Table CL1. Radiocarbon data for samples from the Crane Lake trench

Field No.	Unit	Station (m) ¹	Radiocarbon	Lab-reported age	Calibrated age	Sample	^{13}C	Description of dated material ⁶
	No.		Lab No. ²	$({}^{14}C \text{ yr BP at } 1\sigma)^3$	$(cal yr BP at 2\sigma)^4$	weight (mg) ⁵	(%0)	
CL-66	14d	14.6, 6.3 se	OS-28476	1810±45	1870-1600	15.5	-26.9	Six fragments *
CL-48	14bAB	12.80, 4.95	OS-23307	1290±30	1290-1170	11.0	-23.0	Two fragments
CL-45	14a	12.05, 4.17	OS-23309	1060±30	1060-920	12.9	-24.4	Clean fragment
CL-46	14a	12.22, 3.86	GX-26082	1240±50	1290-1050	94.7	-23.3	Fragment
CL-55	13eBw	13.88, 6.00	OS-23312	1390±35	1360-1240	21.9	-24.6	Part of charred conifer seed??
CL-63	13bAB	13.3, 6.0 se	OS-28475	575±40	650-520	18.4	-29.4	Five fragments charred wood and charcoal*
CL-49	12	13.10, 5.61	OS-23305	1290±30	1290-1170	12.2	-24.5	Fragment
CL-14	12	13.40, 5.88	GX-26081	1470±40	1490-1290	88.2	-25.3	Three fragments
CL-56D	10	14.69-79, 5.55-60	Beta- 141778	1520±40	1520-1310	33.4	-29.8	Fragments, largest with twig morphology*
CL-56C	10	14.69-79, 5.55-60	OS-23303	1680±30	1700-1520	5.6	-23.9	Two fragments*
CL-12	10	13.65, 5.22	OS-23306	1896±19	1900-1730	62.5	-24.9	Resinous fragment of charcoal
CL-51	10	14.20, 5.48	GX-26073	2920±40	3210-2940	16.7	-25.1	Dense, resinous charcoal fragments
CL-57	9A	15.3, 5.5	GX-26074	1940±40	2000-1810	193.3s	-22.1	Decayed soft fragments
CL-58	9A	15.4, 5.85	Beta-137174	1810±60	1880-1560	9.3 grams	-25est	Pieces of clean charcoal
CL-44B	9A	15.33, 5.51	Beta-141777	1990±40	2050-1820	40.1	-26.0	Decayed fragment
CL-44A	9A	15.33, 5.51	OS-24762	2010±30	2050-1880	44.9	-25.5	Decayed fragment
CL-59	8c	13.15, 4.7	OS-23310	4020±35	4580-4410	10.1	-23.6	Fragment within soil ped
CL-59B	8c	13.15, 4.7	OS-27228	5050±85	5930-5600	40.5	-24.2	Fragments
CL-47	8b	12.58, 4.40	GX-26072	2440±30	2720-2350	9.9	-26.7	Fragment
CL-50	7A	13.45, 4.65	OS-23302	2550±30	2760-2490	16.1	-25.2	Clean fragment
CL-52A	7A	13.25-37, 4.42-49	OS-23290	3090±35	3390-3210	10s	-25.1	Wood and herb charcoal fragments
CL-52B	7A	13.25-37, 4.42-49	OS-28474	5010±50	5900-5610	24.4	-26.0	Ten fragments charcoal*
CL-53	7A	14.02-24, 4.68-73	OS-26217	5240±320	6750-5250	10s#	-24.3	Charcoal-rich, 2-mm-thick laminae*
CL-35	6с	10.10, 3.18	OS-28473	2390±50	2720-2330	32.0	-26.4	Seven fragments*
CL-40	6bA	12.06, 3.37	GX-26071	2850±40	3140-2850	42.9	-23.9	Fragment
CL-36	6a	11.97, 3.82	OS-25344	1700±50	1740-1510	74.0	-24.3	Dense subangular fragments*
CL-2	1b	22.8, 6.2 opp wall	OS-24707	26,600±150		141.7	-25.3	Fragments sheared resinous charcoal

¹Location (horizontal, vertical) on reference grid used to map west wall of the trench. Dashes indicate horizontal and vertical range over which sediment sample (from which charcoal was extracted) was collected. "opp wall" indicates approximate location (within the plane of the west-wall grid) of samples from the east wall of the trench, which was not mapped in detail. Superscripts on sample ages shown on Plates 1 and 2 are the digits of field sample numbers (first column). Ages shown on inset of second exposure on Plate 1 are marked with "se".

²Laboratories are: OS, National Ocean Sciences AMS Facility, Woods Hole Oceanographic Institution; GX, Geochron Laboratories, Cambridge, Massachusetts (above group of GX samples analyzed on an accelerator at Lawrence Livermore National Laboratories); Beta, Beta Analytic, Inc., Miami, Florida.

³AMS (accelerator mass spectrometer) ages (methods described in Gagnon et al., 2000), except for sample CL-58, which is a conventional liquid-scintillation age. ¹³C was assumed to be –25.0% of or the latter age. Quoted error for each AMS analysis is the larger of counting error or target reproducibility error. NOSAMS' (OS-) tests of reproducibility on seawater and coral samples show total errors of 2.2-5.8% (Elder et al., 1998). Reported age for CL-12 is the average of three ages on the same charcoal fragment.

⁴Ages in solar years calculated using OxCal (version 3.4; Bronk Ramsey, 1998; probability method) with the INTCAL98 dataset of Stuiver et al. (1998). NOSAMS and Lawrence Livermore's (GX-) results from the Third International Radiocarbon Comparison show minimal offset from comparison means (e.g., Elder et al., 1998) suggesting that no additional interlaboratory variance (error multiplier, e.g., Taylor et al., 1996) is required for calibration. Although Beta Analytic, Inc. states that no additional error need be added to its ages for calibration, Beta's results from international radiocarbon comparisons remain unreported. Calibrated ages show time intervals of >95% probability distribution at 2σ . Ages shown on Plates 1 and 2 are midpoints of time intervals rounded to nearest 100 years.

⁵"s" indicates samples with adhering sediment when submitted; weight is a maximum for organic material in the sample. "#" indicates samples containing little (<150 ug) carbon. ⁶Unless indicated otherwise, ages are on unabraded fragments of wood charcoal. In each sample, the largest, most angular, least decayed fragments of charcoal, wood, and/or herb parts were selected to minimize the chance of analyzing carbon much older than the host sediment. In most samples, fragments with root-like morphology were avoided to minimize the chance of analyzing roots much younger than the host sediment. Except for a few of the most delicate fragments, sediment adhering to fragments was removed with brushes or dental tools in distilled water at 12-50X. Most charcoal was picked directly from moist sediment collected from the trench wall. Asterisk indicates samples that were picked from 1-mm and/or 0.5-mm sieves following wet sieving of bulk sediment samples (50-800 g sediment).

Field No.	Unit	Station (m) ¹	Radiocarbon	Lab-reported age	Calibrated age	Sample	^{13}C	Description of dated material ⁶
	No.		Laboratory No. ²	$(^{14}C \text{ yr BP at } 1\sigma)^3$	$(cal yr BP at 2\sigma)^4$	weight (mg) ⁵	(%0)	<u>^</u>
BT-59	11aB/E	21.0, 5.2	OS-23301	1960±35	2000-1820	9.3	-29.7	Fragment
BT-53	10b	11.7, 2.85	Beta-141688	290±50	480-150	18 grams		Large pieces of charcoal and charred wood
BT-54	10b	12.2, 2.95	Beta-137175	980±80	1060-720	6.5 grams		Pieces of charcoal
BT-55	10b	12.95, 3.2	Beta-141689	230±50	440-0	52 grams		Large pieces of charcoal and charred wood
BT-51	10a	11.6, 2.6	OS-23308	1340±45	1330-1170	34.7	-25.1	Fragment
BT-50	9bB/E	10.1, 2.1	GX-26089	1320±40	1300-1170	18.8	-21.3	Two fragments of slightly abraded wood
BT-48	9bB/E	9.6, 2.0	OS-25442	315±40	470-290	32.4	-25.7	Fragment
BT-46	9aAE	19.4, 4.6	OS-28471	6980±70	7940-7670		-24.5	100 wood and leaf charcoal fragments*
BT-64A	7dA	10.7, 1.8	OS-25439	55±40	270-0	21.7	-26.6	Three fragments light-brown abraded wood*
BT-64B	7dA	10.7, 1.8	OS- 24904	8600±75	9780-9470	11.1	-24.7	Six fragments*
BT-57	7cA	20.5, 4.6	OS-25343	9800±90	11,600-10,750	18.8	-23.4	Fragment
BT-58	7cA	19.5, 4.3	OS-25270	9912±30	11,550-11,200	22.5	-23.5	Fragment
BT-43	6b	14.1, 2.4	CAMS-70169	47,800±1900		5.3s#	-22.6	13 tiny fragments*
BT-6	5c	24.7, 2.9	GX-26088	160±40	290-0	26.4	-27.9	8-cm-long, black, Equisetum sp. root sheath
BT-3	4b	29.1, 3.1	Beta-141776	12,140±40	15,350-13,750	14.3s	-25.6	Charcoal twig and fragments*
BT-1	1a	26.8, 2.7	GX-26080	>46,900		52.9	-25.3	Fragment of charred wood

Table BT1. Radiocarbon data for samples from the Blacktail trench

¹Location (horizontal, vertical) on reference grid used to map west wall of the trench. Superscripts on sample ages shown on Plates 1 and 2 are the digits of field sample numbers (first column).

²Laboratories are: OS, National Ocean Sciences AMS Facility, Woods Hole Oceanographic Institution; CAMS, Lawrence Livermore National Laboratories;

GX, Geochron Laboratories, Cambridge, Massachusetts (GX samples above analyzed on an accelerator at Lawrence Livermore National Laboratories); Beta, Beta Analytic, Inc., Miami, Florida.

³AMS (accelerator mass spectrometer) ages (methods described in Gagnon et al., 2000), except for samples BT-53, BT-54, and BT-55, which are conventional liquid-scintillation ages. ¹³C was assumed to be -25.0% o for the latter ages. Quoted error for each AMS analysis is the larger of counting error or target reproducibility error. NOSAMS' (OS-) tests of reproducibility on seawater and coral samples show total errors of 2.2-5.8% (Elder et al., 1998). Reported age for BT-58 is the average of two ages on the same fragment.

⁴Ages in solar years calculated using OxCal (version 3.4; Bronk Ramsey, 1998; probability method) with the INTCAL98 dataset of Stuiver et al. (1998). NOSAMS and Livermore's (GX-, CAMS-) results from the Third International Radiocarbon Comparison show minimal offset from comparison means (e.g., Elder et al., 1998) suggesting that no additional interlaboratory variance (error multiplier; e.g., Taylor et al., 1996) is required for calibration. Although Beta Analytic, Inc. states that no additional error need be added to its ages for calibration, Beta's results from international radiocarbon comparisons remain unreported. Calibrated ages show time intervals of >95% probability distribution at 2σ . Ages shown on Plates 1 and 2 are midpoints of time intervals rounded to nearest 100 years.

⁵"s" indicates samples with adhering sediment when submitted; weight is a maximum for organic material in the sample. "#" indicates samples containing little (<150 ug) carbon. ⁶Unless indicated otherwise, ages are on unabraded fragments of wood charcoal. In each sample, the largest, most angular, least decayed fragments of charcoal, wood, and/or herb parts were selected to minimize the chance of analyzing carbon much older than the host sediment. In most samples, fragments with root-like morphology were avoided to minimize the chance of analyzing roots much younger than the host sediment. Except for a few of the most delicate fragments, sediment adhering to fragments was removed with brushes or dental tools in distilled water at 12-50X.. Most charcoal was picked directly from moist sediment collected from the trench wall. Asterisk indicates samples that were picked from 1-mm and/or 0.5-mm sieves following wet sieving of bulk sediment samples (50-800 g).

Table BL1. Radiocarbon data for samples from the Bear's Lair trench

Field No.	Unit	Station (m) ¹	Radiocarbon	Lab-reported age	Calibrated age	Sample	¹³ C	Description of dated material ⁶
	No.		Laboratory No. ²	$({}^{14}C \text{ yr BP at } 1\sigma)^3$	(cal yr BP at 2σ) ⁴	weight (mg) ⁵	(%0)	
ARN98-60B	9cA	9.79, 1.12	Beta-125831	1160±50	1230-960	12.9	-24.8	Thuja plicata leaf attached to block of mud
ARN98-60C	9cA	9.79, 1.12	GX-26075	1590±40	1570-1380	7.7	-23.8	Decayed wood in 2-cm block of peaty mud
ARN98-58A	9cA	9.69, 2.06	GX-26076	2030±40	2120-1880	35.4s	-26.4	Charcoal in block of peaty mud
SP98-6	9bA	9.0, 3.1	Beta-123796	290±40	470-150	4 grams	-27.6	Fragments
ARN98-61	6E	7.24, 2.90	OS-27229	4780±40	5600-5330	22.1s	-26.3	10-12-mm fragments
BL-4	5d	1.4, 1.5	OS-28470	5730±35	6640-6410	26.8	-25.9	3 5-10-mm-long fragments*
ARN98-73A	5cA	3.5, 1.8 op	OS-25441	>modern		3.9	-25.9	Cedar leaf, deciduous leaf frag*
ARN98-73B	5cA	3.5, 1.8 op	OS-25279	7530±40	8410-8200	43.5	-27.1	Fragments*
ARN98-72A	5b	1.9, 1.6 op	OS-24807	7190±42	8150-7870	18.1	-26.1	Fragments*
ARN98-72B	5b	1.9, 1.6 op	OS-24772	>modern		5.8	-27.8	Fragments of root sheaths and leaves*
SP98-3	5b	3.0, 1.6 op	Beta-123795	>42,100		28 grams	-24.0	Large knot of burned wood
ARN98-45B	5b	-0.6, 1.4	Beta-125830	6680±50	7660-7430	39.7	-26.5	Deciduous leaf base and wood fragments
ARN98-45EA	5b	-0.6, 1.4	OS-25342	7040±65	7970-7690	20.7	-28.3	Fragments*
ARN98-59A	5b	3.7, 1.62	OS-25440	9980±95	12,000-11,500	11.0	-26.6	Fragments of herb/wood charcoal*
BL-2	4	1.0, 1.2	CAMS-70167	3030±40	3350-3070	10.8s	-26.2	22 <1-mm clean wood charcoal fragments*
BL-5	3	12.0, 2.4	CAMS-70168	41,800±2500		4.9s	-25.7	3 1-mm abraded fragments*

¹Location (horizontal, vertical) on reference grid used to map west wall of the trench. "op" indicates approximate location (within the plane of the west-wall grid) of samples from the east wall of the trench, which was not mapped in detail. Superscripts on sample ages shown on Plates 1 and 2 are the final digits of field sample numbers (first column).

²Laboratories are: OS, National Ocean Sciences AMS Facility, Woods Hole Oceanographic Institution; CAMS, Lawrence Livermore National Laboratories; GX, Geochron Laboratories, Cambridge, Massachusetts (GX samples above analyzed on an accelerator at Lawrence Livermore National Laboratories); Beta, Beta Analytic, Inc., Miami, Florida.

³AMS (accelerator mass spectrometer) ¹⁴C ages (methods described in Gagnon et al., 2000), except for samples SP98-6 and SP98-3, which are conventional liquid-scintillation ages. Quoted error for each AMS analysis is the larger of counting error or target reproducibility error. NOSAMS' tests of reproducibility on seawater and coral samples show total errors of 2.2-5.8% (Elder et al., 1998). Reported age for ARN98-72A is the average of two ages on the same charcoal fragment.

⁴Ages in solar years calculated using OxCal (version 3.4; Bronk Ramsey, 1998; probability method) with the INTCAL98 dataset of Stuiver et al. (1998). NOSAMS and Lawrence Livermore's (GX-, CAMS-) results from the Third International Radiocarbon Comparison show minimal offset from comparison means (e.g., Elder et al., 1998) suggesting that no additional interlaboratory variance (error multiplier; e.g., Taylor et al., 1996) is required for calibration. Although Beta Analytic, Inc. states that no additional error need be added to its ages for calibration, Beta's results from international radiocarbon comparisons remain unreported. Calibrated ages show time intervals of >95% probability distribution at 2σ. Ages shown on Plates 1 and 2 are midpoints of time intervals rounded to nearest 100 years.

⁵"s" indicates samples with adhering sediment when submitted; weight is a maximum for organic material in the sample. "#" indicates samples containing little (<150 ug) carbon.

⁶Unless indicated otherwise, ages are on unabraded fragments of wood charcoal. In each sample, the largest, most angular, least decayed fragments of charcoal, wood, and/or herb parts were selected to minimize the chance of analyzing carbon much older than the host sediment. In most samples, fragments with root-like morphology were avoided to minimize the chance of analyzing roots much younger than the host sediment. Except for a few of the most delicate fragments, sediment adhering to fragments was removed with brushes or dental tools in distilled water at 12-50X. Most charcoal was picked directly from moist sediment collected from the trench wall. Asterisk indicates samples that were picked from 1-mm and/or 0.5-mm sieves following wet sieving of bulk sediment samples (50-800 g sediment).

		1						
Field No.	Unit	Station (m) ¹	Radiocarbon	Lab-reported age	Calibrated age	Sample	¹³ C	Description of dated material ⁶
	No.		Lab No. ²	$({}^{14}C \text{ yr BP at } 1\sigma)^3$	(cal yr BP at 2σ) ⁴	weight (mg) ⁵	(%0)	
ML-5	4dA	15.98-2.51	OS-27359	1230±30	1270-1060	46.7	-25.9	Charred bark
ML-9	4dA	13.54-70, 2.80	GX-26085	1570±40	1540-1350	35.6	-22.9	Two fragments
ML-54	4dA	13.1-5, 2.7-8	OS-25852	1300±21	1290-1170	108	-22.1	Outermost 7-10 rings of charcoal log
ML-2	4dB	15.42, 2.41	GX-26084	2950±40	3250-2960	24.5	-24.5	Two fragments
ML-50	4cAB	12.7-13.5, 3.75-85	OS-26649	8190±200	9550-8550	1.4s#	-23.6	30 tiny charcoal fragments*
ML-14	4bAEB	11.87-97, 4.29	GX-26086	1370±50	1370-1170	8.2	-24.0	12-mm-long fragment
ML-16	4bAEB	11.48-61, 4.22-24	Beta-141780	1500±40	1520-1300	13.9	-23.7	Thin fragments of charcoal
ML-49B	4aAB	11.2-6, 4.48-58	OS-28472	4050±50	4810-4410	47.6	-24.5	Hundreds of 0.2-mm flakes*
ML-18	4aAB	11.36-56, 4.46-50	OS-31158	>modern		34.3	-27.0	Fragments of abraded wood, possibly roots*
ML-51A	2AEB	10.0-8, 4.2-5	OS-25852	1360±85	1420-1060	11.2	-29.4	Charcoal twig*
ML-51B	2AEB	10.0-8, 4.2-5	Beta-141781	1360±40	1350-1170	20.0	-24.6	Three 3-mm-long fragments*
ML-17	2AEB	10.30, 4.29	GX-26083	1760±50	1820-1550	32.8	-25.4	One quarter of 15-mm-long fragment
ML-7	2AEB	10.55-68, 4.38-40	OS-25648	1440±90	1530-1170	7.5s	-27.1	Knobby charcoal twig
ML-46	2AEB	9.05-95, 4.8-5.0	OS-25649	1590±110	1730-1280	11.3	-25.9	Clean fragments of charcoal*
ML-48	2AEB	9.1-5, 4.6-9	OS-25812	1240±35	1270-1060	18.3	-26.6	43 seeds or fecal pellets*
ML-19	2AEB	9.25, 4.76	GX-26087	1410±40	1390-1260	10.2	-26.9	5-mm-long fragment
ML-1	1fA	24.44, 1.78	Beta-141779	>52.390		56.8	-24.0	Wood and dense, glassy charcoal*

Table ML1. Radiocarbon data for samples from the Mossy Lane trench

¹Location (horizontal, vertical) on reference grid used to map west wall of the trench. Superscripts on sample ages shown on Plates 1 and 2 are the digits of field sample numbers (first column).

²Laboratories are: OS, National Ocean Sciences AMS Facility, Woods Hole Oceanographic Institution; GX, Geochron Laboratories, Cambridge, Massachusetts (GX samples above analyzed on an accelerator at Lawrence Livermore National Laboratories); Beta, Beta Analytic, Inc., Miami, Florida.

³AMS (accelerator mass spectrometer) ¹⁴C ages (methods described in Gagnon et al., 2000). Reported age for ML-54 is the average of four ages on two adjacent samples of the outer 7-10 rings of a charcoal log. Quoted error for each AMS analysis is the larger of counting error or target reproducibility error. NOSAMS' (OS-) tests of reproducibility on seawater and coral samples show total errors of 2.2-5.8% (Elder et al., 1998).

⁴Ages in solar years calculated using OxCal (version 3.4; Bronk Ramsey, 1998; probability method) with the INTCAL98 dataset of Stuiver et al. (1998). NOSAMS and Lawrence Livermore's (GX-) results from the Third International Radiocarbon Comparison show minimal offset from comparison means (e.g., Elder et al., 1998) suggesting that no additional interlaboratory variance (error multiplier; e.g., Taylor et al., 1996) is required for calibration. Although Beta Analytic, Inc. states that no additional error needs to be added to its ages for calibration, Beta's results from international radiocarbon comparisons remain unreported. Calibrated ages show time intervals of >95% probability distribution at 2σ . Ages shown on Plates 1 and 2 are midpoints of time intervals rounded to nearest 100 years.

⁵"s" indicates samples with adhering sediment when submitted; weight is a maximum for organic material in the sample. "#" indicates samples containing little (<150 ug) carbon. ⁶Unless indicated otherwise, ages are on unabraded fragments of wood charcoal. In each sample, the largest, most angular, least decayed fragments of charcoal, wood, and/or herb parts were selected to minimize the chance of analyzing carbon much older than the host sediment. In most samples, fragments with root-like morphology were avoided to minimize the chance of analyzing roots much younger than the host sediment. Except for a few of the most delicate fragments, sediment adhering to fragments was removed with brushes or dental tools in distilled water at 12-50X. Most charcoal was picked directly from moist sediment collected from the trench wall. Asterisk indicates samples that were picked from 1-mm and/or 0.5-mm sieves following wet sieving of bulk sediment samples (50-800 g sediment).

Field No.	Unit	Station (m) ¹	Radiocarbon	Lab-reported age	Calibrated age	Sample	¹³ C	Description of dated material ⁶
	No.		Laboratory No. ²	$({}^{14}C \text{ yr BP at } 1\sigma)^3$	$(cal yr BP at 2\sigma)^4$	weight (mg) ⁵	(%0)	
SP98-14	8aAB	10.0, 5.0	Beta-123797	400±40	520-310	80 grams	-25.1	Charred wood and bark
ARN98-71A	7bA	9.5, 4.9	GX-26078	3600±40	4080-3720	25.1	-26.1	Charcoal fragments and seed case
ARN98-71C	7bA	9.5, 4.9	OS-25339	3710±45	4230-3900	63.7	-26.7	Unabraded charcoal twig*
ARN98-44A	7aA	12.05, 3.70	Beta-125682	3930±70	4530-4150	132.2	-23.4	Fragment
ARN98-44B	7aA	12.05, 3.70	OS-25276	3745±28	4230-3980	22.4	-23.0	Fragment
ARN98-67A	7aA	11.95, 3.53	OS-26215	>modern		26.5s#	-27.5	Decayed twig or root*
ARN98-67B	7aA	11.95, 3.53	OS-25278	3220±45	3560-3350	23.3	-24.6	Dense fragments*
ARN98-46	7aA	11.72, 3.52	Beta-125683	3020±50	3360-3060	53.2	-24.3	Fragments
ARN98-47	7aA	11.9, 3.4	OS-24906	3320±65	3700-3390	10.4s	-23.6	Two fragments
ARN98-48	7aA	12.03, 3.43	OS-25277	3760±40	4250-3980	18.2	-24.1	25 fragments *
ARN98-65	7aA	12.5, 3.12	Beta-125685	1880±40	1920-1710	19.2	-25.1	Fragments of charred wood
ARN98-64	6a	1.8, 6.23	OS- 24905	2230±50	2350-2120	16.8s	-23.9	Five fragments *
ARN98-78	3a	17.5, 2.5	OS-26206	28,900±870		4.5s#	-22.4	Eight fragments soft, decayed wood*

Table S1. Radiocarbon data for samples from the Saddle trench

¹Location (horizontal, vertical) on reference grid used to map west wall of trench. Superscripts on sample ages shown on Plates 1 and 2 are the digits of field sample numbers (first column). Superscripts on sample ages shown on Plates 1 and 2 are the final digits of field sample numbers (first column).

²Laboratories are: OS, National Ocean Sciences AMS Facility, Woods Hole Oceanographic Institution; GX, Geochron Laboratories, Cambridge, Massachusetts (GX samples above analyzed on an accelerator at Lawrence Livermore National Laboratories); Beta, Beta Analytic, Inc., Miami, Florida.

³AMS (accelerator mass spectrometer) ages (methods described in Gagnon et al., 2000), except for sample SP98-14, which is a conventional liquid-scintillation age. Quoted error for each AMS analysis is the larger of counting error or target reproducibility error. NOSAMS' (OS-) tests of reproducibility on seawater and coral samples show total errors of 2.2-5.8% (Elder et al., 1998). Reported age for ARN98-44B is the average of two ages on the same charcoal fragment.

⁴Ages in solar years calculated using OxCal (version 3.4, Bronk Ramsey, 1998; probability method) and the INTCAL98 dataset of Stuiver et al. (1998). NOSAMS and Lawrence Livermore's (GX-) results from the Third International Radiocarbon Comparison show minimal offset from comparison means (e.g., Elder et al., 1998) suggesting that no additional interlaboratory variance (error multiplier; e.g., Taylor et al., 1996) is required for calibration. Although Beta Analytic, Inc. states that no additional error need be added to its ages for calibration, Beta's results from international radiocarbon comparisons remain unreported. Calibrated ages show time intervals of >95% probability distribution at 2σ . Ages shown on Plates 1 and 2 are midpoints of time intervals rounded to nearest 100 years.

⁵"s" indicates samples with adhering sediment when submitted; weight is a maximum for organic material in the sample. "#" indicates samples containing little (<150 ug) carbon.

⁶Unless indicated otherwise, ages are on unabraded fragments of wood charcoal. In each sample, the largest, most angular, least decayed fragments of charcoal, wood, and/or herb parts were selected to minimize the chance of analyzing carbon much older than the host sediment. In most samples, fragments with root-like morphology were avoided to minimize the chance of analyzing roots much younger than the host sediment. Except for a few of the most delicate fragments, sediment adhering to fragments was removed with brushes or dental tools in distilled water at 12-50X.. Most charcoal was picked directly from moist sediment collected from the trench wall. Asterisk indicates samples that were picked from 1-mm and/or 0.5-mm sieves following wet sieving of bulk sediment samples (50-800 g sediment).

Sample	Horizon ¹	Average	Parent	Munsell	Boun	Volume	percent ⁴	Weig	sht per	cent ⁴	Loss on	Field	Wet	Structure ¹	Clay
No.		depth (cm)	material ²	color ³	dary ¹	Pebbles	Cobbles	Sand	Silt	Clay	ignition⁵	texture ¹	Consistence ¹		Films ¹
Soil prof	ile CL-S1 –	6 m north of na	orth end of trench												
	0	-4-0	F	10YR 2/1	a s	0	0					L	so/po		0
CL-3	А	0-5	С	10YR 4/2	a s	2	0	26	53	21	16.4	L	so/po	1 vf sbk	0
CL-4	BE	5-20	CD	10YR 4/3	c s	10	0	32	50	18	7.2	SiL	ss/ps	3 m sbk	0
CL-5	Bt2	20-35	CD	7.5YR 3/2	a s	5	0	35	47	18	6.7	SiL	ss/ps	2 m sbk	2 f pf
CL-6	2CB	35-50+	W	10YR 6/3		0	0	12	59	29	5.7	С	vs/vp	m	0
Soil prof	ile CL-S2- s	tation 26.5, uni	ts 13bA-1fCB												
CL-18	А	0-20	C (13bA)	10YR 2/3d	c w	10	0	13	62	25	11.4	SiCL	ss/p	2 vf-f sbk	0
CL-19	Bt/E	20-34	CD (13aBt/E)	10YR 5/3d	c w	25	0	17	60	23	6.9	SiCL/S	s/p/so/po	3 f-m sbk/m	2 f pf/0
CL-20	2BC	34-57	W (1gBC)	2.5Y 7/4d	g w	0	0	32	52	16	6.3	SiCL	ss/p	1 vf sbk	0
CL-28	2CB	57+	W (1fCB)	5Y 6/3d		0	0	23	58	19		С	vs/vp	m	0
Soil prof	ile CL S3 –	station 13.5 on	inset trench log,	units 13bA-12											
CL-75	AO	0-5	C (13bA)	10YR 3/2d	a w	2	0	28	55	17	23.6	L	so/po	1 vf sbk	0
CL-63	AB	5-15	TC (13bAB)	7.5YR 3/3d	c w	5	0	22	52	26	11.6	SiL	ss/ps	2 m sbk	1 f pf
CL-64	Bw	15-37	T (13eBw)	7.5YR 4/4d	g w	2	<1	18	55	27	8.3	SiL	s/ps	2 f-m sbk	2 f pfpo
CL-65	BC	37-50	T (1gBC)	7.5YR 4/3d	g w	10	<1	19	55	26	7.7	SiL	s/ps	1 f sbk	1 f pfpo
CL-17	2CBb	50-68	T (1gBC)	10YR 5/4d	c w	10	<1	34	46	20	7.9	L	ss/ps	2 m sbk	1 f po
CL-10	3C	68-99	T (12)	10YR 5/2d	a w	<1	0	20	60	20	5.5	SiL	ss/ps	1 m sbk	v1 f po
														m	0
Soil prof	ile CL-S4 –	station 6.5, uni	ts 7bA-4a												
CL-74	OA	0-3	C (11bA)	10YR 3/2d	a w	2	0	64	31	5	25.8	L	so/po	1 f pl-sbk	0
CL-70	Bw1	3-24	CS (11bBw)	10YR 5/5d	g w	2	0	63	28	9	5.6	SL	ss/po	1 f-m sbk	v1 f po
CL-42	Bw2	24-42	SC (11b)	2.5Y 7/4d	c b	<1	0	63	28	9	5.0	SL	ss/po	1 f sbk	0
CL-67	Eb	42-62	S (4aE)	5Y 8/2d	a b	0	0	80	17	3	2.0	LS	so/po	m	0
CL-21	С	62+	S (4a)	2.5Y 6/4d		0	0	70	24	6	2.9	SL	so/po	m	0

TADLE CL2. Science field and faboratory properties of som profiles described in and around the Crane Lake itenen

¹Horizon nomenclature, soil field properties, and terminology of Soil Survey Staff (1993) and Birkeland (1999). Abreviations: Boundary - a, abrupt; s, smooth; c, clear; w, wavy; g, gradual; Texture – S, sand; L, Ioam; SL, sandy Ioam; LS, Ioamy sand; C, clay; SiL, silt Ioam; SiCL, silty clay Ioam; Wet Consistence - so, nonsticky; ss, slightly sticky; s, sticky; vs, very sticky; po, nonplastic; ps, slightly plastic; p, plastic; vp, very plastic; Structure – m, massive; 1, weak; 2, moderate; 3, strong; vf, very fine; f, fine; m, medium; sbk, subangular blocky; Clay Films – v1, very few; 1, few; 2, common; 3, many; f, faint; po, in pores; pf, on peds. Profiles CL-S1 and CL-S2 described by Rick Koehler, 24 August 1999; profiles CL-S3 and CL-S4 by Alan Nelson, 13 September 1999.

²F, forest floor litter; C, colluvial deposit mixed primarily by roots and tree throw; T, colluvial deposit derived primarily from transport on a slope; D, glacial diamicton, either terrestrial or subaqueous; W, highly weathered bedrock or saprolite; S, stream (channel) deposit; two letters indicate a mixture of two genetic components. Unit label from Plate 1 in parentheses.

³Dominant moist or dry (d) color of horizon.

 4 Volume percentages visually estimated in the field to nearest 5-10%. Particle size distribution of <2 mm fraction using Malvern particle-size analyzer (Burman et al., 1997) with sample preparation and prior removal of organic matter methods of Singer and Janitzky (1986). Carbonate not removed and percent carbonate not measured; percent carbonate in cool, temperate forest assumed to be much less than 1%.

Sample	Horizon ¹	Average	Parent	Munsell	Boun	Volume	percent ⁴	Weig	ht per	cent ⁴	Loss on	Field	Wet	Structure ¹	Clay
No.		depth (cm)	material ²	color ³	dary ¹	Pebbles	Cobbles	Sand	Silt	Clay	ignition ⁵	texture ¹	Consistence ¹		Films ¹
Soil prof	ile BT-S1 –	8 m west of nor	rth end of trench	, units 11eA-7	'cA										
	0	-3-0	F		a w	0	0			-		L	so/po		0
BT-10	А	0-10	C (11eA)	2.5Y 4/2	a i	5	0	29	52	19	5.3	SiL	ss/sp	2 m gr	0
BT-11	Е	10-20	C (11aB/E)	2.5Y 5/3	g w	5	0	22	61	17	4.0	SiL	ss/sp	2 m gr	0
BT-12	Bt	20-40	CM(9aAE)	2,5Y 4/4	c w	0	0	23	57	20	5.5	CL	s/p	2 c pl	0
BT-13	2ABb	40-65	MC (7cA)	2.5Y 3/2	a w	<1	0	18	60	22	6.0	SiC	vs/vp	3 vc sbk	v1 f pf
Soil prof	ile BT-S2 –	trench station S	5.1, units 11eA-7	'dA											
	0	0-2	F		c s	0	0					L	so/po		0
BT-18	OA	2-13	C (11eA)	10YR 2/1	a s	5	0	17	65	18	23.5	SL	so/sp	1 f gr	0
BT-19	Bt1	13-23	CM(11eA)	10YR 2/2	a s	0	0	13	65	22	10.7	SiCL	ss/p	2 vf sbk	0
BT-20	Bt2	23-36	CM(9bB/E)	10YR 3/1	g w	15	0	21	59	20	7.8	SiC	s/p	3 m sbk	0
BT-21	2ABb	36-60	M (7dA)	10YR 5/6		0	0	12	63	25	5.6	С	vs/vp	2 c sbk	2 f pf

TABLE BT2. Selected field and laboratory properties of soil profiles described in and around the Blacktail trench

¹Horizon nomenclature, soil field properties, and terminology of Soil Survey Staff (1993) and Birkeland (1999). Abreviations: Boundary - a, abrupt; s, smooth; c, clear; w, wavy; g, gradual; i, irregular; Texture - L, loam; SL, sandy loam; CL, clay loam; SiC, silty clay; C, clay; SiL, silt loam; SiCL, silty clay loam; Wet Consistence - so, nonsticky; ss, slightly sticky; s, sticky; vs, very sticky; po, nonplastic; ps, slightly plastic; p, plastic; vp, very plastic; Structure – 1, weak; 2, moderate; 3, strong; vf, very fine; f, fine; m, medium; c, coarse; vc, very coarse; sbk, subangular blocky; gr, granular; pl, platy; Clay Films – 1, few; 2, common; f, faint; pf, on peds. Profiles described by Rick Koehler, 30 August 1999.

²F, forest floor litter; C, colluvial deposit mixed primarily by roots and tree throw; T, colluvial deposit derived primarily from transport on a slope; M, lake mud; two letters indicate a mixture of two genetic components. Unit label from Plate 2 in parentheses.

³Dominant moist or dry (d) color of horizon.

 4 Volume percentages visually estimated in the field to nearest 5-10%. Particle size distribution of <2 mm fraction using Malvern particle-size analyzer (Burman et al., 1997) with sample preparation and prior removal of organic matter (methods of Singer and Janitzky, 1986). Carbonate not removed and percent carbonate not measured; percent carbonate in cool, temperate forest assumed to be much less than 1%.

Sample	Horizon ¹	Average	Parent	Munsell	Boun	Volume	percent ⁴	Weig	ht per	cent ⁴	Loss on	Field	Wet	Structure ¹	Clay
No.		depth (cm)	material ²	color ³	dary ¹	Pebbles	Cobbles	Sand	Silt	Clay	ignition⁵	texture ¹	Consistence ¹		Films ¹
Soil profile	• BL-S1 – sta	tion 13.4, units	s 11A-5d												
98-80	А	0-10	C (9dA)	10YR 5/2d	c s	<10	0	49	35	16	10.9%	SiL	ss/ps	2 m sbk	0
98-81	Bw/C	10-30	CI (9dA/6E)	10YR 6/1d	a s	0	0	31	54	15		SiL	ss/ps	2 m sbk	0
98-82	2Btb	30-54	MC (5eBt)	2.5Y 6/2d	a w	<5	0	31	48	21		SiCL	ss/p	3 f abk	v1 f pf
98-83	3Btb	54-64	D (4eBt)	10YR 6/4d	a w	10	0	29	42	29		SL	ss/p	2 m sbk	2 d pobr
98-84	4Btb	64-114	D (4d)	2.5Y 7/3d	a w	10	3	30	50	20		SCL	ss/p	3 c abk	0
Soil profile	BL-S2 – sta	tion 3.5, units	11A-5, including n	nonolith											
	А	0-5	CT (9dA)	10YR 3/3	a s	0	0					SiL	ss/ps	2 m gr	0
98-102	A/C	5-20	CT (9aA/6E)	10YR 7/2	a b	0	0	12	78	10	5.2	SiL	so/po	0-1 m sbk	0
98-104	Bw/C	20-25	TI (6E/9aA)	10YR 8/1	c b	0	0	15	70	15	4.5	SiL	ss/ps	2 m sbk	1 f po
98-103	CB	25-34	IT (6E)	10YR 8/1	a s	0	0	18	69	13	3.7	SiL	ss/po	1-2 m sbk	0
	2CBb	34-41	CT (5a/6E)	10YR 6/2	a s	0	0					SiCL	ss/ps	2 f sbk	0
	3BCb	41-47	CI (6E/5a)	10YR 7/1	a s	0	0					SiL	ss/po	3 m sbk	v1 f pf
98-105	4Ab	47-52	M (5cA)	7.5YR1.7/1	a s	0	0	19	59	22	14.1	CL	s/ps	3 f abk	0
BL-4	4ABb	52-56	M (5cA)	10YR 1.7/1	c s	0	0	15	68	17	6.6	SiCL	ss/ps	3 f-m pr	0
BL-1	4BtCb	56-66	M (5a)	10YR 4/1	c w	0	0	15	62	23	4.0	SiCL	s/ps	3 c pr	3 f pf
	4CBb	66-87	M (5a)	5Y 5/3	a w	<1	0					SiCL	ss/ps	0-1 c abk	0
BL-2	5C	87-91+	D (4)	5Y 3/2d		10	0	40	42	18		L	so/po	0	0

TABLE BL2. Selected field and laboratory properties of soil profiles described in the Bear's Lair trench

¹Horizon nomenclature, soil field properties, and terminology of Soil Survey Staff (1993) and Birkeland (1999). Abreviations: Boundary - a, abrupt; s, smooth; c, clear; w, wavy; g, gradual; b, broken; Texture - L, loam; SL, sandy loam; SCL, sandy clay loam; SiL, silt loam; SiCL, silty clay loam; Wet Consistence - so, nonsticky; ss, slightly sticky; s, sticky; po, nonplastic; ps, slightly plastic; p, plastic; Structure – 1, weak; 2, moderate; 3, strong; f, fine; m, medium; c, coarse; sbk, subangular blocky; abk, angular blocky; pr, prismatic; Clay Films – v1, very few; 1, few; 2, common; 3, many; f, faint; d, distinct; po, in pores; pf, on peds; br, bridges grains. Profile BL-S1 described by Rick Koehler and Charles Narwold, 29 September 1998. Profile BL-S2 samples collected from monolith (Brian Sherrod) or from same stratigraphic units within 2 m of monolith (Silvio Pezzopane) and described by Alan Nelson, September 2000.

²C, colluvial deposit mixed primarily by roots and tree throw; T, colluvial deposit derived primarily from transport on a slope; D, glacial diamicton, either terrestrial or subaqueous; M, lake mud; I, diatomite; two letters indicate a mixture of two genetic components. Unit label from Plate 2 is in parentheses.

³Dominant moist or dry (d) color of horizon.

 4 Volume percentages visually estimated in the field to nearest 5-10%. Particle size distribution of <2 mm fraction determined using a Malvern particle-size analyzer (Burman et al., 1997) with sample preparation and prior removal of organic matter (methods of Singer and Janitzky, 1986). Carbonate not removed and percent carbonate not measured; percent carbonate in cool, temperate forest assumed to be much less than 1%.

Sample	Horizon ¹	Average	Parent	Munsell	Boun	Volume	percent ⁴	Weig	ht per	cent ⁴	Loss on	Field	Wet	Structure ¹	Clay Films ¹
No.		depth (cm)	material ²	color ³	dary ¹	Pebbles	Cobbles	Sand	Silt	Clay	ignition ⁵	texture ¹	Consistence ¹		
Soil profile	e ML-S1 - 30	m from north e	end of trench a	t 351°											
	0	0-3	F	10YR 2/1d	a s	2	1					L	so/po	1 f-m pl	0
ML-22	А	3-8	CD	10YR 2/2d	a s	10	<1	29	53	18	19.7	SL	so/ps	1 vf sbk	0
ML-23	E/Bt	8-21	CD	10YR 6/3d	a s	20	5	29	52	19	6.9	SL/SiC	so/po/ss/p	m/2 f sbk	0-1 f po
ML-24	Bt1	21-38	CW	7.5YR 5/4d	c w	5	0	13	64	23	7.6	SiC	s/vp	3 m sbk	2 f pf
ML-25	2Bt2	38-70	CW	10YR 5/3d	g w	0	0	16	64	20	6.2	С	vs/vp	3 m sbk	2 f pf, 3 po
ML-26	3R	70-80+	W	5Y 5/3		0	0	5	67	28		С	vs/vp	m	0
Soil profile	e ML-S2 – tre	ench station 19.	.2, units 13-2												
ML-40	AO	0-4	CF(6bAE)	5R 3/2	a s	0	0	24	58	18	21.8	SiL	so/ps	2 vf-f sbk	0
ML-41	AE	4-10	C (6bAE)	5Y 2.5/1	a s	0	0	20	59	21	15.3	SiL	so/ps	1 vf-f sbk	0
ML-42	Bt1	10-22	CD(6aBt)	10YR 3/2	c s	0	0	19	58	23	17.6	SiCL	ss/p	2 f-m sbk	0
ML-43	Bt2	22-35	CD(6aBt)	7.5YR 3/2	a s	0	0	19	60	21	8.1	SiC	vs/vp	3 m sbk	1-2 f po
ML-44	2Bt3	35-58	WC (1e)	10YR 4/2	a i	0	0	9	61	30	7.5	SiC	vs/vp	3 m sbk	2-3 f po-pf
ML-27	2R	58-100	W (1e)	5Y 5/3		0	0	12	59	29		С	vs/vp	m	0

TABLE ML2. Selected field and laboratory properties of soil profiles described in and around the Mossy Lane trench

¹Horizon nomenclature, soil field properties, and terminology of Soil Survey Staff (1993) and Birkeland (1999). Abreviations: Boundary - a, abrupt; s, smooth; c, clear; w, wavy; g, gradual; i, irregular; Texture - L, loam; SL, sandy loam; SiC, silty clay; C, clay; SiL, silt loam; SiCL, silty clay loam; Wet Consistence - so, nonsticky; ss, slightly sticky; s, sticky; vs, very sticky; po, nonplastic; ps, slightly plastic; p, plastic; vp, very plastic; Structure – m, massive; 1, weak; 2, moderate; 3, strong; vf, very fine; f, fine; m, medium;

sbk, subangular blocky; Clay Films – 1, few; 2, common; 3, many; f, faint; po, in pores; pf, on peds. Profiles described by Rick Koehler, 22 August 1999, with a few modifications by Alan Nelson.

²F, forest floor litter; C, colluvial deposit mixed primarily by roots and tree throw; T, colluvial deposit derived primarily from transport on a slope; D, glacial diamicton, either terrestrial or subaqueous; W, highly weathered bedrock or saprolite; two letters indicate a mixture of two genetic components. Unit label from Plate 2 in parentheses.

³Dominant moist or dry (d) color of horizon.

 4 Volume percentages visually estimated in the field to nearest 5-10%. Particle size distribution of <2 mm fraction using a Malvern particle-size analyzer (Burman et al., 1997) with sample preparation and prior removal of organic matter (methods of Singer and Janitzky, 1986). Carbonate not removed and percent carbonate not measured; percent carbonate in cool, temperate forest assumed to be much less than 1%.

Sample	Horizon ¹	Average	Parent	Munsell	Boun	Volume	percent ⁴	Weig	ht per	cent ⁴	Loss on	Field	Wet	Structure ¹	Clay Films ¹
No.		depth (cm)	material ²	color ³	dary ¹	Pebbles	Cobbles	Sand	Silt	Clay	ignition ⁵	texture ¹	Consistence ¹		
Soil profil	e S-S1 - stat	ion 18.7, units	8eA-3aBt												
98-90	А	0-10	C (8eA)	10YR 4/2d	c s	12	0	83	12	5	12.7	SL	so/po	1 f sbk	0
98-91	Bw	10-27	CT (8bBA)	10YR 5/3d	a s	10	1	47	37	16	4.7	SCL	ss/ps	2 f sbk	0
98-92	2BEb	27-49	C (6a)	10YR 3/2d	a w	0	2	53	35	12	7.7	SCL	s/p	3 m sbk	2 f pf
98-96	3Btb	49-69	C (5fBt)	7.5YR 4/3	a i	3	0	17	58	25	8.3	SiC	vs/p	3 m-c abk	2 d pf
98-98	4Btb	69-81+	DCW (3aBt)	2.5Y 5/2		1	0	28	48	24		SC	s/p	3 m-c abk	
Soil profil	e S-S2 - stat	ion 11.2, units	8eA-6bBE												
98-87	А	0-10	T (8eA)	10YR 4/3	c s	10	0	59	23	18	13.4	SL	so/ps	2 f sbk	0
98-88	BE	10-25	T (8aAB)	10YR 5/3	c-g w	10	2	66	22	12	5.0	SL	ss/ps	2+ c sbk	0
98-89	2Bwb?	25-45+	T (8aAB)	10YR 4/3	c w	<10	2	20	68	12	7.5	SCL	ss/p	3 c sbk	3 f pf
98-93	3BEb	51-75+	T (6bBE)	10YR 8/4		5	0	19	61	20	3.8	SiL	ss/ps	1 f sbk	2 f cobr

TABLE S2. Selected field and laboratory properties of soil profiles described in the Saddle trench

¹Horizon nomenclature, soil field properties, and terminology of Soil Survey Staff (1993) and Birkeland (1999). Abreviations: Boundary - a, abrupt; s, smooth; c, clear; w, wavy; g, gradual; i, irregular; Texture - L, loam; SL, sandy loam; SCL, sandy clay loam; SiC, silty clay; C, clay; SiL, silt loam; SiCL, silty clay loam; Wet Consistence - so, nonsticky; ss, slightly sticky; s, sticky; vs, very sticky; po, nonplastic; ps, slightly plastic; p, plastic; vp, very plastic; Structure – m, massive; 1, weak; 2, moderate; 3, strong; vf, very fine; f, fine; m, medium; c, coarse; sbk, subangular blocky; abk, angular blocky; Clay Films – 1, few; 2, common; 3, many; f, faint; d, distinct; po, in pores; pf, on peds; br, bridges grains. Profiles described by Rick Koehler and Charles Narwold, 1 October 1998, with a few modifications by Alan Nelson.

²C, colluvial deposit mixed primarily by roots and tree throw; T, colluvial deposit derived primarily from transport on a slope; D, glacial diamicton, either terrestrial or subaqueous; W, highly weathered bedrock or saprolite; two letters indicate a mixture of two genetic components. Unit label from Plate 2 in parentheses.

³Dominant moist or dry (d) color of horizon.

 4 Volume percentages visually estimated in the field to nearest 5-10%. Particle size distribution of <2 mm fraction determined using a Malvern particle-size analyzer (Burman et al., 1997) with sample preparation and prior removal of organic matter (methods of Singer and Janitzky, 1986). Carbonate not removed and percent carbonate not measured;

percent carbonate in cool, temperate forest assumed to be much less than 1%.