APPENDIX I

Ohio Water Microbiology Laboratory

Analysis of Clostridium perfringens in Environmental Water Samples

1. Prepare mCP basal agar as follows (or order Oxoid CM0992):

900 mL reagent water
30.0 g tryptose
20.0 g yeast extract
5.0 g sucrose
1.0 g L-cysteine hydrochloride
$0.1 \mathrm{~g} \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
0.04 g bromcresol purple
15.0 g Bacto agar
2. pH adjust agar to 7.6 (with 1 N NaOH)
3. Label each batch of media with an assigned number and record in the media QC log book.
4. Dispense $100-\mathrm{mL}$ aliquots into dilution bottles and autoclave for 15 minutes at $121^{\circ} \mathrm{C}$. Store bottles in the refrigerator for up to 6 months.
5. To prepare plates, melt the agar using a beaker with water on a hot plate or by placing in the autoclave for a 5 -minute cycle. After the agar is tempered and before pouring plates, add the following ingredients to each $100-\mathrm{mL}$ bottle of agar:

$$
0.04 \mathrm{~g} \text { D-cycloserine }
$$

0.0025 g polymyxin- B sulfate
$0.2 \mathrm{~mL} 4.5 \% \mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ solution
(filter-sterilize $0.45 \mathrm{~g} \mathrm{FeCl}_{3}$ in 10 mL reagent water, store at $4^{\circ} \mathrm{C}$ for up to 2 months)
$2.0 \mathrm{~mL} 0.5 \%$ Phenolphthalein diphosphate solution*
(filter-sterilize 0.5 g phenolphthalein diphosphate in 100 mL reagent
water, store at $4^{\circ} \mathrm{C}$)
$8.0 \mathrm{~mL} 0.075 \%$ indoxyl β-D glucoside solution**
(dissolve 0.006 g indoxyl β-D glucoside in 8.0 mL sterile reagent water)
*Alternatively, 0.01 g phenolphthalein diphosphate can be added directly without making the solution.
**Alternatively, 0.006 g indoxyl β-D glucoside can be added directly without making the solution.

To make a large batch of agar, combine the $100-\mathrm{mL}$ bottles into a sterile flask, calculate the amounts of additives for the total volume of agar, and add each additive in one batch.
6. Label each sub-batch with an assigned number and record in media logbook.
7. Store plates inverted in the refrigerator for up to 1 month.

3/12/2007
$\mathrm{M}:$ \QC manual\Appendix I - Clostridium perfringens.doc
8. Analyze samples by membrane filtration using appropriate volumes. For turbid surface water, use $3-, 10-$, and $30-\mathrm{mL}$ volumes. For clean surface water, use $10-, 30-$, and $50-\mathrm{mL}$ volumes. Record media batch and sub-batch numbers on the Results Worksheet.

Note: To quantify the concentration of spores only, heat treat the sample at $60^{\circ} \mathrm{C}$ for 15 min prior to filtration.
9. Run a filter blank using buffer water before filtering each sample.
10. Plate a positive control (10 and 30 mL of 10^{-2} dilution raw sewage) for every $20^{\text {th }}$ sample or when a new analyst is processing or reading plates.
11. Incubate plates anaerobically in a GasPak bag or chamber at $44.5^{\circ} \mathrm{C}$ for 24 hours for the analysis of vegetative bacteria or at $41^{\circ} \mathrm{C}$ for 24 hours for the analysis of spores.
12. In the fume hood using protective gloves and forceps, place membrane filters with strawyellow colonies onto cellulose pads saturated with $\mathrm{NH}_{4} \mathrm{OH}$. Wait for approximately 15 seconds, then examine for positive colonies.
13. Magenta colonies that are approximately 1 to 2 mm in diameter are enumerated as C. perfringens. New analysts may compare size and color of colonies to those in the positive control.
14. Calculate the number of colony-forming units per $100-\mathrm{mL}(\mathrm{CFU} / 100 \mathrm{~mL})$ sample using the following equation:
$C F U / 100 m L=\frac{\text { Colony count } * 100}{\text { Volume plated }(m L)}$

