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SLOW-GROWING SUBDIVISIONS IN ANY DIMENSION:
TOWARDS REMOVING THE CURSE OF DIMENSIONALITY
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Abstract

The efficient representation of volumetric meshes is a central prob-
lem in scientific vislualization. The difference in perfoemnce be-
tween most visualzation algorithm for rectilinear grids and for us-
tructured mesh is mostly due to fundamental difference in efficiency
of their representations. In Computer Graphics the gap in perfor-
mance between 2D rectilinear grids and unstructuered mesh has
been overcome with the development of representation schemes
based on the concept of subdivision surfaces. This gap has not been
bridged in the volumetric cases which is fundamental interest for
Scientific Visualization.

In this paper we introduce a slow-growing volumetric subdivi-
sion scheme for meshes of any topology, any intrinsic dimension
d and composed of a general type of polyhedral cells (topological
balls).

The main feature of this approach is the ability to split in differ-
ent stages cells of different dimensions. This allows to increase the
resolution of the mesh slowly using small stencils for the smooth-
ing rules. “Sharp features” of dimension lower than d are embed-
ded naturally in the subdivision procedure. Automatic adaptation is
provided for variable resolution.

In the uniform case the slow subdivision doubles the number of
vertices in the mesh at each refinement independent of its dimen-
sion d. The bisection of all the edges in a d-dimensional simplicial
mesh requires d subdivision steps. Hence the slow subdivision is
a /2 subdivision scheme. This algorithm generalizes a recently
developed /2 subdivision scheme to 3D and higher dimensional
meshes where the vertex proliferation becomes increasingly prob-
lematic as d grows (the curse of dimensionality).

We introduce a smoothing rule for both the domain mesh and
for functions defined on it. Empirical evidence demonstrates the
smoothness of the scheme directly on the mesh and indirectly on
the isosurfaces of the functions.

Keywords: Subdivision Volumes, Multiresolution Methods, Com-
putational Geometry, Geometric Modeling, Mesh Generation, Sci-
entific Visualization, Solid Modeling

1 INTRODUCTION

The recent of modeling systems, 3D scanning devices and com-
puter simulations gives rise to surfaces and volumetric meshes of
increasingly high complexity. The real-time display and transmis-
sion of such high resolution data is a challenging task requiring the
fast generation of approximated representations. In recent years a
great deal of research has been focused on the problem of construct-
ing hierarchical representations with multiple levels of detail. The
main techniques involved in the design and use of multi-resolution
representations are (among others) wavelet analysis, adaptive mesh
refinement and recursive subdivision methods. Great progress has
been made in the area of subdivision surfaces for Computer Graph-
ics while volumetric methods, which are more relevant for Scien-

tific Visulaization, remain alomost entirely limited to the case of
tensor-product generalization of 1D subdivisions.

One trend in multi-resolution surface generation is the design of
methods based on wavelet functions [15, 25, 2, 23]. One main ad-
vantage of the multi-resolution analysis at the basis of the wavelet
approach is that it immediately gives a compact hierarchical multi-
resolution data-structure with guaranteed error bounds. The basic
ingredient needed for wavelet analysis is the construction of nested
function spaces which are best associated with the connectivity of
subdivision surfaces. This restricts the class of meshes that can
be processed, requiring eventual re-meshing of the input. Hybrid
approaches can be designed to take advantage of the quality of
wavelet analysis while keeping the generality of a simplification
scheme [11].

The general framework of wavelet analysis is formalized inde-
pendently of the intrinsic/embedding dimension of the geometric
object. This enables multi-resolution representation and analysis
for volumetric data [22, 24, 18].

Similar solutions have been designed in the meshing commu-
nity for adaptively refined triangular meshes using a fixed set of
templates [1]. Rivara’s edge bisection approach is one of the sim-
plest and most flexible of these [21]. A unique subdivision tem-
plate is used to recursively subdivide the cells of a 2D mesh un-
til a given adaptivity constraint is achieved. This implicitly builds
a multi-resolution data-structure from a quality coarse representa-
tion. The approach generalizes immediately to 3D tetrahedraliza-
tions [21, 19] and to higher dimensions by performing the refine-
ment process from the lower dimensional simplices of the mesh to
the higher dimensional. This scheme is is combinatorially equiv-
alent to our slow subdivision for particular tetrahedralizations of
rectilinear grids.

Recursive subdivision schemes automatically produce hierarchi-
cal multi-resolution representations. This enables, for example,
multi-resolution editing techniques [30]. The quality of the gen-
erated meshes depends on the subdivision mask used. For tri-
angulated domains Loop [14] provides an approximating subdi-
vision scheme converging to a surface that is C? almost every-
where. The exception is at extraordinary vertices, that do not have
exactly six incident edges, where the continuity decreases to C.
The butterfly subdivision scheme [6] converges to an interpolat-
ing surface that is C* everywhere except for extraordinary points
with exactly three, or more than seven, incident edges. A modi-
fied version [31] has been proposed that converges to a C'* surface
everywhere. Similarly for subdivision of piecewise quadrilateral
domains one can use the Catmull-Clark scheme [4] or the interpo-
latory scheme by Kobbelt [10] to build smooth approximations of
a coarse mesh. Biermann et al. [3] have improved the normal con-
trol mechanism [9] for improving Catmull-Clark and Loop subdivi-
sions. A compact and flexible representation of hierarchical surface
models can be achieved by using subdivision surfaces to represent
the tangential surface refinement information coupled with a nor-
mal field that represents the local displacement from the refined
mesh [13, 8].
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Recently, Kobbelt [12] addressed the problem of excessive re-
finement by introducing a v/3-subdivision scheme that increases
the number of vertices in the mesh at slower rate than previ-
ous approaches. This approach has been improved by Vehlo et
al. [29, 28, 26, 27] and independently by Ducheneau et al. [5] with
an edge bisection refinement that can be categorized as v/2 subdi-
vision scheme.

These approaches begin to solve a problem in 2D that gets worse
as the dimension d of the mesh increases. The direct generalization
of the surface subdivision techniques to volumetric meshes [16, 20]
leads to excessive refinement since a uniform smoothing step re-
quires increasing the number of vertices by a factor that grows ex-
ponentially with the dimension d of the mesh. This rapid increase
of the model complexity can quickly make the use of such schemes
impractical. Adaptive refinement also requires special rules to tem-
porarily partition any cell that connects regions at different levels
of resolution.

The slow subdivision introduced here roughly doubles the num-
ber of vertices independently of the intrinsic dimension of the input
mesh. In contrast, tensor-product refinements in 2D quadruple the
number of vertices at each refinement [29]. The difference in 3D is
even more dramatic since the number of vertices in our scheme is
doubled instead of being increased by a factor of eight as in a tensor
product scheme. In general the number of vertices is increased by
a factor of two (on average) instead of a factor that grows exponen-
tially with the dimension of the mesh. Three major characteristics
make the slow subdivision algorithm attractive for a practical pur-
poses.

Slow The rate of refinement (new vertices introduced in the mesh)
is independent of the dimensionality of the mesh.

General. The scheme applies for any complex of polyhedral cells
such that each cell is topologically a ball. This includes tetra-
hedral meshes, hexahedral meshes and any mesh with convex
elements, for example.

Adaptive. The scheme naturally includes a mechanism for lo-
cally adapted refinements and for handling lower dimensional
“sharp” features. There is no need to introduce separate
classes of cells to connect regions at different levels of res-
olution.

Small support. The masks that we use for the basic smoothing
scheme are as small or smaller than those of Catmull-Clark
subdivision.

2 REVIEW OF THE SURFACE SUBDIVI-
SION SCHEME

The /2 recursive subdivision scheme [5], also known as 4-8 sub-
division surface [29], follows the edge bisection refinement rules
introduced by Rivara in [21]. Figure 1(a-e) shows the subdivision
scheme in the case of a rectilinear grid. The base mesh is a square
divided into two triangles. At any refinement each triangle is split
into two halves by bisecting its longest edge. The 4-8 subdivision
rule follows these combinatorial rules and adds an averaging step
that repositions the vertices on the surface. This deformation of
the triangles might alter the classification in the triangle. To main-
tain the same combinatorial subdivision structure one has to use the
“oldest bisection” rule. In each triangle one has to bisect the edge
that was unaltered in the previous refinement (there is only one).
Figure 1(a’-e’) shows the equivalent subdivision strategy for
quadrilateral elements [5]. Each refinement is performed by insert-
ing a point at the center of each diamond and splitting the diamond
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Figure 1: Slow subdivision in two dimensions. (a-e) Classical
longest edge bisection of a rectilinear grid. (a’-e’) Equivalent v/2
subdivision where pairs of adjacent triangles are merged into one
square.

into four triangles. Then each pair of triangles adjacent along an
old edge are merged into a new diamond.

The advantage of this scheme is that doubling the resolution of a
rectilinear grid is performed in two steps instead of one. In the fol-
lowing sections we show how this procedure can be generalized to
meshes of any dimension with cells of any type. The refinement of
a d-grid is performed in d steps with a stationary rule to be applied
at each subdivision.

3 VOLUMETRIC SUBDIVISION

This section introduces a generalization of the v/2 scheme to 3D
polyhedral complexes. The mesh generated by the refinement pro-
cess is marked in subdivision levels and passes. Each level I has
four passes, from 0 to 3, where pass 3 of level I is coincident with
pass 0 of level [ + 1. The base mesh is level 0 pass 0. At each
refinement the pass is increased by one. At pass 3 the level is in-
creased by one and the pass is reset to 0. The cells, facets, edges and
vertices of the base mesh are denoted Cj, f;, e; and v; respectively.

Note that in the present context we consider only the combinato-
rial structure of the scheme. For example we qualify a vertex as the
“center” of a cell/face just to give an intuitive notion of the relation
between the point and the cell but we do not refer to its actual geo-
metric location. Different choices of the vertex position may yield

different smoothness properties of the limit mesh.
<P [

Figure 2: 3D cell refinement from pass 0 to pass 1. Two cells of
pass 0 are shown on the left and on the right. The gray cell on
the right is the new cell F' created by merging the two pyramids
whose base is the gray facet f. Note that the figure shows only the
refinement edges incident to f.

—_—

From Pass 0 to Pass 1 For each cell C; in the complex the
center p; is computed. The cell C;, having n facets is decomposed
into n pyramidal cells by connecting the center p; with each facet
of C;. Let’s denote by p; <1 fx the pyramid built by connecting p;
with a given facet f. For each pair of cells C;, C; adjacent along
a facet fi a new cell F} is created by merging the pyramid p; < fx
with the pyramid p; <1 fi:

Fk:(piqfk)u(pjﬂfk), with fk=CiﬂCj.
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Figure 3: Cell refinement from pass 1 to pass 2. (a) Three cells
of pass 1 are shown in black lines. (b) A cell of pass 2 in black is
shown overlapped with the corresponding cells of pass 1 in gray.
(c) The three cells of (a) are shown separated from each other. (d)
The new cell of pass 2 is shown isolated from the neighborhood.

Figure 2 shows one cell created in this step of refinement from
two adjacent cells of a base mesh. Note that for boundary cases we
build only one half of the cell Fj. Similarly for 2-dimensional sharp
features, that is surfaces that need to be preserved in the refinement
process, one builds two halves Fy, and Fy without merging them at
fr- Insuch cases the boundary pyramid F}, or the two halves Fj,
and Fy/, are called “sharp” since they maintain the facet fj of pass
0. One can also build only one half Fy, of Fj to achieve a locally
adapted refinement connecting the refined pyramids of C; with the
unrefined Cj. In such case F} is not sharp. It is instead marked as
“non-refinable” until merged with its second half not-yet existent.

From Pass 1 to Pass 2. For each cell F} in the complex of
pass 1, one determines the “center” gi. Let {g;} denote the set of
new facets generated in the pass 1 complex. Each cell F}, is decom-
posed into a set of pyramids each given by ¢ <1 g;. For a sharp
cell Fy, the center gy, is joined only with the new facets g; and not
with the old facet fi. In this case it would be more appropriate to
consider gy, as the center of f. In fact, for 2-dimensional sharp fea-
tures, g, would be shared between the two cells F}, and F} adjacent
along f.

Each pyramid built in this way contains exactly one edge e; of
the pass 0 mesh of level I. All the pyramids incident to an edge e;
are merged into a cell E;. The collection of the cells E; forms the
mesh of pass 2. Figure 3 shows the construction of one cell of pass
2 from three cells of pass 1.

At this stage sharp features of dimension one are dealt with. In
particular if an edge e; is part of a sharp feature then the pyramids
around e; are not merged but are marked as “sharp”. Moreover if
some of the cells incident to e; are not generated pass 1 then the
pyramids are not merged but are marked as non-refinable. They are
used for connecting cells of different resolution.

From Pass 2 to Pass 3. As in the previous two steps one de-
termines the center r; of each cell E;. The cells E; are refined by
joining r; with each facet of E;. As usual, for sharp cells the point
r; should be considered as the center of e; and should be shared
among all the cells around e;.

The last merging step is among cells that contain the same pair
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Figure 4: Cell refinement from pass 0 to pass 3. (a) Cell from the
mesh of pass 0. (b) Cell of pass 3 in black is shown overlapped with
the ancestor cell of pass 0 in gray. (c) The same refined cell with

spurious additional edges that may be left during the refinement
procedure.

—

@ (b) © (d)

Figure 5: Successive subdivision stages of a dodecahedron. (a-c)
Mesh elements, (d) boundary.

of vertex v; and are contained in the cell C;. Note that, during this
last merging stage, particular care needs to be taken in removing
any spurious edges introduced during the refinement procedure. In
particular any edge connecting two vertices introduced in passes
that differ by more than one need to be removed. Figure 4 shows
one cell of pass 0 (a) and one of its descendants of pass 3 (b). Fig-
ure 4(c) shows the refined cell with the spurious edges (facet diag-
onals) connecting the vertex of pass 0 with vertices of pass 2 or the
vertex of pass 1 with vertices of pass 3.

The cells generated in this refinement process can be character-
ized in a simple way.

Definition 1 A d-diamond is a d-dimensional cell that can be par-
titioned into a set of d-simplices all sharing an edge.

For any base mesh in 3D all the cells generated by one step of the
subdivision procedure are either three-diamonds or pyramids. In
the first step each cell is either a pyramid or formed by two merged
pyramids (composing a diamond). In the second step each cell is
a diamond composed of a set of the tetrahedra sharing an edge of
the base mesh. In the third subdivision step each cell is a diamond
composed of tetrahedra sharing one vertex of the level’s base mesh
and one vertex at the center of one cell of the level’s base mesh.

Figure 5 shows the scheme applied to a base mesh consisting of
a single dodecahedron.

4 SUBDIVISION IN ANY DIMENSION

Consider a d-dimensional complex C of m cells co, . . . ,¢m—1. The
complex is subdivided in d + 1 passes that are applied recursively.
As in the 3D case, pass d of level [ is coincident with pass 0 of level
1 + 1. Refining from pass p to pass p + 1, one adds a vertex at the
center of a (d — p)-dimensional face of the base mesh M} at the
same level (the last mesh of pass 0).

From pass ptopassp+1 (withp < d —1). Eachcell cin
the mesh of pass p is divided by inserting a vertex ¢q. The cell ¢ is
partitioned into pyramids by connecting ¢ to all its facets. All the
pyramids containing a common (d — p — 1)-dimensional face of
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M} are merged together. If one (d — p)-dimensional face f of M}
belongs to the boundary of ¢ (there can be at most one), then ¢ is
placed at the center of f and the pyramids partitioning ¢ are built
by connecting ¢ to all the facets of ¢ that do not contain f.

From pass d — 1 to pass d. Each cell ¢ is split by inserting
a vertex ¢ at the edge of M{. For non-boundary and non-sharp
features, q is also the center of ¢ itself. The cell ¢ is partitioned into
pyramids by connecting q to the facets that do not contain ¢q. The
new cells are built by merging all the pyramids containing the same
vertex of M} and center of a cell of M.

In both refinement rules adaptivity and sharp features are dealt
with simply by not performing the merge step. Similarly to the 3D
case we can characterize in a simple way the structure of the cells
produced by the subdivision scheme.

Theorem 1 All the non-boundary/non-sharp cells generated by the
subdivision scheme after the first d — 1 passes are d-diamonds.

Proof: The proof of the theorem follows from the equivalence
of our scheme to the d-dimensional edge bisection scheme of
Maubach, for which the theorem also holds as shown in [17]. First
partition each cell into tetrahedra by joining each edge of the cell
with the center of each incident face of higher dimension (in de-
creasing dimension order). That is, if (vo, v1) are the vertices in an
edge of a cell then one builds simplices (vo, v1, v2, .. .,vq) Where
v2 is the center of the cell and v is the center of an edge incident to
(vo, v1). Call the first edge (vo, v1) of the simplex the oldest edge.
By merging all the simplices sharing the same oldest edge one ob-
tains the d-diamond that is created by the first d — 1 refinements of
our slow subdivision.

From this stage on, the slow subdivision is equivalent
to the oldest edge bisection of the simplicial complex just
built. In particular each refinement is obtained by replacing
the simplex (vo,v1,v2,...,vq) With (vo,v2,...,v4,v*) and
(v1,v2,...,vq,v") where v™ is the midpoint of (vo, v1). Merging
all the cells with the same oldest edge one obtains the same cells as
the slow subdivision algorithm. o

5 DIRECT AND INDIRECT SMOOTHING

The combinatorial rules defined in the previous section need to be
coupled with some averaging rules to determine the actual position
of the vertices of the mesh. We propose the following stationary
rule.

e A new vertex v inserted at the center of a cell/face c is the
average of the vertices of c.

e Each old vertex v is repositioned by linearly combining its
old position v,;4 With the average w of the vertices that are
edge-connected to it.

V=g *a+ (1 —a)w

In the 2D case this rule is equivalent to those reported in fig. 4
of [29] since in the vertex masks the edge-connected vertices with
weight 0 are exactly those that are removed by the merge stage
of the recursive subdivision defined here. For boundary cases
and sharp features the neighborhoods are computed restricting the
search to the features themselves.

Figure 6 shows the mesh elements generated by repeatedly ap-
plying the slow subdivision scheme starting from a base mesh com-
posed of eight cubes. This subdivision is performed with an aver-
aging coefficient « = 0.5. The parameter « can be used to alter the
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Figure 7: Subdivision of the same shape with different smoothing
coefficient. (a) Base mesh. (b,d,f) Intermediate steps and smooth
boundary for a subdivision with smoothing coefficient « = 0.89.
(c,e,9) Same subdivision steps with « = 0.5

behavior of the smoothing mask. Figure 7 shows the successive re-
finements of the same mesh using two different values of & = 0.89
(left columns) and o = 0.5 (right column).

The 2d scheme has been analyzed independently in [5] and [29].
Velho and Zorin proved that the slow subdivision surfaces with
a = 0.5 have C" continuity everywhere and C* continuity at the
regular points. The proof is based on the Zwart-Powell element box
spline basis. Here we generalize the scheme to dimensions higher
than two. This allows us to smooth the functions defined on the
mesh. A more sophisticated analysis is necessary to determine the
smoothness of the scheme, especially at the extraordinary points.
Note that in 2D the extraordinary points can be characterized sim-
ply by their degree. In 3D, this is not sufficient since one has to
analyze the local connectivity structure at the vertex (vertices with
same degree can have different behavior.) Figure 8 shows the com-
bined refinement of a mesh (in green) and isosurface (in orange)
of a scalar field defined by linearly interpolating function values
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Figure 6: Interior elements generated by the slow subdivision scheme. (a) Base mesh formed by eight cubes. (b-e) Internal structure of
the mesh in successive stages of the slow subdivision scheme. The pictures show only the mesh elements whose centroid has negative z

coordinate. (f) Subdivided boundary mesh.

at the vertices of the mesh. The linear interpolation is based on a
decomposition of the diamonds into tetrahedra.

Figure 8: Combined refinement of mesh domain and embedded iso-
surface. (a) Base mesh. (b) Base isosurface. (c-e) Intermediate
subdivision steps. (f) Refined boundary surface and isosurface.

6 RATE OF REFINEMENT

This section gives a precise upper bound of the rate of refinement
of the subdivision scheme.

First, consider the case of d-dimensional rectilinear grids, where
the scheme can be reduced to simplicial longest edge bisection [17].
In particular, consider a rectilinear grid whose cubes are decom-
posed into d! simplices by splitting each face along one longest di-
agonal. In this case, d successive steps of refinement insert a vertex
at the center of each face. This is equivalent to splitting the longest
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Figure 9: (a-d) Rate of vertex increase for each refinement in a 3D
rectilinear grid. For each initial vertex (marked with a black disc)
one new vertex is added in the first refinement (square), three new
vertices in the second refinement (circles) and three are added in
the third refinement (crosses). (a’-d”) Corresponding refinement of
the cells in the cube.

edge of the simplicial decomposition d consecutive times. In par-
ticular all and only the edges of the initial simplicial decomposition
are bisected. Using the terminology from [12], the scheme is a /2
subdivision scheme.

We can also determine the average number of vertices added to
the mesh by each pass. Consider an axis-aligned infinite rectilinear
grid (for simplicity we do not consider boundary effects). For 1 <
h < d, one vertex can be associated with all the h-dimensional
faces in which it has the minimum coordinates (the vertex closest
to the origin). At the refinement from pass p to pass p + 1, one
vertex is added at the center of each of the (i) faces of dimension
d — p. The number of vertices added in each step for each vertex
inthe grid is 345 (%) = 2¢ — 1 which means that on average the
number of vertices in the grid doubles at each of the d refinement
steps. For example, Figure 9 shows the 3D case. For each vertex
in the original grid a new vertex is inserted at the center of a cube,
doubling the total number of vertices. At the second pass three
vertices are inserted at the face centers, increasing the number of
vertices by a factor of g = 2.5. At the third pass three vertices are
used to bisect three edges, increasing the number of vertices by a
factor of £ = 1.6.

In this case the total number number of cells is linear in the num-
ber of vertices. This is not true in general. In particular it is known
that the total number IV of cells in a simplicial complex (worst case
scenario) with n vertices can be as large as N = O(n!%/2!). The
total number of vertices inserted in d passes is N. If after one re-
finement the number of vertices increases from n to 8n then we

obtain 8%n = n!%/2! which implies that 8 = O(+/nl4/21-1), For
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Figure 10: Adaptive refinement of a 3D mesh. (a) Base mesh. (b-c)
Exterior and interior refined mesh elements.

d = 2 we have 8 = O(1) confirming that in the worst case there is
a constant rate of vertex increase. Even in 3D we have 8 = O(1)
guaranteeing a constant rate of refinement in the worst case. Inter-
estingly for regular grids £ is a small constant 2 independently of
d. Note that for d > 3 8 may not be a constant in the worst case.
For example for d = 4 we have 8 = O(/n).

7 ADAPTIVE REFINEMENT AND LOWER
DIMENSIONAL FEATURES

The flexibility of the slow subdivision scheme derives from its in-
dependent treatment of cells having different dimension. Each of
the d refinement passes subdivides the cells of one specific dimen-
sion. This allows us to easily solve two problems: (i) building mesh
adaptation between regions at different resolution and (ii) esplicitly
representing lower-dimensional features embedded in the mesh.

The mesh adaptation between regions at different levels of reso-
lution does not require the introduction of special temporary parti-
tions such those required for adgaptive Catmull-Clark subdivision.
During the refinement procedure one simply does not perform some
of the merging steps. This automatically cretes the necessary adap-
tation. Figure 10 shows an example of mesh adaptation. The ele-
ment density in the mesh increases along the positive direction of
the z-axis.

A similar argument holds for lower dimensional features embed-
ded in the mesh that the scheme automatically handles in separated
stages. Figure 11 shows the application of the slow subdivision to

(d)

Figure 11: Recursive subdivision with user defined sharp features.
(a) Cube base mesh with the four top vertices (in yellow) marked as
0-dimensional features. The square at the bottom (in red) is marked
as 1-diensional feature. (b) Eight-shaped base mesh with a one-
dimensional sharp feature (in red) and a two-dimensional feature (in
yellow). (c) Refinement of the cube. (d) Refinement of the second
mesh. Note the difference to the subdivision volume in Figure 8
using the same base mesh but without sharp features.

base meshes with user-defined sharp features.
For the same reason, the scheme presents no problem in handling
non-manifold features as shown in Figures 12 and 13.

8 CONCLUSIONS

In this paper we have introduced a subdivision scheme that allows
gradual refinement of a very general class of meshes. This slow
subdivision scheme addresses the issue of lowering the vertex pro-
liferation rate. This addresses the fundamental problem in Scien-
tific Visualization of designing an efficient representation scheme
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Figure 12: Refinement of a mesh with two non-manifold edges. (a)
Base mesh. (b-c) Interior mesh of two intermediate refinement teps.
(d) Smooth boundary.

Figure 13: Refinement of a mesh with four non-manifold points.
(a) Base mesh. (b-c) Mesh elements of two intermediate refinement
steps. (d) Smooth boundary.

for volumetric meshes. In standard generalizations of recursive
tensor-product subdivision algorithms, the rate of vertex increase is
constant in any fixed dimension. Unfortunately, the constant grows
exponentially with the intrinsic dimension d of the mesh. This type
of problem is common to many geometric algorithms and is com-
monly referred to as “the curse of dimensionality”. The combinato-
rial rules proposed here allow us to keep the rate of vertex increase
down to a constant factor of two, independent of d. One funda-
mental feature of the slow subdivision scheme is that it refines in d
independent stages the cells of different dimensions. This allows us
to adaptively refine in a natural way without needing special sub-
division rules for cells connecting regions at different resolutions.
Similarly, the scheme naturally embodies rules for handling sharp
vertices, edges, and triangles. We have experimented with a very
simple averaging rule that has been proven visually smooth for the
2D case and extends naturally to the volumetric and higher dimen-
sional cases. A complete analysis for the volumetric case remains
to be done, but empirical results show a good smoothing behav-
ior. Particularly interesting is the combined use of the scheme for
smoothing of 3D meshes and scalar fields sampled at the vertices
of the meshes.

The slow subdivision scheme can be used in several application
areas such as sold modeling, meshing and scientific visualization.
For example, it could be used in conjunction with [7] to obtain in-
direct smoothing of objects modeled with distance fields.
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