

SuperLU - High-performance Library to Solve Sparse Linear Systems

Xiaoye S. Li xiaoye@nersc.gov LBNL/NERSC

ACTS Toolkit Workshop September 28, 2000

Page :

Outline

- Essential components of the sparse direct solvers
- The role of supernode in SuperLU
- Sequential and shared memory algorithms
- A Scalable algorithm for MPPs
- Summary

What is SuperLU?

• Solve large, sparse linear system

$$Ax = b$$

(Example: A of size 10^5 -by- 10^5 , only $10 \sim 100$ nonzeros per row.)

- Algorithm: Gaussian elimination (LU factorization, A=LU), followed by lower/upper triangular solutions.
 - Store only nonzeros and perform operations only on the nonzeros.
- Efficient implementation for modern high-performance computers; Software highly portable on many platforms.

Page 3

Software Status

	SuperLU	SuperLU_MT	SuperLU_DIST				
Platform	Uniprocessor	SMP	Message-passing				
Language	С	C + POSIX thread	C + MPI				
	(all callable from Fortran)						
Data type	real/complex,		real/complex,				
	single/double	double	double				

 Source code, Users' Guide, and papers available: http://www.nersc.gov/~xiaoye/SuperLU

Direct Solvers for Sparse Linear Systems

- ullet Gaussian elimination (LU, LL^T , LDL^T factorizations), followed by lower/upper triangular solutions.
 - Dense: PA = LU permutation for stability
 - Sparse: $P_rAP_c^T = LU$ permutations for stability and sparsity of L, U
- Distinct steps for sparse matrices.
 - 1. Order equations & variables to minimize fill in the $L,\ U$ factors heuristics based on combinatorics
 - 2. Symbolic factorization set up data structures and allocate memory for $L,\,U$
 - 3. Numerical factorization: usually dominates total time how to pivot?
 - 4. Triangular solves: usually < 5% time

Page 5

Sparse GE: Fill-in

ullet Original zero entry a_{ij} becomes nonzero in L or U

How to Pivot?

- Pivoting traditionally used to control element growth in L & U for numerical stability.
- Example: partial pivoting: PA = LU (GEPP).
 - used in sequential SuperLU and SuperLU_MT
- Partial pivoting implies
 - dynamic change of fill patterns of L & U
 - ⇒ interleave symbolic & numerical factorizations
 - losts of communication with small messages ⇒ slow on parallel machines with high latency
- Static pivoting used in SuperLU_DIST (GESP).
 - pivot before numerical factorization so data structures static
 - accommodate possible pivot growth during factorization without changing data structures
 - ⇒ symbolic & numerical factorizations decoupled

Page '

Ordering for Sparse Cholesky

- Local greedy heuristics.
 - Minimum degree [Tinney/Walker '67, George/Liu '79, Liu '85, Amestoy/Davis/Duff '94, Ashcraft '95, Duff/Reid '95]
 - Minimum deficiency (fill-in) [Tinney/Walker '67, Ng/Raghavan '97]
- Global graph partitioning heuristics.
 - Nested dissection [George '73]
 - Multilevel schemes [Hendrickson/Leland '94, Karypis/Kumar '95]
 - Spectral bisection [Simon et al. '90-'95]
 - Geometric and spectral bisection [Chan/Gilbert/Teng '94]
- Hybrid of the above two [Ashcraft/Liu '96, Hendrickson/Rothberg'97].

Ordering for Unsymmetric LU with Partial Pivoting

- Symmetric ordering for Cholesky of A^TA .
 - If $R^TR = A^TA$ and PA = LU, then for any P, $struct(L+U) \subseteq struct(R^T+R)$. [George/Ng '87]
 - Making R sparse tends to make L+U sparse.
 - Strategy:
 - 1. Find a good symmetric ordering P_c from A^TA
 - 2. Apply P_c to columns of A

$$(\boldsymbol{AP_c^T})^T(\boldsymbol{AP_c^T}) = P_c(\boldsymbol{A}^T\boldsymbol{A})P_c^T$$

- Column minimum degree based solely on A.
 [Matlab, Larimore/Davis/Gilbert/Ng '98]
- Markowitz unsymmetric variant of minimum degree.

[Duff/Erisman/Reid '86 book] usually performed together with numeric factorization

Page 9

Ordering for Unsymmetric LU with Diagonal Pivoting

- Symmetric ordering for Cholesky of $A^T + A$.
 - $-\operatorname{If}\ R^TR=A^T+A\ \operatorname{and}\ A=LU,\ \operatorname{then}\ struct(L+U)\subseteq struct(R^T+R).$
 - Making R sparse tends to make L+U sparse.
 - Strategy:
 - 1. Find a good symmetric ordering P_c from $A^T + A$
 - 2. Apply P_c to both rows and columns of A: $P_cAP_c^T$

$$Struct(P_cAP_c^T) \subseteq Struct(P_c(A^T + A)P_c^T)$$

Ordering Interface in SuperLU

- SuperLU distribution contains routines:
 - $-\operatorname{\mathsf{Form}}\ A^TA$
 - Form $A^T + A$
 - MMD (Multiple Minimum Degree, courtesy of Joseph Liu)
 - COLAMD : http://www.netlib.org/linalg/colamd/
- You may use any other Just input a permutation vector to SuperLU For example:
 - $(\mathsf{Par}) \mathsf{METIS} : \mathsf{http://www-users.cs.umn.edu/}{\sim} \mathsf{karypis/metis/}$

Page 1

Symbolic Factorization

- Cholesky [George/Liu '81 book]
 - Use elimination graph of L and its transitive reduction (elimination tree)
 - Complexity linear in output: O(nnz(L))
- $\bullet LU$
 - Use elimination graphs of L, U and their transitive reductions (elimination DAGs) [Tarjan/Rose '78, Gilbert/Liu '93, Gilbert '94]
 - Improved by symmetric structure pruning [Eisenstat/Liu '92]
 - Improved by supernodes
 - Complexity greater than $nnz(L+U)\mbox{, yet much smaller than }flops(LU)$

Numerical Factorization

- Usually the most expensive step
- Recent improvements for
 - Superscalar processor and hierarchical memory system
 - Multiple processors

Page 13

Unsymmetric Supernode [Eisenstat/Gilbert/Liu '93]

ullet Exploit dense submatrices in the L & U factors of PA=LU

- Why are supernodes good?
 - Permit use of Level 3 BLAS
 - Reduce inefficient indirect addressing (scatter/gather)
 - Reduce symbolic time by traversing a coarser graph

Supernode-Panel factorization

for column j = 1 to n step w do

$$F(:, j: j + w - 1) = A(:, j: j + w - 1);$$

- (1) Symbolic factorization [Gilbert/Peierls '88, Gilbert/Li '94]
 - Determine which supernodes update F(:, j: j+w-1)
- (2) Numeric update

 $\mathbf{for} \ \mathsf{each} \ \mathsf{updating} \ \mathsf{supernode} \ (r : s) < j \ \mathsf{in} \ \mathsf{order} \ \mathbf{do}$

• Triangular solve

$$U(r:s, j:j+w-1) = L(r:s, r:s) \setminus F(r:s, j:j+w-1);$$

• Matrix update

$$\begin{split} F(s+1:n,j:j+w-1) &-= \\ &L(s+1:n,r:s)*U(r:s,j:j+w-1); \end{split}$$

end for;

- (3) Inner factorization for F(j:n,j+w-1)
 - Row pivoting for each column;
 - Detect supernode boundary;
 - Symmetric structure pruning; [Eisenstat/Liu '92]

end for;

Page 1

Parallelism: Column Elimination Tree [Gilbert/Ng '93]

- Each column of the matrix has one vertex in the tree.
- Exhibits column dependencies during the elimination.
 - 1. If column j updates column k, then j is a descendant of k;
 - 2. Conversely, if j is a descendant of k, column j may or may not update column k (depending on numerical pivoting).
- More accurate update edges are detected on the fly.
- Computing elimination tree takes time almost linear in nnz(A).

$$A = \begin{pmatrix} 1 & \bullet & \bullet & \bullet \\ 2 & \bullet & \bullet & \bullet \\ \bullet & 3 & & & \\ \bullet & & 4 & \bullet \\ & & & 5 & \bullet \\ \bullet & & & 6 \end{pmatrix}$$

The Shared Memory Scheduling Loop [Demmel/Gilbert/Li '97]

Shared task queue initialized with leaves;

while (there are more panels) do panel := GetTask (queue);

- (1) panel_symbolic_factor(panel);
 - skip all BUSY descendant supernodes;
- (2) panel_numeric_factor(panel);
 - updates from all DONE supernodes;
 - wait for BUSY supernodes to become DONE;
- (3) inner factorization(panel); end while;

DONE

BUSY

Page 1'

SuperLU_DIST - GESP Algorithm

- 1. Row/column equilibration: $A \leftarrow D_r \cdot A \cdot D_c$
 - the largest entry of each row/column is 1
- 2. Permute rows to maximize diagonal: $A \leftarrow P_r \cdot A$
 - weighted bipartite matching algorithm [Duff/Koster '98]
- 3. Permute rows/columns to maximize sparsity & parallelism: $A \leftarrow P_c \cdot A \cdot P_c^T$
 - minimum degree, nested dissection ... on $A^T + A$
- 4. Factorize A = LU in parallel: 2D irregular block cyclic layout
 - increase tiny pivots a_{ii} to $\sqrt{\varepsilon}||A||$
- 5. Triangular solves in parallel
 - iterative refinement if needed

Distributed Data Structures: 2D Block Cyclic Layout

Page 1

High Performance

• Sequential SuperLU

- Enhance data reuse in memory hierarchy by working with dense submatrices in the sparse factored matrices.
- Achieved up to 40% of the theoretical Megaflop rate on workstations.

• SuperLU_MT

- Exploit both coarse and fine grain parallelism; Employ dynamic scheduling to minimize parallel runtime.
- Achieved up to 10 fold speedup on medium-size SMPs.

• SuperLU_DIST

- Enhance scalability by the new static pivoting and matrix distribution methods.
- Achieved up to 100 fold speedup, and 11 Gigaflop rate on 512-PE T3E.

Example Matrices

 $\label{eq:minimum} \mbox{Minimum degree ordering on } A^T + A$

					nnz(L+U)	Flops
	Discipline	Symm	Order	nnz(A)	(10^6)	(10^9)
BBMAT	fluid flow	0.54	38,744	1,771,722	40.2	31.2
ECL32	device sim.	0.93	51,993	380,415	42.7	68.4
TWOTONE	circuit sim.	0.43	120,750	1,224,224	11.9	8.0

Page 21

Scalability on T3E

3D cubic grids, 11 points stencil.

Grid size increases with number of processors, such that flops per processor roughly constant: 29, 33, 36, 41, 46, 51, 57, 64.

Quantum Chemistry Application Using SuperLU

- Study quantum scattering of 3 charged particles.
 (Recigno, Baertschy, Issacs & McCurdy, LBNL/LLNL)
- Complex unsymmetric linear systems, largest of order 5 million.
- SuperLU is used to build block Jacobi preconditioner in a CGS solver.
- Preconditioners
 - of order 209,764, in 2 minutes, on 16 PE Cray T3E at NERSC
 - of order 1,792,921, in 48 minutes, on 24 PE ASCI Blue-Pacific at LLNL
- These represent the first "exact" solution to a quantum mechanical 3-body Coulomb problem.
- Their historic result was featured on the cover of *Science*, Dec. 24, 1999.

Page 23

Summary – Content of the SuperLU Package

- LAPACK-style interface
 - Simple and expert driver routines
 - Computational routines
 - Comprehensive testing routines
- Functionalities
 - Minimum degree ordering [MMD, Liu '85] applied to A^TA or $A+A^T$
 - User-input to control pivoting
 - * pre-assigned row and/or column permutations
 - * partial pivoting with threshold
 - Solving transposed system
 - Equilibration
 - Condition number estimation
 - Iterative refinement to improve accuracy
 - Componentwise error bounds [Skeel '79, Arioli/Demmel/Duff '89]