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What are we trying to do here?

 

After we develop and implement a new numerical algorithm, 
we ask the question “how well does it work?”

Since we are solving nonlinear PDEs, exact solutions are few 
and are between....and those exact solutions are often 
not particularly interesting.

Alternatively, we can look at the properties of the discrete 
differential operators. This is often referred to a trun-
cation error analysis and is sometimes used as a substi-
tute to a PDE solution error analysis.

The point of this work is to look at both PDE solution error 
and discrete differential operator truncation error to see 
what we learn.
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Definitions

Given a partial differential equation of the form , 

Assume the discrete approximation to the PDE has the form .

The  denotes a discrete approximation, the  defines a projection of an
analytic function to the grid. So, 

 is the discrete operator

 is the discrete solution to the PDE

 is the analytic RHS projected onto the grid. 

Truncation Error Analysis: 

Solution Error Analysis:    
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û

f

)

L̂ u( ) f– τ̂=
) )

L
1–̂

f( ) u– σ̂=

) )



 

crevasse:Users:todd:research_documents:talks:2003_03_09.Munich:error_analysis.frame March 10, 2003 2:09 pm

 
Truncation Error Analysis

Given a partial differential equation of the form , 

assume we have a continuous solution to this system; so we know  and .

A truncation error analysis is carried out as follows:
1) choose a grid

2) project  and  onto that grid to form  and .

3) apply  to ; compute 

4) compute , call this  (the truncation error).

Repeat this process for a sequence of grids of increasing resolution. Does 
decrease with decreasing grid size? To answer this quantitatively, we much chose
norms.

               

If the norms of  decrease with increasing resolution, the operator is consistent.
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Solution Error Analysis

Given a partial differential equation of the form , 
assume we have a continuous solution to this system; so we know  and .

A solution error analysis is carried out as follows:
1) choose a grid

2) project  and  onto that grid to form  and .

3) invert  and apply to ; solve for 

4) Compute , call this  (the solution error).

Repeat this process for a sequence of grids of increasing resolution. Does 
decrease with decreasing grid size? To answer this quantitatively, we much chose
norms.

               

If the norms of  decrease with increasing resolution, the operator is convergent.
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û u–

)

σ̂

σ̂

σ̂ 2
1

AT
------ A i( ) σ̂ i( )[ ]

2

i 1=

N

∑

1
2
---

= σ̂ ∞ max σ̂ i( )[ ]
i 1=
N

=

σ̂



crevasse:Users:todd:research_documents:talks:2003_03_09.Munich:error_analysis.frame March 10, 2003 2:09 pm

Relating Truncation and Solution Error

Solution Error Analysis:    , so .

Truncation Error Analysis: , so       

The solution error is equal to the discrete inverse operator applied to the 
truncation error.

If we assume that  is a stable approximation to , then we know that 

 is bounded. Thus, . Taking the norm of           gives

        ....... the solution error is bounded from above by 
the truncation error in terms of convergence rate.

This is the Lax Equivalence Theorem: stability plus consistency guarantees 
convergence....but what if an operator is not consistent?
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Definition of Spherical Voronoi Tesselations

Given the vector positions of a set of points, 

, that lie on the unit sphere, we 

define for each  a corresponding Voronoi 

region, , as the set of all points on the 

sphere that lie closer to  than  for all 

. Let each  contain the list of the 
neighbor locations for each generator loca-
tion, .

Properties of SVTs: Every cell wall is an 
orthogonal bisector of the geodesic connect-
ing the grid points that share that cell wall.

How to chose the generators?

p̃{ }i 1=
n

p̃i

Vi

p̃i p̃j

j i≠ Q̃j

i
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SVTs derived from 
an inscribed icosahedron

Icosahedron Bisect each edge 
and connect

Project new vertices 
to the sphere

Each vertex will be a grid point (Voronoi region generator)
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The “unmodified SVT”

Grid Properties

Each Voronoi region is hexagonal in 
shape, except for twelve regions that 
are pentagonal. These twelve regions 
correspond to the vertices of the 
original icosahedron.

Highly-uniform in horizontal coverage
Highly-uniform in refinement
Highly isotropic
No problematic grid singularity

(The numerical methods we have 
developed work for any trivalent grid, 
so let’s look at a couple other grids.)
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HR95 Grid Optimization Technique
Objective: Modify locations of 
generating points such that 
the line segment connecting 
grid points bisects the cell 
wall.

Note: A Voronoi grid guaran-
tees that the cell wall segment 
will bisect the line segment 
connecting grid points. The 
converse is not true in general.

The figure to the immediate 
right shows the unmodified 
SVT overlaid with the HR95 
SVT. The differences are 
small, but important.
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MESQUITE Grid Optimization Technique

 

Meshes 1 through 4 are created 
using the condition number, size, 
smoothness, local area-ratio met-
rics, respectively. We will focus 
here on meshes 3 and 4.

A L2 norm is used to create the 
objective function, meaning that 
the average mesh quality metric is 
minimized. 

The objective function that is min-
imized took into account all of the 
vertices of the mesh simulta-
neously (as opposed to a series of 
separate optimization problems) in 
order to preserve mesh symmetry. 
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Centroidal Spherical Voronoi Tessellations

 

Lloyd’s Algorithm is used to gen-
erate the centroidal Voronoi tes-
sellations.

Begin with the unmodified SVT. 
Find the centroid of each Voronoi 
region. Move the generator to the 
centroid of its region. Recompute 
the Voronoi region and iterate.

Du, Faber, and Gunzburger (SIAM 
Review, 1999) explore these cent-
roidal Voronoi tessellations on the 
plane.
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Defining global and local uniformity metrics

 

 

 

Local Uniformity

 

:     

 

Global Uniformity:

 

 

LocalU( )i

min p̃i Q̃j–[ ]
j 1=
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max p̃i Q̃j–[ ]
j 1=
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----------------------------------------------------------=
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min min p̃i Q̃j–[ ]
j 1=
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i 1=

N

max max p̃i Q̃j–[ ]
j 1=

# neighbors

i 1=

N
--------------------------------------------------------------------------------------=
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A Comparison of the Tessellations

IIn terms of global uniformity....

And in terms of local uniformity....

Resolution GlobalU

unmod

GlobalU

HR1995

GlobalU

TSTT03

GlobalU 

TSTT04

GlobalU

Centroid
10242 0.837 0.788 .819 0.589 0.784
40962 0.834 0.787 .811 0.545 0.772
163842 0.834 ---- .805 0.460 0.741

resolution LocalU

unmod

LocalU

HR1995

LocalU

TSTT03

LocalU 

TSTT04

LocalU

Centroid
10242 0.887 0.884 .902 0.956 0.920
40962 0.893 0.885 .903 0.967 0.916
163842 0.896 ---- .902 0.969 0.917
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SVT Evaluation
Assume a discrete PDE of the form .

  is the discrete operator

  is the discrete solution to the PDE

  is the right-hand side forcing evaluated at grid locations. 

Truncation Error Analysis: 

Solution Error Analysis: 

Let  and look at two exact solutions where

 [solution#1]

 [solution#2]
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Discrete Laplacian

0

1

2

3

4

5

6

d0X

c0X

Note: This Laplacian is derived as 
the divergence of the gradient. 
Operator is valid for all trivalent 
grids.

The discrete Laplacian operator based at 
the cell labeled “0” is a function of cells 
0 through 6.

Let  denote the distance between 
cell 0 and cell X. 

Let  denote the length of the cell 
shared by 0 and X. 

The equation for the Laplacian is then 
given by

d0X

c0X

L qi( )
cij

Aidij

-----------qj

j 1=

# neighbors

∑
ei

Ai
-----qi–=
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Truncation and Solution Error Results
Solution#1: u φsin=
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Truncation and Solution Error Results
Solution#2: u 3λ( )sin 3φ( )cos[ ]4
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The “poor” truncation error results are not 
reflected in the solution error results.

What is going on here?

Recall that the Lax Equivalence Theorem says that stability 
plus consistency is sufficient for convergence.

The key here is sufficient, as opposed to necessary.

Recall, . So when , the solution error 
is a smoothing of the truncation error. The smoothing is 
sufficient in the case to increase the order of accuracy 
of the solution.

This phenomenon is called supra-convergence (Kreiss 1986).

σ̂ L
1–̂ τ̂( )< L ∇2

=
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What have I learned here?
 
In agreement with previous findings, truncation error provides an 

upper bound in terms of convergence rate. 

Optimizing SVTs based on truncation error alone is probably not 
appropriate.

Regarding the Linf norm, we see O(1) truncation error reduced to 
O(h2) solution error.

The failure of the Linf norm for discrete Laplacian operators 
appears to be common (if not ubiquitous) on Delauny triangula-
tion / Voronoi diagrams.

Super-convergence of the lowest spherical harmonic is also found 
by Frederickson using his polynomial reconstruction method.


