A Geodesic Climate Model with Quasi-Lagrangian Vertical Coordinates
 Investigators: D. RandalI ${ }^{1}$, T. Ringler ${ }^{1}$, A. Arakawa ${ }^{2}$, W. Schubert ${ }^{1}$, S. Fulton ${ }^{3}$, J. Baumgardner ${ }^{4}$, A. Semtner Jr. ${ }^{5}$, and P. Jones ${ }^{4}$ with the participation of R. Heikes ${ }^{1}$ and C. Konor ${ }^{2}$
 ${ }^{1}$ Colorado State University, ${ }^{2}$ UCLA, ${ }^{3}$ Clarkson University, ${ }^{4}$ Los Alamos National Laboratory, ${ }^{5}$ Naval Postgraduate School

We are developing a geodesic coupled ocean-atmosphere-land surface model designed for climate applications. The atmosphere, ocean, and land-surface sub-models all use geodesic discretizations of the sphere, based on the icosahedron. The atmosphere and ocean GCMs

predict vorticity and divergence. We use a parallel multi-grid solver to solve for the stream function and velocity potential.

The vertical structures of the atmosphere and ocean are represented using quasi-Lagrangian vertical coordinates that minimize issues with vertical advection and have other advantages.

