and (1.9.19), we can conclude the following:

(1) The parameters X K (i = I, I1) of the axes of meshing depend on the coordinates (x, ) of the contact
point of the surfaces and on the components of the surface normal (unit normal).

(2) Three equations relate four parameters of the axes of meshing. The solution for the parameters of the
axes of meshing is not unique, even when the point of tangency and the common normal to the contacting
surfaces are considered known. This means that for any instant of meshing, there is a manifold of the axes of
meshing. However, there are two particular cases of meshing when only a couple of the axes of meshing, but
not a manifold of such axes, exist and the parameters of the axes of meshing do not depend on the contact point
and the contact normal: case 1, where the rotation is performed between crossed axes and the surface of one of
the gears is the helicoid; case 2, where a helicoid is generated by a peripheral milling (grinding) tool whose
surface is a surface of revolution.

Case 1 has been applied in the analysis of the meshing of worm-gear drives with cylindrical worms, helicon
drives, face-gear drives with crossed axes, and some types of spiroid gear drives. Case 2 has been applied in
the generation of worms and helical gears by a peripheral cutting (grinding) disk.

Case 1 of axes of meshing.—The surface of one of the mating gears is a helicoid. To derive the parameters
of the axes of meshing, we apply equations (1.9.12) and (1.9.13) to (1.9.16) and require that the sought-for
parameters be independent with respect to the point of tangency of the mating surfaces.

In the case of a helicoid, we have the following relation (Litvin, 1968):
yny —xny = pn, (1.9.20)
where p is the screw parameter of the helicoid.

Equations (1.9.20) and (1.9.12) yield

( x(DgD _ D K(ll))ny _[( xD _ g p) _( xUD _ gl P)],,Z =0 (1.9.21)

Equation (1.9.21) shows that the parameters of the axes of meshing do not depend on components of the surface
normal if these relations are observed:

XD gD — xUD gt (1.9.22)
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x() —K(”p =xUD _ K(”)p (1.9.23)

Further derivations of X, K (i = I, II) are based on the application of equations (1.9.22) and (1.9.23) and
the system of equations (1.9.13) to (1.9.16). The procedure for deriving the parameters follows:

Step 1: Considering equations (1 .9.22), (1.9.13), and (1.9.15), we obtain
xDgW = xUDgUD = _Eeoty (1.9.24)
Step 2: Considering equations (1.9.14) and (1.9. 16), we obtain after transformations
(x(’ ) - px! ))w§,’ ) (x“’) - pK(”))w(y”) = Emyy siny — p(1— my, cosy) (1.9.25)

Equations (1.9.25), (1.9.23), and (1 .9.13) yield

Emy siny = p(1—my;)
) ) +
XV -pK

my siny =0 (i=11) (1.9.26)

Then, using equations (1.9.26) and (1.9.24), we obtain

2 - ;
R E_1-mycosy \pw  ECOlY _ 1.9.27)
p  mp sy p

Step 3: The final equations for the determination of parameters X), K of the couple of the axes of meshing
are

2 0.5
K(1>=l(£_1-_mg£?i)+l (EJ‘"’ZIF"SV) _4Ecoty (1.9.28)
2\ p My siny 21 p my, siny p
Ecot
x =— ;:’DY (1.9.29)
2 0.5
gun L[E_1=mycosy| VI[E 1-mycosy| A4Ecoty (1.9.30)
2lp  mysiny 2[ip  mysiny P -
t
xn - _Ecoty (1.9.31)

kD

In the case of an orthogonal gear drive, we have Y= n/2. To determine the expression for XU7) = 0/0, we use
the Lopithal rule (Korn and Korn, 1968). Then, we obtain the following equations for the axes of meshing
parameters:

E 1
kPD==-— (1.9.32)
p my
xD =9 (1.9.33)
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Figure 1.9.3.—Axes of meshing of orthogonal worm-gear
drive. (a) In three-dimensional space. (b) In orthogonal
projections.

25



26

Xf

E cot v tan Ap

Yr

n

1
Xf
‘ ///— rp
/ — Axis of
x) = - Ecot y tan A /  meshing I
N\
I ‘ Tt L I
n - X I
\\
\\
“— Axis of

meshing I7

Figure 1.9.4.—Axes of meshing of nonorthogonal
worm-gear drive with right-hand worm. (a) In three-
dimensional space. (b) In orthogonal projections.

NASA RP-1406



NASA RP-1406

Xor X

- yO
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Figure 1.9.6.—Axes of meshing in case of helicoid
generation.
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kM=0 (19.34)

xUD = -[E-J’—) (1.9.35)
may

The axes of meshing for a worm-gear drive with a cylindrical worm are shown in figures 1.9.3 and 1.9.4.

For a face-gear drive with crossed axes and with a pinion as a spur gear, we have to take p = co.

In this case, all contact normals are perpendicular to the pinion axis, and one of the axes of meshing lies in
the infinity.

Case 2 of axes of meshing.—We will consider the generation of a helicoid by a cutting or grinding disk. The
installment of the tool is shown in figure 1.9.5. Coordinate system S, is rigidly connected to the frame. The
helicoid in the process of generation performs a screw motion about the z,,-axis with the screw parameter p. We
may neglect the tool rotation since it is provided to obtain the desired cutting velocity and does not affect the
process of generation. Therefore, we may consider that systems S, and S are rigidly connected during the
generation process. The crossing angle v, between the z,- and z,-axes is usually equal to the lead angle kp on
the helicoid pitch cylinder. The shortest distance is E .

There are two axes of meshing in this case: I - I coincides with the tool axis; I7 - I1 lies in the plane that is
perpendicular to the shortest distance E_ (fig.1 .9.6). The shortest distance between the helicoid axis and the axes
of meshing IT - I1'is

a=X{P = pcoty, (1.9.36)

1.10 Two-Parameter Enveloping

The motion of the generating surface X, is determined with two independent parameters designated (¢,y/),
and the family of surfaces Z, is represented in S, as

1, (4,6,¢, ) = My (¢, y)r; (1,6) (1.10.1)

The two equations of meshing for the case of two-parametric enveloping are determined as

Ny vi® = £,8,0,9)=0, Np-vi¥) = (u,6,6,)=0 (1.10.2)

Here, v, @ = v, 120 y W =v 029 represent the sliding velocity when the respective parameter of motion
(¢ or ) is fixed. The subscript 1 in equations (1.10.2) indicates that the respective vectors are represented in
coordinate system §.

The two-parameter method of enveloping was discussed in Litvin, Krylov, and Erikhov (1975) and Litvin
and Seol (1996). It can be successfully applied when the tool has a feed motion in the generation processes, such
as hobbing, shaving, and grinding. We have to emphasize that in reality the generation of surfaces with feed
motion is a one-parameter enveloping process because the two parameters of motion, ¢ and v, are related by
the generating function y(¢). Using one-parameter enveloping makes it possible to determine the real surface
Z¥ and its deviation from the theoretical envelope Z, and to evaluate the influence of the feed motion (of

function y(¢)).

A detailed example of two-parameter enveloping is presented in appendix C.

1.11 Localization of Contact and Simulation of Meshing of Gear Tooth
Surfaces

The localization of gear tooth surface contact is achieved when point contact instead of line contact of the
surfaces is provided. This enables one to reduce the sensitivity of the gear drive to misalignment and to also
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avoid so-called edge contact. The localization can be achieved by the mismatch of gear tooth surfaces. The
Gleason Works engineers have successfully developed spiral bevel gears and hypoid gears with point contact
of the surfaces. A localized contact is provided for circular-arc helical gears (Novikov-Wildhaber gears) and
can be achieved for other types of gear drives by gear tooth surface crowning.

We consider a great achievement to be the computerized simulation of meshing and of gear tooth surfaces
in point contact accomplished by applying TCA (Tooth Contact Analysis) computer programs. The simulation
of the meshing of gear tooth surfaces is based on the conditions of continuous tangency of gear tooth surfaces
that are represented by the following equations

)y, 01, 61.4;) = 1P (43,6,.67.9)) (1111
n')(,61,91,9,) = nP(1,,65,.9)) (1.11.2)

Equations (1.11.1) and (1.11.2) indicate that the contacting surfaces have at the current point of tangency
common position vectors r{? and surface unit normals n (), (i = 1,2). The coincidence of directions of the unit
normals for both surfaces can be provided by the proper order of cofactors in the cross products (ar}‘)/au )
X (ar;ﬂxae) (i=1,2). The gear tooth surfaces Z; and Z, are represented in the fixed coordinate systems S where
the axes of gear rotation are located; (u;, 8)) (i = 1,2) are the surface parameters; ¢, and ¢, are the angles of gear
rotation; g (7 = 1,2,...) designate the parameters of assembly.

Equations (1.11.1) and (1.11.2) yield a system of only five independent nonlinear equations (in six
I

unknowns) since In ¥ =1. These equations are represented as

Fie(u1,6.01.13,8,,8,)=0, freC', (k=15) (1.11.3)

One of the unknowns, say ¢;, may be chosen as the input. Henceforth, we assume that equations (1.11.3) are
satisfied at a point

PO = (.60, 13.69.47) (1.11.4)

and the Jacobian system at PO differs from zero. Thus,

_D(fi. o f3 fas 15)
" D(uy,6),u,.6,, ¢2)

From the theorem of the existence of the implicit function system, it follows that equations (1.11.3) can be
solved in the neighborhood of PO by functions

[i1(1).61(91) 42(91). 62(91). 62(¢)] € C' (1.11.6)

20 (1.11.5)

By using equations (1.11.1) and (1.11.2) and functions (1.11.6), we can determine the paths of contact on
surfaces Z; and X, and the transmission function ¢,(¢,). The gear misalignment is simulated by the variation
of assembly parameters g; that will cause the shift in the paths of contact and the deviations of ¢, (¢,) from the
transmission function of an aligned gear drive. Note that a unique solution of equations (1.11.3) by functions
(1.11.6) exists only for the case of meshing by a point contact of surfaces. The Jacobian A becomes equal to
zero when the surfaces are in line contact.

This method of simulating the meshing of misaligned gear drives was proposed by Litvin and Guo (1962).
We must credit The Gleason Works researchers who developed and applied in industry the TCA computer
programs for hypoid gear and spiral bevel gear drives. Similar programs were developed later by Litvin and
Gutman (1981).

The numerical solution of nonlinear equations (1.11.3) is an iterative process based on the application of
computer programs (Dongarra et al., 1979 and Moré, 1980).
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1.12 Equation of Meshing for Surfaces in Point Contact

The computerized simulation of the meshing of gear tooth surfaces described in section 1.11 does not require
knowledge of the equation of meshing. However, it is possible to prove that equation (1.2.7) can also be
extended to apply in the case of surfaces in point contact.

Consider an aligned gear drive when the assembly parameters are observed. The differentiation of equation
(1.11.1) yields

i 1 1 2 2
o ay o a0, P ag XD awy  *P a6, F dgy

i Qi 08, dr | o¢, At owp dt 06, dr  ogy dr (.12.1

It is easy to verify that the derivatives (ar;')/aui), (ar}f)/aei) (i = 1,2) lie in the common tangent plane for
surfaces in tangency. Using the scalar product of the common surface normal Nf(’) with both sides of equa-

tion (1.12.1), we obtain

(9['(1) al‘(2) )
P a0 a0, ) o

Taking into account that (ar}i)lad)i) (d¢/dr) is the velocity vg'? of the surface point (in transfer motion with
the surface), we obtain

i 1 2 I 12
N§’~(V§,)—V5,))=N§c)'v(f ) =0 (1.12.3)

This is the proof that the equation of meshing can also be applied for the case of the point contact of surfaces.
Similar derivations performed for a misaligned gear drive yield

oD (2) &(2)
NO | 2L gg, - f_4¢, - S _da. =0 (1.12.4)
I [am "o g

which allows us to investigate the influence of gear misalignment. However, this equation can be applied when
the theoretical line of action (the set of contact points in the fixed coordinate system) is known. The influence
of the misalignment errors can be determined directly by applying the TCA program.

1.13 Transition From Surface Line Contact to Point Contact

Instantgneous line contact of gear tooth surfaces may exist only in ideal gear drives without misalignment
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Figure 1.13.1.—For derivation of transition point. (a) Representation of two neighboring contact lines.
(b) Transition from surface point P to P* via K.

— Contact path
I

AY
— Major axis of
contact ellipse

\\/\_—/

Figure 1.13.2.—Contact path of misalignment of
worm-gear drive. Change of center distance,
AE = 0.5 mm; change of shaft angle, Ay =5'.

contact will occur in the neighborhood of P) and (2) the current point P* of the real contact path. The direct
determination of P* is impossible because the Jacobian A5 of the system of equations (1.12.3) of surface
tangency is equal to zero. Therefore, it becomes necessary to determine an intermediate point K in the
neighborhood of P (fig. 1.13.1(b)) where A differs from zero. The determination of point K is based on the fact
that vector PK is collinear to the vector that passes through two neighboring transition points. An equation to
determine the transition point on acontact line L, (¢) was proposed in Litvin (1994) and Litvin and Hsiao (1993).
The Jacobian A; at point K differs from zero, and we can start the procedure of simulating the meshing of two
surfaces in point contact.

Figure 1.13.2 shows the shift in the bearing contact in a misaligned worm-gear drive. Transmission errors
due to misalignment will occur and may cause noise and vibration (see section 1.14).
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1.14 Design and Generation of Gear Drives With Compensated
Transmission Errors

Influence of Transmission Errors on Conditions for Transfer of Meshing

Experimental tests show that the level of noise and vibration depends on the level and shape of transmission
errors caused by gear misalignment. Henceforth, we will assume that the gear tooth surfaces are mismatched
and that they contact each other at every instant at a point. This precondition is important when designing low-
noise gear drives, but it must be complemented with the requirement that one apply the predesigned parabolic
function of transmission errors, which is represented as

Ad () = —af (1.14.1)

It will now be shown that the application of such a function allows one to absorb transmission errors caused
by gear misalignment, to avoid edge contact, and to improve the conditions for the transfer of meshing. Edge
contact means curve-to-surface contact that may occur instead of surface-to-surface contact. In such a case, the
curve is the edge of the gear tooth surface of one of the mating gears that is in mesh with the tooth surface of
the mating gear. The transfer of meshing means that the continuous transformation of motions by a gear drive
requires that a pair of teeth in mesh be changed for another pair.

Figure 1.14.1(a) shows that the transmission function ¢,(8,) foranideal geardrive is linear and is represented
as

=M
& (9= N, [0 (1.14.2)

where N| and N, are the gear tooth numbers. The contact ratio (the number of teeth being in mesh
simultaneously) may be larger than 1 in an ideal gear drive. In reality, ideal gear drives do not exist because
alignment errors cause transmission errors that substantially worsen the conditions for the transfer of motion.
Figure 1.14.1(b) shows the transmission function ¢,(¢,) foramisaligned gear drive that is apiecewise nonlinear
function for each cycle of meshing with worsened conditions for the transfer of meshing. The cycle of meshing
is determined with the angles of rotation of the driving and driven gear represented as ¢; = (2n/N,) and
¢, = (21/N,). The author and his fellow researchers at the University of Illinois investigated crowned involute
helical gears, double-circular-arc helical gears, and hypoid gears. They found that the function of transmission
errors Ag,(¢,) for misaligned gear drives usually has the shape shown in figure 1.14.2(a). The linear part of
A¢,(¢,) is caused by gear misalignment; the nonlinear dashed part of A¢,(¢,)corresponds to the portion of the
meshing cycle when the edge contact occurs. The second derivative of Ag,(¢,), and therefore the acceleration
of the driven gear, makes a big jump at the transfer point A of the meshing cycle.

The author’s approach is directed at improving the conditions for the transfer of meshing and is based on the
application of a predesigned parabolic function (1.14.1) of transmission errors. Such a function is provided by
the proper modification of gear tooth surfaces or by the stipulation of specific relations between the motions
of the tool and the generating gear in the generation process. It will be shown next, that the simultaneous action
of both transmission error functions, the predesigned one and that caused by misalignment (in fig. 1.14.2(a)),
causes a resulting function of transmission errors that is again a parabolic function having the same slope as the
initially predesigned parabolic function. The magnitude A@, ... of the resulting maximal transmission errors
(caused by the interaction of both functions shown in fig. 1.14.2(b)) can be substantially reduced. The level of
the driven gear accelerations is reduced as well, and an edge contact, as a rule, can be avoided.

The transmission function for the gear drive, when the predesigned parabolic function of transmission errors
is provided, is shown in figure 1.14.3(a). The predesigned parabolic function is shown in figure 1.14.3(b). It is
important to recognize that the contact ratio for a misaligned gear drive with rigid teeth is equal to 1. However,
the real contact ratio is larger than 1 because of the elastic deformation of the teeth. While investigating the
correlation between the predesigned function of transmission errors and the elastic deformation of teeth, we

have to consider the variation in the elastic deformation of the teeth during the meshing process, but not the
PR r —d_
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Figure 1.14.4.—Interaction of parabolic and linear functions. (a) Linear and parabolic functions of
transmission errors. (b) Resulting function of transmission errors.

Interaction of Parabolic and Linear Functions of Transmission Errors

Figure 1.14.4(a) shows the interaction of two functions: (1) the linear function A¢,(D = b¢, caused by gear
misalignment and (2) the predesigned parabolic function A¢§2) = —a¢]2 provided by the modification of the
contacting gear tooth surfaces. Our goal is to prove that the linear function A¢2( ! )(¢1) will be absorbed because
of the existence of the parabolic function A¢§2) = —a:pf. To prove it, we consider the resulting function of
transmission errors to be

Ay () = A60()) + A9SD (9)) = boy — adf (1.14.3)

The proofis based on the consideration that equation (1.1 4 3)represents in anew coordinate system with axes
(Ay,, y)) (fig. 1. 14.4(a)) the parabolic function

Ay, =-ayi (1.14.4)

The axes of coordinate systems (Ays,, ¥,) and (Ad,, ¢,) are parallel but their origins are different. The
coordinate transformation between the coordinate systems above is represented by
b? b
Ay =Ap——, VI=¢ -7 (1.14.5)
4a 2a

Equations (1.14.3)and (1.14.5), considered simultaneously, yield equation (1.14.4). Thus, the linear function
A¢2“)(¢l) is indeed absorbed because of its interaction with the predesigned parabolic function A¢§2) (¢))- This
statement is in agreement with the transformation of equations of second-order curves discussed in the
mathematics literature (Korn and Korn, 1968).

The difference between the predesigned parabolic function A¢2(2) (¢,) and the resulting parabolic function
Ay, (y,)is the location of points (A*,B*) in comparison with (4, B). Figure 1. 14.4(a) shows that the symmetrical
location of (A,B) is turned into the asymmetrical location of (A*,B*). However, the interaction of several
functions Ay, (y), determined for several neighboring tooth surfaces, provides a symmetrical parabolic
function of transmission errors Ay, (/) as shown in figure 1.14.4(b). (The neighboring tooth surfaces enter into
mesh in sequence.) The symmetrical shape of function Ay,(y,;) determined for several cycles of meshing can
be achieved if the parabolic function A¢$?(¢,) is predesigned in the area (fig. 1.14.4(2))

b

¢1(B)—¢2(A)22—”+— (1.14.6)
Nl a

The requirement (1.14.6), if observed, provides a continuous symmetrical function Ay, ( v,) for the range of
the meshing cycle ¢, = 2n/N,.
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Appendix A
Parallel Transfer of Sliding Vectors

A sliding vector a is determined by its magnitude |a] and the line of its action Ag-A (fig. A1), along which
itcan be moved. Examples of a sliding vector are forces and angular velocities. In the last case, the line of action
Ag-A is the axis of rotation,

The parallel transfer of a sliding vector means that a can be substituted by a* = a and a vector moment
m=Rxa (A.D)

where R is a position vector drawn from point O of the line of action of a* to any point of the line of action of
a. It is easy to prove that the vector moment m, for instance, can be expressed as (fig. A.1)

m = 0A; xa (A2)
Taking into account that
R=0A)+AjA*=0A, + Aa (A3)
where A is a scalar factor, we obtain
m =Rxa=(0A;+Aa)xa=0A; xa (A4)

Figure A.2 is an example of a sliding vector as the angular velocity of rotation @ about the axis Ay-A. The
axis of rotation does not pass through the origin O of the considered coordinate system S(x,y,2). The velocity
of point M in rotation about A;-A can be determined using the following procedure:

Step 1: We substitute vector & that passes through A, by a parallel and equal vector @* that passes through O
and the vector moment

m =04, x @ (A5)
where m is a free vector that represents the velocity of translation.

Step 2: The motion of point M is represented now in two components: (1) as translation with the velocity m and
(2) as rotation about 0O* with the angular velocity @* = @.

Step 3: The velocity of rotation of point M about the axis OO0 * is determined as

Vot = @*X OM (A.6)
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Step 4: The whole velocity of point M is determined as
v =(04g x @) +(@x OM) = @x (r-R) (A7)
where r= OMand R = OA, .
Step 5: It is easy to verify that equation (A.7) may be interpreted as
v=0Xp (A.8)
where p=r-R= A()—M represents the position vector drawn from point A, of the axis of rotation A ,-A to point

M. A position vector p* may be drawn to M from any point on the line of action Ay-A. For instance, we may
consider that p* = A * pf (not shown in the figure) and represent v as

V=@xXA*M (A.9)
Taking into account that
A*M = AgAg + AgM = 2* a+ AgM (A.10)
we obtain
v=0xA*M =ox(A* a+p)=oxp (A.11)
since
wxA*a=0 (A.12)

because of the collinearity of vectors.

Equations (A.7) and (A.8) enable one to determine the velocity of point M by two alternate approaches.
Henceforth, we will use the approach that is based on the substitution of sliding vector @ with an equal vector
o* and the vector of translation m.

Problem A.1. Represent analytically vector velocity v of point M by considering as given (fig. A.2)

: T Y. n r - n a7 Y4 r 'IT
{is,_. ..I’n]r,. PSP, |
2.
{
4
i
i
i
y
Solution.
i jf kg zZsiny —ycosy
v=wx(r—-R)=| 0 wsiny @cosy|=w| (x+E)cosy (A.13)

x+ E y b4 —(x+ E)siny



Appendix B
Screw Axis of Motion: Axodes

B.1 Screw Motion

Generally, the motion of a rigid body may be represented as a screw motion—rotation about and translation
along an axis called the axis of screw motion.

Figure B.1.1 shows that gears 1 and 2 perform rotation about crossed axes with angular velocities oD and
@@, The instantaneous relative motion of gear 1 may be represented as a screw motion with parameter p about
the 5-S axis that lies in plane TT that is parallel to vectors oD and @@, To determine the location of plane TT
and the screw parameter p, we use the following procedure:

Step 1: Substitute vectors @D and ~@@ with equal vectors that lie in plane IT and with respective vector
moments

m'D =(b@)f xaf, mP =(@;)f x -@?) (B.1.1)
The subscript f indicates that vectors in equations (B.1.1) are represented in coordinate system Sf
Step 2: The angular velocity in relative motion a)}m is represented as (fig. B.1.2)
off? = &) + (—w}z)) =-aPsiny j;+ (w“) - o™ cos y)kf (B.1.2)
The resulting vector moment is
m{? =m +mP = (0,07 x ")+ 0,0, x -0/ (B.1.3)

Step 3: Vector moment m{!2) is a function of 0,0y = X; i Our next goal is to make m}m collinear to @12,
and this requirement can be represented by

(W)f x @ - (5;0_2)f x @ = pafl? (B.1.4)

Drawings of figure B.1.1 show that

0,0, = 0,0, +0,0; (B.15)
Equations (B.1.4) and (B.1.5) yield
0. (12 _ (005 (A (V))
(0,07), % o] (0702), x &ff = pof (B.1.6)

Step 4: The determination of 0,0y = Xfifis based on the following transformation of equation (B.1.6):
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Figure B.1.1.—Screw axis of rotation.
(12) o0, (12) (12) 0.0 (2) | _ (12) (12)) _
oy x[(OSOf)fxa)f ]—a)f x[(Ofoz)fxmf ]-p(a)f X @y )-O (B.1.7)
Equation (B.1.7) yields
y SR
(12) PR 12) (2)) _
(o )osof—(ofoz)f(m(f @?)=0 (B.1.8)
since
—_eoU2 A12) (A -
o} [wf (osof)f]_o (B.1.9)
| 12 (a0 | =
- [wf (ofoz)f]_o (B.1.10)

The scalar products of vectors in equations (B.1.9) and (B.1.10) are equal to zero because of the
perpendicularity of cofactor vectors.
Vectors of equation (B.1.8) are represented as (fig. B.1.1)

(12) _ _ (2) o : (¢)] (2)
0; " = -0 snnyjf+(w -0 cosy)kf

=@ [-mysiny j; +(1-my cos y )k (B.1.11)
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where my; = w(z)/w“)

0,0,=-Ei; (B.1.13)
w}z) = M2]w(l)(5in Y jf +Cosy kf) (B.1.14)

The orientation of @(!2 and axis S-S of screw motion is illustrated by the drawings of figure B.1.2.
Equations (B.1.8) and (B.1.11) to (B.1.14) yield

nmyylmy) —Ccosy
X;=E (may ) (B.1.15)

1-2my,cosy + m%l

Step 5: The determination of the screw parameter p is based on the following transformation of
equation (B.1.7):

a2 | (p - a2 |_ 42 (55 - ((12))?
o] -[(OsOf)fxwf ]—wf .[(ofoz)fxmf ]—p(m ) (B.1.16)
Here

a2 [(z5- (12) | _

o -[(Osof)fxa)f }_0 (B.1.17)

because of the collinearity of two cofactor vectors in the triple product.
Equations (B.1.16) and (B.1.17) yield the following expression for p:

My Siny
=E 21 B.1.18
P 1—2m21005‘y+m221 ( )

For the case when the rotation of gear 2 is opposite to that shown in figure B.1.1, it is necessary to make m;,
negative in equations (B.1.15) and (B.1.1 8). A negative value ofoin equation (B.1.15) indicates that plane I'
intersects the negative axis X A negative value of p indicates that vector pwtDis opposite the direction shown
in figure B.1.1.

AY
“— Parallel
to Zf

\
— Paraliel
to xy

Figure B.1.2.—Relative angular velocity.
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B.2 Axodes

For the case of rotation between crossed axes with a constant gear ratio, the axodes are two hyperboloids of
revolution. The axode of gear i (i = 1,2) is formed as a family of instantaneous axes of screw motion that is
generated in coordinate system §; when gear i is rotated about its axis. An axode as a hyperboloid of revolution
is shown in figure B.2.1. Two mating hyperboloids (fig. B.2.2) contact each other along a straight line that is
the axis of screw motion. The relative motion of hyperboloids is rolling with sliding (about and along the axis
of screw motion),

In the real design of gears with crossed axes, pitch surfaces instead of axodes are applied. In cases of worm-
gear drives and hypoid gear drives, the pitch surfaces are two cylinders and two cones, respectively (Litvin,
1968, 1989). The point of tangency of pitch surfaces is one of the points of tangency of gear tooth surfaces.

R Axis of
screw
motion

—Throat of
hyperboloid

Figure B.2.1.—Hyperboloid of revolution. Figure B.2.2.—Mating hyperboloids.
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Appendix C
Application of Pluecker’s Coordinates and Linear
Complex in Theory of Gearing

C.1 Introduction

This appendix covers the basic concepts of Pluecker’s coordinates, Pluecker’s equation for a straight line,
and Pluecker’s linear complex (Pluecker, 1865). It is shown that applying the linear complex enables one to
illustrate the vector field in the screw motion and to interpret geometrically the equation of meshing and the two-
parameter enveloping process.

Mapy srientists cnnsidered Pluecker's ideas to have been a significant contribution to the theory of line
A S

: :




Figure C.2.1.—Representation of straight line.

C.3 Pluecker’s Linear Complex for Straight Lines on a Plane
A plane may be determined by considering as given: (1) a point M through which passes the plane and (2)

a normal N to the plane (fig. C.3.1).
A straight line that belongs to plane IT is represented as

r=r,+Aa (A#0), N-a=0 (C3.1
Equations (C.3.1) yield

N:(r-r,)=0 (C3.2)

N-r=d (C3.3)
where N, r,, and consequently, d are given.
We consider now a line (g, mg), which belongs to the same plane if the following equation is observed

(Merkin, 1962):
N~(gxmg)=d(g-g) (C.3.4)
Direct transformations of equation (C.3.4) yield
N-(gxm,)=N-[gx(rxg)]=N-[r(g-g)-gN-g)]=N-r(g-g) =d(g-g) (C3.5)

We are reminded that N - g = 0 since g must lie in plane IT.
Considering lines (a, m ) and (g, mg), we can verify that the couple of lines intersect each other or they are
parallel if the following equation is observed:

am,+m;-g=0 (C.3.6)

8
The proof of this statement is based on the following:

(1) Direct transformations of equation (C.3.6) yield
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y
Figure C.3.1.—Representation of straight lines on a plane.

a-(rgxg)+(raxa)-g (r —r) (axg)=0 (C.3.7)
(2) Equation (C.3.7) is observed if

(@r,-r,=0,axg=0, which means that the lines have a common point.

(b) r # r,a x g = 0, which means that the two lines are parallel.

Equatlon (C.3.6) represents Pluecker’s linear complex of all lines (g, m,) defined by a given vector a and
couple (a, m,).

Line (g, m ) has six Pluecker’s coordinates (g, . By» 8y Mgy, Mgy, My, ), but only three are independent
because a lme has only four independent Pluecker’ s coordinates and an additional relation between the

coordinates is provided by equation (C.3.6).

C.4 Application to Screw Motion

Screw Motion

We consider the rotation of two gears about crossed axes. The relative motion may be determined as the screw
motion represented by vector o, and moment m = pw_ (fig. C.4.1). Here, o, and m are the angular velocity
of rotation about and translatxon along the ms(antaneous axis of screw motlon pis lhe screw parameter.

Two coordinate systems §, and S, are rigidly connected to gears 1 and 2. Let us say that gear 1 is movable
whereas gear 2 is held at resl Point M of gear 1 will trace out in S, (in infinitesimal motion) the small arc of a
helix. The velocity v of point M of gear 1 with respect to point M of gear 2 may be represented by vector equation

V=0 X1+ plg (C4.1)

where r is the position vector of point M. Two components of v represent the velocities in rotation about and
translation along the screw axis.
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} Axis of screw motion

Null plane (IT)

(b)

(@)

Figure C.4.1.—Presentation of relative velocity in screw motion. (a) Helix and trihedron 7, b,
and c. (b} Null plane.

Helix and Trihedron 1, b, and ¢

The velocity v is directed along the tangent 7 to the helix. Tangent T and the screw axis form the angle
(90° -A) (fig. C.4.1) where

tanA=F% _P (C.4.2)
w;p P

and p is the shortest distance of point M from the axis of screw motion.
The helix on a cylinder with radius p is represented as

r@) =[pcos(@+q) psin@+q) pb] (C4.3)

where 6 is the varied helix parameter; g and 6 = 0 determine in plane z = 0 the location of the helix reference
point. The vector field of velocity v may be determined as the family of tangents to helices that are traced out
on coaxial cylinders of various radii p. Any one of the family of helices is a spatial curve. A small arc of the
helix is traced out in S, by point M of S, and it belongs to the osculating plane formed by tangent 7 to the helix
and the principal normal ¢ to the helix (fig. C.4.2).

Trihedron T, b, and ¢ is formed by tangent 7 to the helix, binormal b, and principal normal ¢ (see definitions
in Favard, 1957; Litvin, 1994). The unit vectors of the trihedron are represented by

1=10, p=182%6 . _pxs (C.4.4)
Irs | Irg X rgg]
After derivations, we obtain
—sin (8 +g)cos A
T=|cos (B+q)cosA (C4.5)
sin
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Figure C.4.2.—lllustration of orientation of null plane. (a) Normal plane and tangent plane. (b) Null plane
and osculating plane.

sin Asin(@+ q)
b =|-sin Acos(8+q) (C4.6)
cosA

—cos(0+¢q)
¢c=|sin(@+¢q) (C4.7)
0

Null Plane, Null Axes, and Linear Complex in Screw Motion

We choose in coordinate system S, a point M and determine the velocity v of point M of coordinate system
S, withrespect to the screw motion by using equation (C.4.1). Then, we determine plane IT that passes through
M and is perpendicular to v (fig. C.4.1(b)). Plane ITis called the null plane of point M and vice versa, and point
M is called the null point (pole) of T1. Plane IT contains straight lines (g, m,) that pass through pole M. In
accordance with the definition of plane I'l, we have

v-g=0 (C4.8)

Equations (C.4.8) and (C.4.1) yield
ms-g+(os~mg=0 (C4.9)
where m = p®, m,=rxg= OM x g. Equation (C.4.9) may be called Pluecker’s linear complex for screw

g
motion.
Any straight line (g, m ) through M that belongs to null plane ITis called a null axis. Particularly, the binormal

to the helix is also a nulfeaxis.
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C.5 Interpretation of Equation of Meshing of One-Parameter
Enveloping Process

The basic form of the equation of meshing (see section 1.2) is represented by
N v =0 (=120 (C5.1)

where N, is the common normal to the contacting surfaces and v‘»('z) is the relative velocity. The scalar product
of vectors is invariant to the applied coordinate systems §, S,, and Sfthat are rigidly connected to gears 1, 2,
and the frame, respectively. Equation (C.5.1) is obtained from the conditions of tangency of the generating and
enveloping surfaces.

The application of the concept of Pluecker’s linear complex enables one to illustrate the equation of meshing
interms of the null axis and the null plane and the orientation of the normal N in the null plane. We now introduce
two approaches for determining Pluecker’s linear complex.

Approach 1. Since normal vector N to the contacting surfaces is perpendicular to the relative velocity v, the
normal (N, m,) belongs to the null plane, and an equation similar to (C.4.9) yields the linear complex

m, N+o, my=0 (C.5.2)

where m, = po_and my = OM x N.
The orientation of the normal (N, myy) in the null plane is shown in figure C.4.2.

Approach 2. The concept of using screw motion for the determination of relative velocity was presented in
Approach 1 and in section C.4. We have considered as well that coordinate system S, rigidly connected to gear
1 performs a screw motion with respect to coordinate system S, rigidly connected to gear 2 while S, and gear
2 are held at rest. However, this concept is not the primary one to be used in kinematics and in the theory of
gearing. The following derivations of Pluecker’s linear complex are based on the concept that both gears
perform rotations about their axes as shown in figure C.5.1. The derivation procedure follows:

Step 1: Rotation about crossed axes is performed with angular velocities @(! and @@ as shown in fig-
. vy (N ‘s « .- - - - -

Ead IV B L ¢ B Ear)

L Fax AT

= ik e




w=0 -, mm=Ex(—m(2)), (msm"z)) (C.5.3)
where E = 070, .

Step 2. It is known from differential geometry and the theory of gearing that the generating surface and the
envelope are in line contact at every instant. Figure C.5.1(b) shows that point M is a point of the line of contact,
N is the common normal to the contacting surfaces at M, and r = Oy M is the position vector of M.

The normal as a straight line may be represented by the direction vector N and the respective vector moment
m,,. Thus, we consider as given

N, my=rxN (C54)
If (N, m,) belongs to Pluecker’s linear complex, the following equation must be observed:
my, N+my -0=0 (C.5.5)
Equations (C.5.3) to (C.5.5) yield
~(Exe®)-N+@xN)-0=0 (C.5.6)

After transformations of equation (C.5.6), we obtain
N-[(u)“z) xr)—(Exo)(z))]=N~v“2) =0 (C.5.7)

Equation (C.5.7) is observed since it is the equation of meshing of the contacting surfaces. This means that
N is the null axis.

Using Pluecker’s terms, we can determine the null plane as the one that passes through contact point M,
contains the normal N, and is perpendicular to the moment.

m* = -(E X m(z)) + [—r X (m“) - m(z))] = (m(l) - m‘z)) Xr- (E X m(z)) (C.5.8)

It is evident that m* = v{!2), which means that the null plane is perpendicular to the relative velocity v(12),

The drawings of figure C.4.2(a) illustrate the concept of planar L, and spatial L curves located on a tooth
surface. Both curves are in tangency at point M and their common unit tangent is designated 7. These drawings
also show the tangent plane to surface X at point M.

The drawings of figure C.4.2(b) represent in an enlarged scale curves L, and L. For the case of the meshing
of the envelope and the generating surface, spatial curve L is the trajectory that is traced out in relative motion
by point M of the moving surface on the surface held at rest. The relative motion is a screw motion (see section
C.4), and the relative velocity is directed along the tangent to the helix at point M that coincides with the unit
tangent 7 shown in figure C.4.2(b). The null plane at any point M of the tangency of the envelope and the
generating surface can be determined as follows. Consider as known at point M the common normal N to the
surfaces and the vector of relative velocity or its unit tangent 7. Then, the null plane at point M is determined
to be the plane that passes through normal N and is perpendicular to 7, the unit vector of relative velocity
(fig. C.4.2(b)). We are reminded that the null plane also contains the binormal and the principal normal to the
trajectory L, at point M.
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C.6 Interpretation of Equations of Meshing of Two-Parameter
Enveloping Process

Introduction

In a two-parameter enveloping process, the generated surface is determined to be the envelope of the two-
parameter family of surfaces (Litvin, Krylov, and Erikhov, 1975; Litvin and Seol, 1996).

The generation of an involute helical gear with a grinding worm is used to illustrate the two-parameter
enveloping process. The method of grinding the spur and the helical gears with a cylindrical worm and the
grinding equipment were developed by the Reishauer Corporation. The meshing of the worm with the gear
being ground may be considered as the meshing of two involute helicoids with crossed axes (Seol and Litvin,
1996a).

Figure C.6.1 shows the grinding worm and the gear to be ground and the shortest distance between the axes
as the extended one (for the simplification of the drawings). The machining center distance is installed as

Eyg =Tpw +1pg (C6.1)

where T ow and r,, are the radii of the pitch cylinders of the worm and the gear. With such acenter distance, points

8
M, and M, of tge pitch cylinders will coincide with each other and the pitch cylinders will be in tangency.

Helical gear

Figure C.6.1.—Representation of grinding of helical
gear by worm.
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Figure C.6.2 shows the coordinate systems applied to describe the generation process. The movable
coordinate systems S, and S g are rigidly connected to the worm and the gear, respectively. Coordinate systems

S p and §,, are fixed.
For the case when the worm and the gear are both right hand, the crossing angle Ywg between the axes of the
worm and the gear is represented by
(C.6.2)

Ywg = Apw t Apg

where lp,- (i = w,g) is the lead angle on the pitch cylinder.
The process of gear generation requires two independent sets of motion:

(1) The first set of motions is executed as the rotation of the gear and the worm about axes Z, and z,,,
respectively, with angular velocities @(® and w™) related by
Ym
o, /
/ Yo l
Ywg
\ Cwh e
¥ 2 a—
Of v Z,
Xm by oW
XW
X¢ EWQ
Xn
Xg
bg
Op. Og \
/
/
/, /
/’ 0o Ywg
Yn /’ &g w@ \/
Zg
2,
Yo
o Figure C.6.2.—Coordinate systems for grinding of helical gear by worm.
NASA RP-1406
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w( w)

It is assumed that a one-thread grinding worm will be used; N, is the number of the gear teeth.

(2) The second set of motions is executed as the translation of the worm with the velocity dy™)/dt in the
direction 0,,0,,, which is parallel to the gear axis, and the additional rotation of the gear with the angular
velocity Q(gsl. Here,

=p Q&) C.6.4
o Pe ( )

where p 5 is the gear screw parameter (pg >0 for aright-hand gear). The second set of motions dy(*)/dt and Q&)
is required to provide the feed motion during the grinding process.
Derivation of Gear Tooth Surface

The gear tooth surface Z, is an envelope of the two-parameter family of worm thread surfaces and is
determined by the following equations (Litvin, Krylov, and Erikhov, 1975):

rg(uv 01 ¢’ W) = Mgw (¢, W)rw (uv 6) (C65)
N y(80) _ g (C.6.6)
N y8:¥) _ (C6.7)

where (u,6) are the surface parameters of the worm thread surface 2. ¢ and yare the generalized parameters
of motion of the two sets of independent motions mentioned above; r_(u,8,¢,y) is the vector function that
determines in S, the two-parameter family of surfaces £, generated in §‘g; v(¥&.9) is the relative velocity that
is determined wflen the variable is the parameter of motion ¢and v is held at rest; v(*& ¥ is the relative velocity
in the case when the variable is the parameter of motion y and ¢ is held at rest; (C.6.6) and (C.6.7) are the
equations of meshing and the subscript i = g,n,m,f,w indicates that the respective scalar product of vectors is
invariant to the applied coordinate system.

Equations (C.6.5) to (C.6.7) represent the sought-for tooth surface by four related parameters.
Interpretation of Equations of Meshing by Application of Pluecker’s Linear Complexes

The transformation of the equation of meshing (C.6.6) is based on the following:

(1) The gear and the worm perform rotational motions about the crossed z,- and Z,-axes with angular
velocities ©™) and @®), respectively (fig. C.6.2). Vectors of the scalar product are represented in the Sf

coordinate system.
(2) The relative velcoity v(*8:9) is represented as

v = (0 - ) xr; - 0,0, x 0@ (C.6.8)
Then we obtain the following equation of meshing (C.6.6):
[(c)(fw) -—(z)(fg))xrf —5]70_gxw(3)]-N(fw) =0 (C.6.9)

where i is the position vector of the point of tangency of surfaces £, and Z,.
We interpret the equation of meshing (C.6.9) by Pluecker’s linear complex using the following procedure:

Step 1: The relative motion during generation is represented by vector @and moment m o that are represented
as
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w=o" - =™, m,=-0,0,xw® (C.6.10)
Step 2: The common normal N to the contacting surfaces and the moment m,, of N represented as
my =0;MxN=r;xN (C.6.11)
are related to @and m, by the equation of the linear complex
@-my+my, N=0 (C.6.12)

Equation (C.6.12) yields the equation of meshing (C.6.9). The null plane passes through the point of tangency
M, contains the normal N, and is perpendicular to v(*8:9), The normal N is the null axis of the linear complex
(see section C.3).

Let us now consider the interpretation of the equation of meshing (C.6.7) by application of Pluecker’s linear
complex. The second set of the paremeters of motion is represented by the couple of vectors (£2, mg,), which
can be obtained from equations that relate the motion of the worm with respect to the gear. Here,

0= 0@ _g® = _g® (C.6.13)
since 2" = 0,
d (w)
mg, = V;t (C.6.14)

The other couple of vectors is represented by
N, my

where my, is represented by equation (C.6.11).
Both couples of vectors are related by the equation of the linear complex:

Qmy+mg-N=0 (C.6.15)
that yields

-® ~(rf X N)+ dy;(tw)

‘N=0 (C.6.16)

Equation (C.6.16), after simple transformations, may be represented as

d (w)
(-dg>xr,+ ";t ‘N=0 (C6.17)
Equations (C.6.17) yields
viEV).NG =0 (C.6.18)
The null plane for the second set of parameters of motion passes through the same point M and is

perpendicular to v(*&¥) but not to v0*8-9). The common surface normal N is the null axis of the second linear
complex.
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Chapter 2

Development of Geometry and Technology

2.1 Introduction

Errors in gear alignment and manufacture may shift the bearing contact, turn it into edge contact, and cause
transmission errors that, as we are reminded, are the main source of vibration. The purpose of this chapter is
to present the latest developments in gear geometry and technology directed at improving bearing contact and
reducing transmission errors.

The main errors of alignment and manufacture are as follows: the error of the shaft angle, the shortest center
distance, the leads in the case of helical gears, the errors in machine-tool settings (errors of orientation and
location of the tool with respect to the gear being generated), and the errors of the circular pitches. In addition,
we have to take into account the deflection of the teeth and shafts under load. To avoid or at least to reduce such
defects, it becomes necessary to substitute the line contact of the gear tooth surfaces by the point contact and
then, in addition, to modify the gear tooth surfaces. The modification of gear geometry is based on the proper
deviation of the gear tooth surfaces from the theoretical ones. The surface deviation can be provided (1) in the
longitudinal direction with the contact path in the profile direction (the direction across the tooth surface) and
(2) in the profile direction with the longitudinal direction of the contact path. In some cases, both types of
deviation must be provided simultaneously, but one of them must be the dominant.

The desired modification of gear geometry becomes possible by applying inventive methods of gear
technology such as (1) the mismatch of tool surfaces for the generation of spiral bevel gears and hypoid gears,
(2) the varied plunge of the tool for the generation of spur and helical gears, (3) the application of an oversized
hob for the generation of worm gears. Some of these examples are considered in the following sections. We
emphasize that in all of such cases of gear manufacture, it is important to provide a predesigned parabolic
function of transmission errors and to reduce their magnitude (see section 1.14), which will improve the
conditions of the transfer of meshing while one pair of teeth is changed for the neighboring one.

This chapter summarizes the developments achieved at the Gear Research Laboratory of the University of
Ilinois at Chicago. Details are given in Litvin and Kin (1992); Litvin and Hsiao (1993); Litvin and Lu (1995);
Litvinetal. (1995, 1996a, 1996b); Litvin, Chen, and Chen (1995); Litvin and Feng (1996, 1997); Litvin, Wang,
and Handschuh (1996); Litvin and Seol (1996); Seol and Litvin (1996a, 1996b); Zhang, Litvin, and Handschuh
(1995); and Litvin and Kim (1997).

2.2 Modification of Geometry of Involute Spur Gears
Localization of Contact

Spur gears are very sensitive to the misalignment of their axes, which causes an edge contact. The sensitivity
of the gear drive to such a misalignment can be reduced by localizing the bearing contact. The localization of
the contact as proposed in Litvin et al. (1996b) can be achieved by plunging the grinding disk in the generation
of the pinion by form-grinding (fig. 2.2.1). The mating gear is generated as a conventional involute gear. The
plunging means that during the pinion generation, the shortest distance between the axes of the grinding disk
and the pinion will satisfy the equation (fig. 2.2.1)
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Figure 2.2.3.—Transmission errors caused by errors of
pressure angle Aa = 3 arc min.

Figure 2.2.4.—Theoretical and modified profiles of spur pinion.
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2.3 Modification of Involute Helical Gears

Computerized Investigation of Misaligned Conventional Involute Helical Gears

Aligned involute helical gears are in line contact at every instant, as shown in figure 2.3.1. Misalignment
caused by changes in the shaft angle, the lead, and the normal profile angle of one of the mating gears causes
edge contact instead of surface-to-surface tangency. Edge contact means tangency of the edge of one gear with
the tooth surface of the mating gear (see section 1.11). The edge and the surface are in mesh at every instant at
a point instead of on a line. An example of an edge contact caused by the change of the shaft angle Ay or the
change of the pinion lead angle A4, is shown in figure 2.3.2. The edge contact caused by Ay or A4, is also
accompanied by transmission errors, as shown in figure 2.3.3. However, the change in the normal profile angle
does not cause transmission errors, only an edge contact.

In the case of a change in the center distance E, the gear tooth surfaces are still in aline contact similar to those
shown in figure 2.3.1. However, an error in AE causes a change in the backlash and in the pressure angle of the
gear drive.

There is a mistaken impression that achange in the lead is sufficient to shift the bearing contact from the edge
to the central position and avoid transmission errors. Our investigation shows that a combination of Ay and
AA,,-errors will enable one to avoid transmission errors and obtain the favorable contact path shown in figure
2.3.4 if and only if

Ay =]Mp,| 2.3.1)

The signs of Ayand A4, depend on the hand of the helix.

Equation (2.3.1) must be observed with great precision because even a small difference between Ayand
|A27,,| (or EA/II,ZI) will cause an edge contact. Therefore, the change of the lead, if it is not accompanied by
applying a predesigned parabolic function of transmission errors (see below), is not a convenient way to avoid
an edge contact. In conclusion, we must emphasize that the computerized investigation of misaligned helical
gears is acomplex mathematical problem because the Jacobian of the system of equations that relate the surface
parameters and parameters of motion is close to zero (see section 1.11). What is required for the computerized
investigation of a misaligned gear drive is a determination of the proper initial guess.

Contact lines —
I

‘—Base
cylinder
helix

Figure 2.3.1.—Contact lines on tooth surfaces of
helical gear.
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Figure 2.3.4.—Path of contact caused by Ay = 3 arc min
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tooth surface.
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Figure 2.3.7.—Function of transmission errors for modified
involute helical gear drive when Ay = 3 arc min.

Profile Modification

The sensitivity of helical gears to misalignment has led designers and manufacturers to crown tooth surfaces.
The most common method of crowning is profile modification; that is, the profile of the cross section of one
of the mating gears (usually of the pinion) is deviated from the conventional involute profile. This can be
achieved as proposed in Litvin et al. (1995) by the application of two imaginary rack-cutters shown in
figure 2.3.5. The rack-cutters are rigidly connected and generate the pinion and the gear separately. Figure 2.3.5(a)
shows both rack-cutter profiles. The normal section of the pinion rack-cutter that generates the pinion space is
shown in figure 2.3.5(b), and the normal section of the gear rack-cutter that generates the gear tooth is shown
in figure 2.3.5(c). The deviation of the pinion rack-cutter profile from the gear rack-cutter profile is represented
by a parabolic function with the parabola coefficient a.. The tooth surfaces in the case of profile modification
are in point contact, and the path of contact is a helix, as shown in figure 2.3.6.

It can be easily verified that the profile modification enables one to localize the bearing contact and to avoid
an edge contact that might be caused by gear misalignment. However, the discussed modification does not allow
the elimination of transmission errors caused by misalignment, as shown in figure 2.3.7. Therefore, to reduce
the level of noise and vibration, itis necessary to provide a predesigned parabolic function of transmission errors
in addition to profile modifications.

2.4 Development of Face-Gear Drives
Introduction

Face-gear drives have found application in the transformation of rotation between intersected and crossed
axes. The Fellows Corporation invented the method of manufacturing face gears by a shaper which is based on
simulating the meshing of the generating shaper with the face gear by cutting.

Face-gear drives was the subject of intensive research presented in Davidov (1950) and Litvin (1968, 1994).
New developments in this area were supported by NASA Lewis Research Center and McDonnell Douglas
Helicopter Systems. An important application of face-gear drives in helicopter transmissions is based on the
concept of torque split (fig. 2.4.1). There are other examples of the successful application of face-gear drives
in transmissions.
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Figure 2.4.1.—Application of face-gear drives in helicopter transmissions.

Pitch Surfaces

The pitch surfaces for bevel gears are two cones (fig. 2.4.2(a)) with pitch angles 7, and %. The line of tangency
Ol of the pitch cones is the instantaneous axis of rotation. The cones roll over each other in relative motion that
can be represented as rotation about OI. The pitch surfaces in a face-gear drive are the pinion pitch cylinder of
radius 7,, and the face-gear pitch cone with the pitch angle y(fig. 2.4.2(b)). The tooth element proportions in

bevel gears are related by the application of the pitch Tine O/ (fig. 2.4.2(a)) as the middle line of the teeth. The
tooth height in face-gear drives is constant, and the middle line of the teeth is the line of tangency O'M of the
pinion pitch cylinder of radius r,; and the gear pitch cone with apex angle 7. It will be shown in the next section
that since O'M does not coincide with the instantaneous axis OI, the face-gear teeth become sensitive to
undercutting and pointing.

Generation of Face Gears

The process of generation by a shaper is shown in figure 2.4.3. Grinding and hobbing by a worm is a recently
developed process for face-gear generation. Methods for determining the surface of the worm (fig. 2.4.4) and
its dressing were developed by researchers at the University of Illinois at Chicago and at McDonnell Douglas

Helicopter Systems.
Avoidance of Undercutting and Pointing

The tooth of a face gear in three-dimensional space is shown in figure 2.4.5. The fillet surface is generated
by the top edge of the shaper tooth. Line L* is the line of tangency of the working part of the tooth surface and
the fillet. Undercutting may occur in plane A and pointing in plane B. The tooth surface is covered by lines of
tangency L of the face gear with the generating shaper.

The tooth of a face gear may be undercut and pointed in the process of generation by a shaper. These defects
can be avoided by properly designing the tooth length of the face gear. Dimensions L, and L, determine the zone
that is free of undercutting and pointing. The equations for computing L, and L, are represented in Litvin (1994).
The length of teeth (L, — L,) with respect to the diametral pitch P, may be represented by the unitless coefficient
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Figure 2.4.2.—Pitch surfaces of bevel gears and gears of face drive. (a) Bevel gears. (b) Face gears.
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Figure 2.4.5.—Tooth of face gear in three-dimensional
space.
c=(L-L)F

whose value depends on the gear ratio my; = No/N, of the face gear. It isrecommend that m,, >4 be used to obtain
c> 10.

Localization of Bearing Contact

When the number of shaper teeth equals the number of pinion teeth, misalignment may cause the separation
of the face-gear teeth and the pinion and then the loss of their edge contact. To avoid this defect, it becomes
necessary to localize the bearing contact between the pinion and the face gear. This localization can be achieved
by applying a shaper with the tooth number N, > N, so that N,— N, = 1-3, where N, is the pinion tooth number.
Another approach is based on varying the tool plunging (grinding disk or cutter) in the pinion generation process
(see section 2.2). In such an approach, N, = N,,.
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Figure 2.4.6.—~Localized bearing contact; AN = 3;
AE=0.1 mm.

Results of Tooth Contact Analysis (TCA)

A computer program has enabled researchers to investigate the influence of the following alignment errors:
AE, the shortest distance between axes that are crossed but are not intersected; Ag, the axial displacement of the
face gear; Ay, the change in the shaft angle formed by intersected axes. It was discovered that such alignment
errors do not cause transmission errors, which is the great advantage of using a face-gear drive with an involute
pinion. However, such errors cause a shift in the bearing contact, as shown in figure 2.4.6. If the pinion is
generated by a plunged tool (see sec. 2.2), there is a good possibility of compensating for this shift due to the
axial displacement of the pinion.

2.5 Development of Geometry of Face-Milled Spiral Bevel Gears
Introduction

An important contribution of The Gleason Works engineers is the development of spiral bevel gear drives
and hypoid gear drives with localized bearing contact and parabolic-type transmission errors (Stadtfeld, 1993,
1995). The research conducted at the Gear Research Laboratory of the University of Illinois at Chicago (Litvin
et al.,, 1996b; Litvin, Wang, Handschuh, 1996; Zhang, Litvin, and Handschuh, 1995) was directed at the
modification and improvement of the existing geometry of spiral bevel gears. The developed projects covered
two types of face-milled spiral bevel gears: uniform teeth and tapered teeth.

Modification of Geometry of Spiral Bevel Gears With Uniform Teeth

Theoretically, ideal spiral bevel gears with zero transmission errors can be generated if the following
conditions are observed:

(1) Two imaginary generating surfaces are rigidly connected to each other and separately generate the pinion
and gear tooth surfaces. The generating surfaces are mismatched but they are in tangency along a line. The
generating surfaces produce spiral bevel gears with a constant tooth height.

(2) Two types of bearing contact are provided by this method of generation:

(a) The mismatched generating surfaces X, and X, are two cones in tangency along acommon generatrix
(fig. 2.5.1). The difference in mean radii R, and R, determines the mismatch of the generating surfaces. The
bearing contact is directed across the tooth surfaces.

(b) The mismatched generating surfaces X, and X, are acone and asurface of revolution in tangency along
acircle of radius R, = R, (fig. 2.5.2). The axial section of the surface of revolution is a circle of radius R,. The
bearing contact of the generated spiral bevel gears is directed along the tooth surfaces.
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These generation methods provide conjugated tooth surfaces that are in point tangency at every instant.
However, in reality such methods cannot be applied because the generated spiral bevel gears are sensitive to
misalignment that will cause a shift in bearing contact and the transmission errors of the type shown in
figure 1.14.1(b). Such transmission errors are the source of vibrations.

Low-Noise Spiral Bevel Gears With Uniform Tooth Height

Litvin, Wang, and Handschuh (1996) show that the defects in gearing just discussed can be avoided by the
application of the generation method which requires that a couple of the generating surfaces be in point contact
and that the surfaces be properly mismatched (fig. 2.5.3). The gear generating surface is a cone, and the pinion
generating surface is a surface of revolution. The gear cutting blades are straight-line blades (fig. 2.5.4); the
pinion cutting blades are circular arcs (fig. 2.5.5). The method of local synthesis developed in Litvin (1994) and
annlied for sniral bevel gear_generation enables us to determine those design parameters of the generating

surfaces and machine-tool settings that provide a predesigned parabolic function of transmission errors and a

stable bearing contact. Figure 2.5.6 shows transmission errors caused by Ay= 3 arc min when the generating
surfaces are in line contact but are not in point contact and the surfaces are not mismatched to provide a
predesigned parabolic function of transmission errors. Figure 2.5.7 shows the resulting transmission error
function as the interaction of the predesigned parabolic function and the transmission error function caused by
Ay . The predesigned parabolic function was obtained by observing the following conditions: (1) the generating
surfaces are in point contact (but are not in line contact); (2) the surfaces are properly mismatched to provide
a predesigned parabolic function of transmission errors. Figure 2.5.8 shows the bearing contact foramisaligned
gear drive.

Low-Noise Spiral Bevel Gears With Tapered Teeth

The geometry of low-noise spiral bevel gears with tapered teeth is presented in Zhang, Litvin, and Handschuh
(1995). The authors of the project proposed an approach that was based on the application of two generating
cones being in point contact. By applying the proposed method of local synthesis, the authors determined design
parameters of the generating surfaces and machine-tool settings that enabled them to obtain a localized bearing
contact and a predesigned parabolic function of transmission errors of a low level, 8 to 10 arc sec.

Prototypes of these gears were manufactured by the Bell Helicopter Company and were then tested at The
Gleason Works and at the NASA Lewis Research Center. The test results proved that the noise level was reduced
by 18 dB from the total level of 90 dB in comparison with the existing design (fig. 2.5.9).
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Figure 2.5.3.—Mismatched generating surfaces in
point contact.
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Figure 2.5.5.—Convex and concave sides of generating blades and pinion generating surfaces of
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Figure 2.5.6.—Transmission errors for misaligned
gear drive; Ay = 3 arc min.
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Figure 2.6.5.—Tool for generation of ZK-worms.

The generation of the ZF-worms (Flender worms) is based on the application of a grinding disk whose axial
section is represented in figure 2.6.7(a). The axial profile of the tool is a circular arc. The worm in the process
of generation performs a screw motion about its axis. The line of tangency between the surfaces of the grinding
disk and the worm surface is a spatial curve. However, this line of tangency might be a planar curve that
coincides with the axial profile o—a (fig. 2.6.7(b)) if special machine-tool settings are provided (proposed in
Litvin, 1968).

Modification of Geometry of Worm-Gear Drives

Worm-gear drives with the existing geometry are very sensitive to misalignment. Errors in misalignment
cause ashiftin the bearing contact, as shown in figure 2.6.2. This defect can be avoided by applying an oversized
hob (Colbourne, 1993; Kovtushenko, Lagutin, and Yatsin, 1994; Litvin et al., 1996b; Seol and Litvin, 1996a,
1996b).The principles of this application follow: '

(1) The oversized hob and the worm are considered as two helical gears in internal tangency (fig. 2.6.8).
Conijugated surfaces of the hob and the worm can be provided because they are simultaneously in mesh with
a common rack.

(2) The application of an oversized hob enables one to localize the bearing contact since the surfaces of the
worm and the worm gear generated by an oversized hob are at every instant in point contact, not in line contact.
The bearing contact is localized and is in the middle area of the worm-gear tooth surface (fig. 2.6.9).

The localization of bearing contact in Flender worm-gear drives does not guarantee a reduction in magnitude
and a favorable shape of transmission errors (fig. 2.6.10(a)). It was shown in Seol and Litvin (1996a) that a
parabolic function error for Flender worm-gear drives (fig. 2.6.10(b)) can be provided by varying the process
for generating the distance between the axes of the hob and the worm gear or by modifying the shape of the
grinding disk. A computerized investigation of a misaligned worm-gear drive with surfaces in line
contact is a complex problem, as explained in section 1.11.

A computerized investigation of a worm-gear drive generated by an oversized hob requires two stages of
computation: (1) adetermination of the worm-gear tooth surface generated by the oversized hob, a case in which
the hob and worm-gear surfaces are considered to be in line contact; (2) asimulation of the meshing and contact
of the worm-gear tooth surface and the worm thread that are in point contact. Such computer programs were
developed by Seol and Litvin (1996a, 1996b).
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Figure 2.6.6.—Tool installment and generation of ZK-worms.
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Figure 2.6.7.—Grinding of ZF-(Flender) worms. (a) Installment of grinding disk. (b) Disk axial profile.
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Figure 2.6.8.—Pitch cylinders of oversized hob and worm.
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Figure 2.7.1.—Face worm-gear drive with intersected axes.

2.7 Face Worm-Gear Drives

The face-gear drives discussed in this section were formed by a cylindrical or conical worm and a face gear.
These types of gear drives were invented by O.E. Saari and are described in Saari (1954, 1960). They were the
subject of research conducted by the inventor and other researchers whose results are presented in Goldfarb and
Spiridonov (1996), Kovtushenko, Lagutin, and Yatsin (1994), and in many other papers. This section presents
the results of research conducted at the Gear Research Laboratory of the University of Illinois at Chicago by
F.L.Litvin, A. Egelja, and M. De Donno. The goals of the research projects were (1) to provide a computerized
design that enables one to avoid the undercutting and pointing of face worm gears, (2) to effect the localization
of bearing contact, and (3) to accomplish a reduction in magnitude and a transformation of the shape of the
transmission error function into a favorable one (see section 1.14). The cause of the the transmission errors was
considered to be misalignment. Special attention was given to the simulation of meshing and the contact of
misaligned gear drives by developed TCA (Tooth Contact Analysis) computer programs.

Saari’s invention was limited to the application of ZA-worms (with straight-line profiles in the axial section)
and the transformation of rotation between crossed axes only. The research of Litvin, Egelja, and
De Donno was extended to the application of other types of worm thread surfaces and the transformation of
ro