## Statistical Quasi-Newton:

## A New Look at Least-Change

Scott Vander Wiel and Chuanhai Liu

Statistics and Data Mining Research
Bell Labs, Lucent Technologies
Murray Hill, NJ 07974

Paper: stat.bell-labs.com/scottyv

## Notation Reference Sheet

| $x$ | point in $\mathcal{R}^{n}$ | $x, x_{+}$ | current, next iterate |
| :---: | :--- | :---: | :--- |
| $f(x)$ | function to minimize | $\tilde{x}$ | canonical coordinates |
| $g(x)$ | gradient of $f$ | $\tilde{f}, \tilde{g}$ | canonical $f, g$ |
| $H(x)$ | Hessian of $f$ | $\tilde{H}, \tilde{B}$ | canonical $H, B$ |
| $B$ | estimate of $H$ | $\tilde{B}_{+}=\left[\begin{array}{ll}a & b^{\prime} \\ b & C\end{array}\right]$ |  |
| $\mathcal{M}^{+}$ | symmetric p.d. matrices |  |  |
|  |  |  |  |
|  | $d \equiv-B^{-1} g$ | quasi-Newton step direction <br> $s$ | step size |
| $\delta$ | $\equiv x_{+}-x=s d$ | step increment |  |
| $\gamma$ | $\equiv g_{+}-g$ | gradient increment |  |
|  |  |  |  |
|  |  |  | Broyden parameter |
| $\lambda$ | $=1+\phi / a$ | alternative Broyden parameter |  |

$$
\min _{x \in \mathcal{R}^{n}} f(x)
$$

where $f(x)$ and $g(x) \equiv \nabla f(x)$ are easy to compute.

However, the Hessian $H(x) \equiv \nabla^{2} f(x)$ is not.

Initialize: $B \in \mathcal{M}^{+}, \quad x \in \mathcal{R}^{n}, \quad g=g(x)$
Minimize: Search in quasi-Newton direction

$$
d \equiv-B^{-1} g
$$

for step size $s>0$ to obtain

$$
x_{+}=x+s d \quad \text { and } \quad g_{+}=\nabla f\left(x_{+}\right)
$$

satisfying Sufficient Decrease \& Curvature conditions
Estimate: Update approximate Hessian

$$
B_{+}=\operatorname{update}\left(B, x, x_{+}, g, g_{+}\right) \in \mathcal{M}^{+}
$$

with quasi-Newton condition

$$
B_{+} \delta=\gamma
$$

where

$$
\delta \equiv x_{+}-x \quad \text { and } \quad \gamma \equiv g_{+}-g
$$

true function (H) quadratic model (B)


## Minimize



## Minimize



## Estimate




Minimize


## Minimize



## Estimate



Broyden (1965) — (2000, On the discovery of the "good Broyden" method):
We should therefore require, if possible, ..., no change to $B$ in any direction orthogonal to $\delta$.

Broyden (1967): moved from "no change" principle to ...
Since a matrix $B^{-1}$ which possesses to some extent the properties of the inverse Jacobian matrix is already available it would appear reasonable to obtain $B_{+}^{-1}$ by adding some correction to $B^{-1}$...

$$
B_{+}^{-1}=B^{-1}+C
$$

Led to the Broyden class of rank-2 updates

Broyden Family — symmetric rank-2 updates (Broyden, 1967):

$$
B_{+}(\phi)=B-\frac{B \delta \delta^{\prime} B}{\delta^{\prime} B \delta}+\frac{\gamma \gamma^{\prime}}{\delta^{\prime} \gamma}+\phi\left(\delta^{\prime} B \delta\right) w w^{\prime}
$$

where

$$
w \equiv \frac{\gamma}{\delta^{\prime} \gamma}-\frac{B \delta}{\delta B \delta}
$$

$\phi$ (Broyden parameter)
1 - DFP (Davidon, 1959; Fletcher and Powell, 1963)
0 - BFGS (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970)
Zhang and Tewarson (1988)
Byrd, Liu, and Nocedal (1992) Fletcher (1994)
$\phi^{c} \neq$ critical value for $B_{+}(\phi) \in \mathcal{M}^{+}$

## Summary

1. Most popular methods derive from a Least-Change principle

$$
\min _{\substack{B_{+} \in \mathcal{M}^{+} \\ B_{+} \delta=\gamma}}\left\|B_{+}-B\right\|
$$

for some matrix norm.

## But why use Least-Change?

2. Negative Broyden parameters are promising ... but

- "Investigations have not shaken BFGS as ... front-runner" (Zhang and Tewarson, 1988)
- quasi-Newton steps are often too long

3. Negative Broyden parameters remain mysterious

- How to choose negative Broyden parameters?
- How to estimate the step size?

Linear Transformation: Normalize and Rotate :

$$
\tilde{x}=U^{\prime} B^{1 / 2} x
$$

where $U$ is orthonormal and $U[, 1] \propto B^{-1 / 2} g$.

Transformed Hessian Estimate : $\tilde{B}=I$.

Search direction : $(1,0, \ldots, 0)^{\prime}$, the first axis.

New information on $\tilde{B}_{+}$: numerical second derivative along $(1,0, \ldots, 0)^{\prime}$

$$
\left[\begin{array}{c}
a \\
b
\end{array}\right] \equiv \frac{\tilde{g}_{+}-\tilde{g}}{\tilde{x}_{+}[1]-\tilde{x}[1]}
$$

with scalar $a>0$.

Requirement:

$$
B_{+} \delta=\gamma, \quad \text { and } \quad B_{+} \in \mathcal{M}^{+}
$$

Equivalent Requirement:

$$
\tilde{B}_{+}=\left[\begin{array}{ll}
a & b^{\prime} \\
b & C
\end{array}\right]
$$

for $C$ such that

$$
C-b b^{\prime} / a \in \mathcal{M}^{+}
$$

How to estimate $C$ ?

## Motivation

A Naive Update: $C=I$, no change!

$$
\tilde{B}=\left[\begin{array}{cc}
1 & 0^{\prime} \\
0 & I
\end{array}\right] \quad \Longrightarrow \quad \tilde{B}_{+}=\left[\begin{array}{cc}
a & b^{\prime} \\
b & I
\end{array}\right]
$$

Why No Change?

- Previous iterations $\Rightarrow I$ is accurate in some directions.
- Updates should not degrade accuracy. Only "no change" always preserves accuracy
- Future iterations will improve poorly estimated directions.

What to do if $a \leq b^{\prime} b$ ?

## Statistical Quasi-Newton (SQN)

Theorem: The solution to $\min _{\substack{\tilde{B}_{+} \in \mathcal{M}^{+} \\ \tilde{B}_{+} \delta=\gamma}}\left\|\tilde{B}_{+}-I\right\|_{\text {Frobenius }}$
is

$$
\tilde{B}_{+}=\left[\begin{array}{cc}
a & b^{\prime}  \tag{*}\\
b & I+\lambda \frac{b b^{\prime}}{a}
\end{array}\right]
$$

with

$$
\lambda=\lambda_{\mathrm{SQN}} \equiv\left\{\begin{array}{ll}
0 & \text { if } a>b^{\prime} b \\
1-r^{-1} & \text { otherwise }
\end{array} \quad \text { and } \quad r \equiv b^{\prime} b / a .\right.
$$

Broyden Family: Has (canonical) form $(*)$ with

$$
\lambda=1+\phi / a .
$$

Thus $\lambda_{\mathrm{BFGS}}=1$ and $\lambda_{\mathrm{SQN}}$ is a negative Broyden update $(\phi<0)$.

## Step Sizes

Inexact line-search: Search in direction $d=-B_{+}^{-1} g_{+}$for a step size $s$ that results in sufficient progress.

Initial step size. $s^{0}=1$ is the usual trial step but unit steps are often too large for negative Broyden parameters. (Our tests confirm Zhang and Tewarson (1988).)

Can we estimate the step size?

## Wishart Model

Wishart Model: for $\tilde{B}^{+}$

$$
\nu\left[\begin{array}{cc}
a & b^{\prime} \\
b & C
\end{array}\right] \sim \operatorname{Wishart}_{n}\left(\left[\begin{array}{cc}
1 & 0 \\
0 & I_{n-1}
\end{array}\right], \nu\right)
$$

$\nu$ is the degrees of freedom

Use this for estimating initial step size.

Sidebar: Wishart $\Rightarrow$ BFGS

$$
\mathrm{E}(C \mid a, b)=\frac{\nu-1}{\nu} I+\lambda_{\mathrm{BFGS}} \frac{b b^{\prime}}{a} .
$$

Taking $\nu \rightarrow \infty$ gives BFGS!

## Step sizes from Wishart

On quadratic functions: optimal step size is

$$
s(\lambda)=\frac{d_{+}^{\prime} B_{+} d_{+}}{d_{+}^{\prime} H\left(x_{+}\right) d_{+}},
$$

where $H\left(x_{+}\right)$is the unknown Hessian.

Wishart model gives:

$$
\hat{s} \equiv \lim _{\nu \rightarrow \infty} \mathrm{E}(s \mid a, b)=\frac{1}{1+(1-\lambda) \tau_{\lambda}}
$$

where $\tau_{\lambda} \equiv \delta^{\prime} \gamma\left(\omega^{\prime} d_{+}\right)^{2} /\left(d_{+}^{\prime} B_{+} d_{+}\right) \geq 0$.

Special cases:
BFGS: $\hat{s}=1$
SQN: $\hat{s}=\left(1+\tau_{0}\right)^{-1} \leq 1$

$$
\text { BFGS } \quad(\lambda=1, \hat{s}=1)
$$



$$
\mathbf{S Q N} \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$



Minimize $\rightarrow$ Estimate

BFGS $\quad(\lambda=1, \hat{s}=1)$


$$
\mathbf{S Q N} \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$



$$
\text { BFGS } \quad(\lambda=1, \hat{s}=1)
$$



$$
\mathbf{S Q N} \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$





$$
\text { SQN } \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$





$$
\text { SQN } \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$



BFGS

$$
(\lambda=1, \hat{s}=1)
$$



$$
\text { SQN } \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$




$$
\text { SQN } \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$



## BFGS

$$
(\lambda=1, \hat{s}=1)
$$



$$
\text { SQN } \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$



## BFGS

$$
(\lambda=1, \hat{s}=1)
$$



$$
\text { SQN } \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$



## BFGS

$$
(\lambda=1, \hat{s}=1)
$$



$$
\text { SQN } \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$



## BFGS <br> $$
(\lambda=1, \hat{s}=1)
$$



$$
\text { SQN } \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$



## BFGS

$$
(\lambda=1, \hat{s}=1)
$$



$$
\text { SQN } \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$




$$
\text { SQN } \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$




$$
\text { SQN } \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$




$$
\text { SQN } \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$




$$
\text { SQN } \quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)
$$



## BFGS <br> $$
(\lambda=1, \hat{s}=1)
$$



## SQN $\left(\lambda=0^{+}, \hat{s} \leq 1\right)$



## BFGS <br> $$
(\lambda=1, \hat{s}=1)
$$



## SQN $\left(\lambda=0^{+}, \hat{s} \leq 1\right)$



## BFGS <br> $$
(\lambda=1, \hat{s}=1)
$$



## SQN $\quad\left(\lambda=0^{+}, \hat{s} \leq 1\right)$



## Standard test problems: iteration counts



Watson (12)
Watson (9)
Chebyquad (8)
Chebyquad (6)
Box (3)
Penalty II (10)
Chebyquad (4)
Gulf Research (3)
Beale (2)
Penalty I (4)
Penalty I (10)
Brown and Dennis (4)
Biggs Exponential (6)
Gaussian (3)
Powell badly scaled (2)
Watson (6)
Penalty II (4)
Wood (4)
Brown badly scaled (2)
Helical valley (3)

- Problem set: Moré, Garbow and Hillstrom, 1981
- Line search: Fletcher, 1987, pp.33-38

Three convex functions with diagonal Hessians.

| Toward optimum, $H$ | $H_{i i}(x)$ | anticipated best $\lambda$ |
| :---: | :---: | :---: |
| Decreases: | $1+\left(\eta_{i} x_{i}\right)^{2}$ | $\lambda<0$ |
| Increases: | $\left[1+\left(\eta_{i} x_{i}\right)^{2}\right]^{-1}$ | $\lambda>0$ |
| Sinusoid: | $\left[1+\sin \left(\eta_{i} x_{i}\right)\right]$ | $\lambda=0$ |

$n=4, \eta=(1,2,4,8)$, and 1000 random starts


## What's New?

Discussion

Hessian update

- New Statistical Least-Change metric
- preserves accuracy in orthogonal complement, $C$
- relies on future iterations to improve the complement
- Result is in the negative Broyden family

Steplength

- Wishart model captures uncertainty about the Hessian.
- Estimated step sizes work better


## Statistical thinking $\Longrightarrow$ Improved performance over to BFGS

