

TWO-DIMENSIONAL SUBSONIC COMPRESSIBLE FLOW PAST ELLIPTIC CYLINDERS

By Carl Kaplan

SUMMARY

The method of Poggi is used to calculate, for perfect Huids, the effect of compressibility upon the flow on the surface of an elliptic cylinder at zero angle of attack and with no circulation. The result is expressed in a closed form and represents a rigorous determination of the velocity of the fluid at the surface of the obstacle insofar as the second approximation is concerned.

Comparison is made with Hooker's treatment of the same problem according to the method of Janzen and Rayleigh and it is found that, for thick elliptic cylinders, the two methods agree very well. The labor of computation is, moreover, considerably reduced by the present solution.

The third approximation to the compressible flow about circular cylinders, including the terms involving the factor $\left(r_{0} / c_{0}\right)^{4}$, is also obtained and compared with the result given by Poggi. It is found that the expression given by Yogi is incomplete with regard to the terms containing the factor $\left(r_{0}, c_{0}\right)^{\prime}$.

INTRODUCTION

The purpose of this paper is to employ the method of Pogge (reference 1) to determine the effect of compressibility on the flow about elliptic cylinders. This problem has already been considered by Hooker (reference ${ }^{2}$) who made use of the method of Janzen and Rayleigh but, owing to the necessity for expanding a certain function in the analysis, the "thickness ratio" of the ellipse to which his result applies is limiters. The thickrest ratio of an ellipse is defined as the ratio b / a, where d and b are the semimajor and semiminor axes, respectively. The method of Pogge, on the other hand, not only permits an unrestricted thickness ratio but also reduces the labor of computation.

Briefly, it may be said that Yogi considers comperessible flow to be replaced by an incompressible flow due to a distribution of sinks and sources throughout the region of flow. The strength of the distribution in the plane of the profile is given by

$$
-\frac{1}{4 \pi c^{2}}\left(\frac{\partial \dot{\varphi}}{\partial \xi} \frac{\partial r^{2}}{\partial \xi}+\frac{\partial \varphi}{\partial \eta} \frac{\partial r^{2}}{\partial \eta}\right) d \xi d \eta
$$

and in the plane of the circle. into which the profile is mapped by a suitable conformal transformation, by

$$
\frac{1}{4} \frac{1}{\pi c^{-}}\left(r_{r} \frac{\partial r^{2}}{\partial \lambda}-r_{\theta} \partial r^{2} \partial_{\bar{\theta}}\right) \frac{R}{\lambda} d \lambda d \theta
$$

where
r, θ are the polar coordinates of a point in the plane $z(=x+i y)$ of the circle.
R, δ the radius of the circle into which the profile is mapped and the angular coordinate on this circle, respectively.
$\lambda=\frac{R}{r} ; v_{r}=-\frac{\partial \phi}{\partial r} ; \quad v_{\theta}=-\frac{1}{r} \frac{\partial \phi}{\partial \theta} ; \phi$ is the velocity potential of the flow.
c, the magnitude of the velocity of the fluid in the plane of the profile.
c, the magnitude of the local velocity of sound.
Yogi then finds that the total velocity induced, at any point $P(R, \dot{o})$ of the circular boundary by the foregoing system of sinks and sources, is:
$\Delta r=\frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{2 \pi} \frac{r_{r} \frac{\partial c^{2}}{\partial \lambda}-\frac{r_{\theta}}{\lambda} \frac{\partial r^{2}}{\partial \theta}}{c^{2}\left\{1-2 \lambda \cos (\theta-\delta)+\lambda^{2}\right\}} \sin (\theta-\delta) d \lambda d \theta$
Yogi's method of approximating the compressible flow of a perfect fluid is based on the assumption that the incompressible flow is a suitable first approximation and that therefore the values pertaining to that flow may be substituted for v_{r}, v_{θ}, and v^{2} in equation (1). The value of Δx thus obtained then represents the effect due to compressibility and is to be added to the already known value for the velocity of the incomepressible flow. That is,

$$
\begin{equation*}
c_{\text {comp }}=v_{\text {incomp } p} \div \Delta v \tag{2}
\end{equation*}
$$

It is to be noted that, in equation (1), the local velocity of sound c is not a constant but is related to the velocity c of the fluid in the plane of the profile by means of Bernoulli's equation and the equation of state of the fluid. Thus, if the adiabatic equation of state is adopted,

$$
\begin{equation*}
c^{2}=c_{0}^{2}\left[1+\frac{\gamma-1}{\underline{2}} \frac{v_{0}^{2}}{c_{0}^{2}}\left(1-\frac{v^{2}}{i_{0}^{2}}\right)\right] \tag{3}
\end{equation*}
$$

where c_{0}, x_{0} are the corresponding magnitudes in the undisturbed stream and $\gamma=1.40 \mathrm{~S}$ for air.
In order to facilitate the solution of equation (1). it has been the custom to replace c by c.. This simple-
fication of the problem may be justified by the following argument. It has been tacitly understood that nowhere in the fluid must the relocity of the fluid exceed that of the local velocity of sound since the incompressible flow has already been assumed to be a good first approximation and the effect of compressibility is merely to distort the streamlines associated with the incompressible flow. As the maximum fluid velocity occurs at the surface of the obstacle, there exists a value of $x_{0}{ }^{2} / c_{0}{ }^{2}$ for which the maximum fluid velocity equals that of the local velocity of sound. This critical velocity of the fluid is obtained from equation (3) by replacing v by c. Thus

$$
\begin{equation*}
c_{l c a s t^{2}}=v_{c r t t^{2}}^{2}=\frac{2 c_{0}^{2}}{\gamma+1}\left(1+\frac{\gamma-1}{2} \frac{r_{0}^{2}}{c_{0}^{2}}\right) \tag{4}
\end{equation*}
$$

This walue for c is a lower limit under the condition that nowhere in the fluid is the local velocity of sound exceeded. The maximum value of c occurs at the stagnation point $r=0$ and is given by

$$
\begin{equation*}
c_{r, r_{r}^{2}}^{2}=c_{0}\left(1+\frac{\gamma-1}{\underline{2}-\frac{r_{0}^{2}}{c_{0}^{2}}}\right) \tag{5}
\end{equation*}
$$

Thu- lwh the masimum and the least walues of c occur (ou the oh-tacle and everrwhere else $c_{\text {puaz }}>c>c_{\text {lacst }}$. It follom- fown cquations (t) and (i) that

Whidh invernes very slouly as $z_{\mathrm{u}} c_{0}$ approaches unity.
In farl. it is eeen that the upper limit for $\frac{c_{\text {max }}-c_{\text {texat }} \text { is }}{c_{0}}$ U.14:\%). The foregoing discussion thus shows that cico may, as a first approximation, be taken to be unity. Equation (1) then become:
$\Delta r=\frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{2-} \frac{r_{r} \frac{\partial c_{i}^{2}}{\partial \lambda}-\frac{r_{\theta}}{\lambda} \frac{\partial c^{2}}{\partial \theta}}{1-2 \lambda \cos (\theta-\delta)+\lambda^{2}} \sin (\theta-\delta) d \lambda d \theta(6)$
Thi: How of a perfect compressible fluid past an elliptic cilinder
Le the splane be the plane of the ellipse and the z phane he the plane of the corre-ponding circle. Then it i- well hown that the donkowst transformation

$$
\begin{equation*}
1=-+^{\prime \prime}= \tag{a}
\end{equation*}
$$

 of the = plane into the line segment $(-2 a, 0 ; 2 a, 0)$ in Hue Hath. Hhw, the circles concentric with the circle of radiu-a are transformed into a family of confocal dlif-a with common fori at $(-2 a, 0)$ and ($2 a, 0$). If A^{\prime} a! denotes the radius of one of these circles, then the semimajor and semiminor axes of the ellipse into
which it is transformed are, respectively, $R+\frac{a^{2}}{R}$ and $R-\frac{a^{2}}{R}$. The thickness ratio t then becomes:

$$
t=\frac{R-\frac{a^{2}}{R}}{R+\frac{a^{2}}{R}}=\frac{1-\sigma^{2}}{1+\sigma^{2}}
$$

or

$$
\sigma^{2}=\frac{1-t}{1+t}
$$

where

$$
\sigma=\frac{a}{\bar{R}}
$$

If u denotes the complex potential of the incompressible flow in the z plane when a stream of relocity v_{0} impinges on a circle of radius R in the direction of the negative x axis, then

$$
\begin{equation*}
u=v_{0}\left(z+\frac{R^{2}}{z}\right) \tag{8}
\end{equation*}
$$

The complex relocity in the ζ plane is then given by

$$
\frac{d w}{d \xi}=\frac{d u}{d z} \frac{d z}{d \xi}
$$

or

$$
\begin{equation*}
\frac{d w}{d \xi}=r_{0} \frac{z^{2}-R^{2}}{z^{2}-a^{2}} \tag{9}
\end{equation*}
$$

When $\lambda=\frac{R}{r}$ and $\sigma={ }_{h}^{a}$ are introduced, it follows that

$$
\begin{equation*}
v^{2}=\left|\frac{\mid d v_{c}^{\prime 2}}{d d^{2}}\right|^{2}=r_{0}^{2} \frac{1-2 \lambda^{2} \cos 2 \theta+\lambda^{i}}{1-2 \sigma^{2} \lambda^{2} \cos 2 \theta+\sigma^{4} \lambda^{4}} \tag{10}
\end{equation*}
$$

Following Poggis procedure, the Fourier development of $v^{2} / v_{0}{ }^{2}$ will be obtained. Thus, by the use of the expansion
$\frac{1}{1-2 \sigma^{2} \lambda^{2} \cos 2 \theta+\sigma^{4} \lambda^{4}}=\frac{1}{1-\sigma^{4} \lambda^{4}}\left[1+2 \sum_{n=1}^{\infty}(\sigma \lambda)^{2 n} \cos 2 n \theta\right]$ (see appendix, sec. I), it follows that

$$
\begin{equation*}
\frac{r^{2}}{r_{0}^{2}}=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{2 n} \cos 2 n \theta \tag{11}
\end{equation*}
$$

where

$$
a_{v}=2 \frac{1+\left(1-2 \sigma^{2}\right) \lambda^{4}}{1-\sigma^{4} \lambda^{i}}
$$

and for $n=1,2, \ldots$.

$$
a_{2 n}=2 \frac{\left(1-\sigma^{2}\right)\left(\sigma^{2} \lambda^{4}-1\right)}{\sigma^{2}\left(1-\sigma^{4} \lambda^{i}\right)}(\sigma \lambda)^{* n}
$$

Also from equation (8)

$$
\left.\begin{array}{l}
r_{r}=-v_{0}\left(1-\lambda^{2}\right) \cos \theta \tag{1.2}\\
r_{\theta}=v_{0}\left(1+\lambda^{2}\right) \sin \theta
\end{array}\right\}
$$

Then，inserting the expressions for r^{2} ．$r_{\text {．}}$ ，and r given by equations（11）and（12）into equation（6）and making use of the integral：
 －reappendix．are．H1
 it iollows withome dilforulty that

$$
\begin{align*}
& \frac{\Delta v}{i_{n}}-\frac{\mu}{2}\left[-\sin \hat{o}+\sum_{n=1}^{\infty}(\underline{n}+1) \sin (\underline{2} n+1) \hat{o}\right. \\
& \quad \int_{0}^{1}\left(\lambda^{-n+1} a_{-n}-\lambda^{-n-1} a_{i n-2} d \lambda\right] \tag{1:3}
\end{align*}
$$

where

$$
\mu=\frac{c_{0}^{2}}{c_{0}^{2}}
$$

Substituting for the ${ }_{2 n n}$ s irom equation（11），equation （13）takes the form

$$
\begin{gathered}
\frac{\Delta n}{\omega_{n}}=\frac{\mu}{2} \frac{1-\sigma^{2}}{\sigma^{2}}\left[\sin \delta-\left(1-\sigma^{2}\right) \sum_{i=1}^{\infty}(2 n+1) \sin (2 n+1) \hat{\delta}\right. \\
\left.\int_{n}^{1} \frac{1-\sigma^{2} \lambda^{\prime}}{1-\sigma^{2} \lambda^{i}} \lambda^{2} \lambda^{2} \lambda^{2}\right]
\end{gathered}
$$

Replacing λ^{2} by －for parpores of interation only it follows that

$$
\begin{aligned}
& =-R . P \text {. of } i \sum_{n=1}^{\infty}(\underline{O} n-1) e^{1: n-1: 5} \int_{0}^{11} \frac{-\sigma^{2} \sigma^{2}}{1-\frac{\sigma^{2}}{\sigma^{2}}(\sigma \tau)^{2}} d \tau
\end{aligned}
$$

or

$$
\begin{aligned}
& I=R . P \text {. of } i e^{20} \int_{0}^{1} \frac{1+\sigma^{2} \tau^{2} e^{2 \tau j}}{\left(1-\sigma^{2} \tau^{2} \tau^{2 i s}\right)^{2}} \frac{1-\sigma^{2} \tau^{2}}{1-\sigma^{4} \tau^{2}} d \tau \\
& =\frac{1}{\left(1-2 \sigma^{2} \cos 2 \delta+\sigma^{4}\right)^{-1}} \frac{\left(1-\sigma^{2}\right)^{2}}{2 \sigma^{2}}\left[\left(1 \div 3 \sigma^{2}+\sigma^{4}\right) \sin \hat{o}\right. \\
& +\sigma^{2} \sin 3 \hat{\jmath} \log \frac{1+\sigma^{2}}{1-\sigma^{2}} \\
& +\frac{1-\sigma^{2}}{\sigma}\left[\left(1+\sigma^{4}\right) \cos 2 \hat{o}-2 \sigma^{2}\right] \tan ^{-1} \frac{2 \sigma \sin \delta}{1-\sigma^{2}} \\
& -\frac{\left(1+\sigma^{2}\right)\left(1-\sigma^{2}\right)^{2}}{2 \sigma} \sin 2 \delta \log \frac{1+2 \sigma \cos \delta+\sigma^{2}}{1-2 \sigma \cos \hat{\delta}+\sigma^{2}} \\
& \left.+2\left[\left(1+\sigma^{2}+\sigma^{4}\right) \sin \delta-\sigma^{2} \sin 38\right]\right\}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \stackrel{\Delta v}{v_{0}}=\underline{\mu 1-\sigma^{2}} \sigma^{2}(\sin \hat{o} \\
& -\frac{1-\sigma^{2}}{\left(1-\underline{\sigma^{2}}\right.} \frac{\cos }{2 \hat{\sigma}+\sigma^{2}} ;: \frac{\left.1-\sigma^{2}\right)^{2}}{2}\left[\left(1+3 \sigma^{2}+\sigma^{4}\right) \sin \hat{o}\right. \\
& \left.+\sigma^{2} \sin 30\right] \log \frac{1-\sigma^{2}}{1-\sigma^{2}} \\
& \text { ロッテージッ - } 17
\end{aligned}
$$

$$
\begin{align*}
& -\frac{\left(1 \div \sigma^{2}\right)\left(1-\sigma^{2} 1^{2}\right.}{2 \sigma} \sin \because \delta \log \frac{1 \div \log \cos \delta-\sigma^{2}}{1-2 \sigma \cos \delta-\sigma^{2}} \\
& +\frac{1-\sigma^{2}}{\sigma}\left[\left(1-\sigma^{4}\right) \cos 2 \delta-2 \sigma^{2}\right] \tan \frac{2 \pi \sin j}{1-\sigma^{2}} \\
& \left.+2\left[\left(1-\sigma^{2}+\sigma^{2}\right) \sin \delta-\sigma^{2} \sin 3 \bar{\delta}\right]\right) \tag{1t}
\end{align*}
$$

For $\delta=\frac{\pi}{2}$ ．the position of maximum relocity on the am－ face of the elliptic calinder．

$$
\begin{align*}
& \left(\frac{\partial l}{r_{0}}\right)_{\partial=\frac{\pi}{2}}=\frac{\mu 1-\sigma^{2}}{2} \frac{1-\sigma^{2}}{\sigma^{2}} 1-\frac{1-\sigma^{2}}{\left(1-\sigma^{2}\right)^{2}}\left[\frac{\left(1-\sigma^{2} x^{2}\right.}{3 \sigma^{2}} \log \frac{1-\sigma^{2}}{1-\sigma^{2}}\right. \\
& \left.\left.-2 \frac{1-\sigma^{2}}{\sigma} \tan ^{-1} \sigma+2\right]\right\}
\end{align*}
$$

It is interesting to note that the expression for $\lambda \mathrm{A} \cdot \mathrm{in}$ at the surface of a circular cylinder fixed in a stream of velocity c_{0} impinging on it in the direction of the negative x axis may be obtained from equation $(1+j) b$ allowing $\sigma\left(=\frac{a}{R}\right)$ to approach zero．Thus，making uie of the expansions

$$
\begin{aligned}
& \frac{1}{\left(1-2 \sigma^{2} \cos 2 \hat{\alpha}+\sigma^{4}\right)^{2}}=\frac{1}{\left(1-\sigma^{1}\right)^{3}}\left(1 \div \sigma^{4}\right) \div-\frac{2}{n=1}[(n-1, \\
& \left.-(n-1) \sigma^{7}\right] \sigma^{2 n} \text { cos } 2 \mu \theta^{i} \text {, wee appendix, ser. III } \\
& \log \frac{1+2 \sigma \cos \delta+\sigma^{2}}{1-2 \sigma \cos \delta+\sigma^{2}}=4 \sum_{n=0}^{\infty} \frac{\sigma^{2} n-1}{n+1} \cos (2 n+1 \dot{\theta} \\
& \tan ^{-1} \frac{2 \sigma \sin \dot{b}}{1-\sigma^{2}}=2 \sum_{n=1}^{\infty} \frac{\sigma^{2 n-1}}{2 n+1} \sin (2 n+1) \sigma \\
& \log \frac{1 \div \sigma^{2}}{1-\sigma^{2}}=2 \sum_{n=0}^{\infty} \frac{\sigma^{2}=2 n-1}{\underline{\sigma^{2}} n \div 1}
\end{aligned}
$$

it follows，neglecting terms containing powers of σ higher than the second，that

$$
\frac{\Delta v}{r_{0}}=\frac{\mu}{\cdot j}\left(1-\sigma^{2}\right)\left(\frac{4}{3} \sin \delta-\sin 3 \delta\right)
$$

or

$$
\begin{equation*}
\operatorname{Lim}_{\sigma \rightarrow 0} \frac{\Delta x}{\varepsilon_{0}}=\mu\left(\frac{2}{3} \sin \delta-\frac{1}{2} \sin 3 \delta\right) \tag{16}
\end{equation*}
$$

This expression for $\Delta v / v_{0}$ agrees with that obtained by the methods of Janzen，Rayleigh，and Pogyi（ref－ erence 3）．

The effect of compressibility，i．e．，$\lrcorner^{2} / u_{\mathrm{a}}$ ，haring been found，it follows according to equation（2）that the total velocity at the circular boundary in the z plane is given br

$$
\begin{equation*}
\left(\frac{v}{r_{0}}\right)_{c i r c l e}=\underline{2} \sin \dot{o}+\frac{\Delta v}{r_{0}} \tag{17}
\end{equation*}
$$

and on the elliptic profile in the 5 plane by

Table I shows the comparison between the values of (rico) antrose calculated according to equation (18) and those obtained by Hooker for an ellipse of thickness ratio $t=3$ or $\sigma^{2}=\frac{1}{3}$. The values for the corresponding incompressible flow are included. It is seen that the results of the two methods agree very well. This agreement is not unexpected since Hooker's method is particularly applicable to thick ellipses. Consider, howaver, a slender ellipse, say $t=1_{10}^{10}$ or $\sigma^{2}=y_{11}^{4}$. Table II shows the comparison between the exact calculations of the present method and the results obtained according to Hooker's method. The disagreement is more evident than that shown in table I for the thicker ellipse.

14, 1: 1-The when of the fluid on the surface of an elliptie cylnder of theksen-

Figume 1 show: the graph (ricu) ationse calculated according to l'urgit: methed for both the compressible and ther ineompresible flew - past the ellipse of thickness

1.11.1. I

TABLE H

$\stackrel{\dot{0}}{\text { (dep. })}$	$\left(\frac{1}{i_{1}}\right)_{\text {ellipse }}$		
	Hooker: method	Pogsi's method	$\begin{aligned} & \text { lacompres. } \\ & \text { sible } \end{aligned}$
0	0	0	0
5	. 6793	. 6342	. 7244
10	. 9005	. 9395	. 9569
${ }_{20}^{15}$	- $9+043$	1.0056	1. 0307
30	1. 1.03350	1.0749 1.1146	1.0605 1.0539
40	1.1332	1.1271	1. 0924
50	1. 1320	1. 1335	1. 0962
${ }_{70}^{60}$	1.1273	1. 1374	1.0993
70	1.1346	1. 1394	1. 0993
80 90	1.1501	1. 14403	1. 0099 1.1000

THE PRESSURE DISTRIBUTION

According to Bernoulli's theorem and the adiabatic equation of state, if p and ρ are the pressure and density of the fluid, then

$$
\frac{p}{p_{0}}=\left(\frac{\rho}{\rho_{0}}\right)^{\gamma}=\left[1+\frac{\gamma-1}{2} \mu\left(1-\frac{v^{2}}{\nu_{0}^{2}}\right)\right]^{\frac{\gamma}{\gamma-1}}
$$

where p_{0} and p_{0} are the pressure and density, respectively, in the undisturbed stream. Expanding the right-hand side of the foregoing equation and neglecting

Figlus 2. - The pressure of the fluid on the surface of an elliptic exinder of thatness ratio $1 / 10$ for compressible and incompressible flows wih $10^{\prime}, 0=0$. an $^{\circ}$
terms involvins powers of μ higher than the first yields

$$
\begin{equation*}
\frac{p-p_{11}}{\frac{1}{2} \rho_{0} r_{1}^{2}}=\left(1-\frac{r^{2}}{r_{0}^{2}}\right)+\frac{\mu}{4}\left(1-\frac{c^{2}}{v_{0}^{2}}\right)^{2}+\ldots . \tag{19}
\end{equation*}
$$

The presure ditribution is then obtained by sub-
 the presure divaburon oner the -urtare of an ellipse
 shows the graph of this distribution bogether with the one due to the corresponding incompresible flow.

TABLE: III
${ }_{c_{0}}^{c_{0}}=0.5 .57$; thichneor ratio $=1,10$

THE ATTANMENT OF THE LOCDL VEIOCITY OF SOUND AT THE SURFACE OF AN ELLIPTIC CYLINDER

According to equation (4) the critical velocity of the fluid is given by

$$
\begin{equation*}
\left(\frac{v_{c+1}}{v_{0}}\right)^{2}=\frac{2}{\gamma+1} \frac{1}{\mu}+\frac{\gamma-1}{\gamma+1} \tag{20}
\end{equation*}
$$

For an elliptic cylinder, at zero angle of attack, the critical velocity occurs at $\hat{o}=\frac{\pi}{2}$, the position of maximum velocity on the cylinder and also in the region of flow. Hence substituting from equation (18) for ($\left(/ / v_{0}\right)_{\text {ellipse }}$ at $\delta=\frac{\pi}{2}$ yields a cubic equation in the rariable μ.
Thus, from equation (15), if

$$
\begin{aligned}
f(\sigma) & =\frac{1-\sigma^{2}}{2 \sigma^{2}}\left(1-\frac{1-\sigma^{2}}{\left(1+\sigma^{2}\right)^{2}}\left[\frac{\left(1-\sigma^{2}\right)^{2}}{2 \sigma^{2}} \log \frac{1+\sigma^{2}}{1-\sigma^{2}}\right.\right. \\
& \left.\left.-2 \frac{1-\sigma^{2}}{\sigma} \tan ^{-1} \sigma+2\right]\right\}
\end{aligned}
$$

then

$$
\begin{gather*}
{[f(\sigma)]^{2} \mu^{3}+4 f(\sigma) \mu^{2}+\left[4-\frac{\gamma-1}{\gamma+1}\left(1+\sigma^{2}\right)^{2}\right] \mu} \\
-\frac{2\left(1+\sigma^{2}\right)^{2}}{\gamma+1}=0 \tag{21}
\end{gather*}
$$

where $\gamma=1.408$ for air.
Table IV gives the critical ralues of c_{0} / c_{0} for the entire range of thickness ratios including the limiting cases of the straight-line segment and the circular
profile. Figure 3 shows the critical values of $r_{6} c_{0}(=, \bar{\mu})$ plotted against the thickness ratio.

TABIE If

σ^{2}	$\begin{aligned} & \text { Thichnes } \\ & \text { rat:0 } \end{aligned}$:rat: a!
1	0	1 (1a4)
10,21	1,20	. 413
9.11	$1 / 10$	-
4.5	1.9	\cdots
79	15	. 30
3.4	1,5	$\cdots 11$
57	15	. 2
23		-
$3 / 5$	1.1	. 719
12	1.3	-1, 3^{3}
1,3	12	-
$1 / 5$	23	. in^{2}
17	31	. 155
$1 \cdot 19$	410	-144
0	1	. 4 20

THE THIRD APPROXIMATION TO THE COMPRESSIBLE FLOW ABOUT CIRCULAR CYLINDERS

In reference -2, the opinion is expressed by Hooker that the terms involving $\left(r_{0}^{\prime} / c_{0}\right)^{2}$, thus far neglected, may become of considerable importance as the local relocity of sound is approached on the ellipse. Hooker, however, did not investigate the matter any further. In reference 4 , Poggi calculated these terms for the compressible flow about a circular cylinder, but a close examination of his work shows that not all such terms were taken into account. In what follows the terms neglected by Poggi will be obtained and compared with the already existing ones.

The fundamental integral equation (1) may be written - folle we:

$$
\begin{align*}
& {\left[1-\frac{\gamma-1}{2} \mu\left(1-\frac{\tau^{2}}{\tau_{0}^{2}}\right) \div \ldots \sin (\theta-\delta) d \lambda d \theta\right.}
\end{align*}
$$

where l, $\begin{gathered}\text { has been replaced by a power series in }\end{gathered}$ $\mu\left(=r_{0}^{2} c_{a}{ }^{2}\right)$ ohtained from equation (3); i. e.:

$$
c^{1}=\frac{1}{c_{1}}:\left[1-\frac{\gamma-1}{2} \mu\left(1-\frac{r^{2}}{r_{0}^{2}}\right)+\ldots\right]
$$

The methol followed by Poggi was to substitute for $r_{,}, v_{*}$, and $c^{\prime \prime}$ expressions pertaining to the incompressible flow and thus obtain the following result: ${ }^{1}$

$$
\begin{align*}
& \frac{\partial r}{2_{1}}\left(\frac{\because}{3} \sin \delta-\frac{1}{2} \sin 3 \delta\right) \mu+(\gamma-1)\left(\frac{23}{120} \sin \delta-\frac{11}{40} \sin 3 \delta\right. \\
& \left.+\frac{1}{5} \sin 5 \delta\right) \mu^{2}+\ldots \tag{23}
\end{align*}
$$

Thr whocity for the compressible fow at the surface of the a moubar cylinder then becomes:

$$
\begin{equation*}
\frac{v_{\text {con }}}{r_{v}}=\frac{v_{m, 0 m p}}{r_{0}}+\frac{\Delta r}{r_{i}} \tag{24}
\end{equation*}
$$

I-quation $\because 21$) thus represents the second approximabob th the compre-nble flow, the first approximation be fer the purd ineompressible flow given by $r_{\text {meompi }} i_{0}$.

The third approximation may be obtained, at least in promejpe, by whetituting for r_{t}, c_{θ}, and r^{2} in equation (2, exprevion- hated on the second approximation. such apronions, ar far as the terms involving μ are concemed, are given in reference 3 and are as follows:

$$
\begin{aligned}
& \frac{r}{r}=-\left(1-\lambda^{\prime}\right) \cos \theta-\mu\left[\left(-\frac{13}{12} \lambda^{2}+\frac{3}{2} \lambda^{4}-\frac{5}{12} \lambda^{6}\right) \cos \theta\right. \\
& \left.\div\left(\frac{1}{4} \lambda^{2}-\frac{1}{4} \lambda^{4}\right) \text { (os: } 3 \theta\right]-\cdots \\
& \text { i] } \cdot \lambda \cdot \sin \theta \cdot \mu\left[\left({ }_{12}^{13} \lambda^{2}-\frac{1}{2} \lambda^{4} \div \frac{1}{12} \lambda^{6}\right) \sin \theta\right. \\
& \left.\div\left(-\frac{3}{1} \lambda \cdot-\frac{1}{-1} \lambda^{i}\right) \sin 3 \theta\right] \div .
\end{aligned}
$$

where it is recalled that $\lambda=\frac{R}{r}$.
When the foregoing expressions are substituted into equation (22) and only the terms involving μ and μ^{2} are eraluated, it is found that, besides the terms given by equation (23), the following ones involving μ^{2} must be included:

$$
\begin{equation*}
\mu^{2}\left(\frac{37}{40} \sin \delta-\frac{25}{24} \sin 3 \delta+\frac{3}{5} \sin 5 \delta\right), \tag{25}
\end{equation*}
$$

These terms seem to hare been orerlooked by both Poggi and Pistolesi (reference 3).

The third approximation to the compressible flow at the surface of the circular cylinder then becomes:

$$
\begin{align*}
\frac{r_{\text {conp }}}{r_{0}}= & 2 \sin \delta+\left(\frac{2}{3} \sin \delta-\frac{1}{2} \sin 3 \delta\right) \mu \\
& +\left[\left(\frac{37}{40} \sin \delta-\frac{25}{24} \sin 30+\frac{3}{\delta} \sin 3 \delta\right)\right. \\
& +(\gamma-1)\left(\frac{23}{120} \sin \delta-\frac{11}{40} \sin 3 \delta\right. \\
& \left.\left.+\frac{1}{8} \sin 5 \hat{0}\right)\right] \mu^{2}+\ldots \tag{26}
\end{align*}
$$

It is interesting to compare the matgitudes of the Various tems in equation (2 (i) at the position of maximum velocity $\delta=\pi / 2$ and for the critical value $\mu=0.1670$ (obtaned bi means of equations (20) and (26)). Thus

$$
(\because \sin \delta)_{\delta=\frac{\bar{\sigma}}{2}}=2
$$

$$
\mu\left(\frac{2}{3} \sin \delta-\frac{1}{2} \sin 3 \delta\right)_{\delta=\frac{\pi}{2}}=0.194 S
$$

$$
\mu^{2}\left(\frac{37}{40} \sin \delta-\frac{25}{24} \sin 3 \delta+\frac{3}{8} \sin 5 \delta\right)_{\alpha-\frac{\pi}{2}}=0.0653
$$

$$
\mu^{2}(\gamma-1)\left(\frac{23}{120} \sin \delta-\frac{11}{40} \sin 3 \delta+\frac{1}{5} \sin 2 j\right)_{0-\frac{\gamma}{2}}=0.0067
$$

Thus, it is seen that the terms in olving μ^{2} do become of importance with regard to the μ temis as the local relocity of somed is approached on the circle and that the man contribution i- made by apresion (25).

Lasgley Memorial Aeronactical Laboratory,
National Advisory Committer rur Aeronaltics, Laxgley Field, Va., Februar! 11.1933°.

APPENDIX

Fince, by the bimmid! theorem,

$$
1-\sigma^{2} \lambda^{2}+\cdots a^{-1} \sum_{-3} \sigma^{2} \lambda^{-}, \cdots
$$

and

$$
11-\sigma^{2} \lambda^{2} e^{-a^{2}},^{-1}-\sum_{3-1}^{1} 1 \sigma^{-2} \lambda^{-1}, \cdots
$$

it follows that

$$
I I=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}\left(\sigma^{2} \lambda^{2}\right)^{j \cdot k} e^{-i, j-x ; *}
$$

Let

$$
j+k=n
$$

and therefore

$$
j-k=n-2 l, \quad j=n-l
$$

The double series then beeomes

$$
M=\sum_{i=1}^{\infty} \sum_{n=0}^{n}, \sigma-\lambda, n, \ldots,
$$

The tems of this aries can be remaper in pairs such that

$$
\begin{equation*}
I=\cdots \sum_{i}^{n} \sum_{-9}^{n}\left(\sigma^{2} \lambda^{n}\right)^{n} \cos (n-2 / r v \theta \tag{1}
\end{equation*}
$$

where $\frac{n}{2}$ or $\frac{n-1}{2}$ is the upper limit aroording as n is even or odd and where the factor 2 is omitted from the term for which n is even and $k=\frac{n}{2}$. This term is independent of θ and there is only one such term, not two.

The scries (1) may be written as

$$
H=\sum_{n=0}^{2} \sum_{k=0}^{n \cdot \frac{n=1}{2}} A_{n} \cos (n-2 h) 2 \theta
$$

where

$$
A_{n}=2\left(\sigma^{2} \lambda^{2}\right)^{n}
$$

Expanding this series and rearranging the terms in the form of a Fourier series,

$$
H=\frac{1}{2} \sum_{n=0}^{\infty} \Lambda_{2 n}+\sum_{n=1}^{\infty} \cos 2 n \theta \sum_{k=1}^{\infty} \Lambda_{n+2 k}
$$

But

$$
\frac{1}{2} \sum_{n=0}^{\infty} A_{2 n}=\sum_{n=0}^{\infty}\left(\sigma^{4} \lambda^{i}\right)^{n}=\frac{1}{1-\sigma^{1} \lambda^{t}}
$$

and

$$
\sum_{i=1}^{3} \lambda_{1, n}^{2}=\left(\sigma^{2} \lambda^{2} \sum_{0}^{2} \cos ^{4} \lambda^{4}\right)^{k}=\frac{2\left(\sigma^{2} \lambda^{2}\right)^{2}}{1-\sigma^{4} \lambda^{4}}
$$

'Therefore

If The Intecral-
and

$$
J_{2}=\int_{0}^{\because-} \frac{\sin (\theta-\hat{o})}{1-\hat{2} \cos (\theta-\delta)}-\lambda^{2} \sin n^{\theta} d \theta
$$

If $2 \cos (\theta-\delta)$ is replaced by $e^{:(\theta-5)}+\varepsilon^{-i(\theta-N)}$, then

$$
\begin{aligned}
& \frac{1}{1-2 \lambda \cos (\theta-\hat{o})+\lambda^{2}}=\frac{1}{1-\lambda e^{1: \theta-j)}} \frac{1}{1-\lambda e^{-\alpha ;}} \\
& =\frac{1}{e^{2(\theta-\bar{b})}-e^{-2 \cdot \theta-\hat{a})}}\left\{\frac{e^{1, \theta-j)}}{1-\lambda e^{1(\theta-\bar{\alpha})}}-\frac{e^{-1(\theta-j)}}{1-\lambda e^{-1(\theta-\bar{a})}}\right\} \\
& =\frac{1}{2 i \sin (\theta-j)}\left[\sum_{i=0}^{\infty} \lambda^{m} e^{i(m+n)(\theta-3)}-\sum_{n-1)}^{\infty} \lambda^{m} e^{-a n \cdot:}\right]
\end{aligned}
$$

Therefore

Roplacinge e^{+}by:

$$
\begin{aligned}
& J_{1}-i J_{2}=-!\oint^{!} \sum_{m=0}^{\infty} \lambda^{m} e^{-a m+1 ;}=\cdots \\
& -\sum_{i n=1)}^{\infty} \lambda^{n} e^{u \cdot n+!} z^{-n-n-n} d z
\end{aligned}
$$

Since

$$
\oint \tilde{z}^{p} l z=\begin{aligned}
& 0, \text { in ceneral } \\
& 2 \pi i, \text { when } p=-1
\end{aligned}
$$

it follows that $m=n-1$ and therefore

$$
I_{1}-i I_{2}=\pi i \lambda^{n-1} e^{i n \bar{\delta}}
$$

Hence, for $n \geqq 1$,

$$
\begin{equation*}
J_{1}=-\pi \lambda^{n-1} \text { sin } n \bar{o} \text { and } J_{2}=\pi \lambda^{n-1} \cos \mu \hat{o} \tag{3}
\end{equation*}
$$

III. The Fourier Expansion of

$$
\frac{1}{\left(1-2 \sigma^{2} \lambda^{2} \cos 2 \theta+\sigma^{4} \lambda^{4}\right)^{2}}
$$

In analogy to section I, replace $2 \cos 2 \theta$ b, $\epsilon^{2 \cdots-1} e^{-2 \theta}$. Then

$$
\begin{aligned}
H^{2} & =\frac{1}{\left(1-\sigma^{2} \lambda^{2} \cos 2 \theta+\sigma^{4} \lambda^{4}\right)^{2}} \\
& =\frac{1}{\left(1-\sigma^{2} \lambda^{2} e^{247}\right)^{2}\left(1-\sigma^{2} \lambda^{2} e^{-2!t}\right)^{2}}
\end{aligned}
$$

According to the binomial theorem

$$
\left(1-\sigma^{2} \lambda^{2} e^{2 i j}\right)^{-2}=\sum_{j=0}^{\infty}(j+1)\left(\sigma^{2} \lambda^{2}\right)^{2} e^{2 t j \gamma}
$$

and

$$
\left(1-\sigma^{2} \lambda^{2} e^{-2: \%}\right)^{-2}=\sum_{x=1}^{\infty}(k+1)\left(\sigma^{2} \lambda^{2}\right)^{k} e^{-2: * \theta}
$$

Therefore

$$
H^{2}=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}(j+1)(k+1)\left(\sigma^{2} \lambda^{2}\right)^{j+k} e^{2_{2}(j-k) \theta}
$$

Let

$$
j+k=n
$$

and therefore

$$
j-k=n-2 k, j=n-k
$$

Then

$$
H^{2}=\sum_{n=0}^{\infty} \sum_{k=0}^{n}(n-k+1)(k+1)\left(\sigma^{2} \lambda^{2}\right)^{n} e^{2 i(n-2 k) \theta}
$$

The exponent of c is $2 i[(n-k)-k] \theta$. If k and $n-k$ are interchanged, the exponent of e changes sign but the coefficient of e remains unaltered. The terms can therefore be grouped in pairs so that:
$H^{2}=-1 \sum_{n=1}^{\alpha} \sum_{k=0}^{n}, \frac{n-1}{2}(n-k+1)(k+1)\left(\sigma^{2} \lambda^{2}\right)^{n} \cos (n-2 l) 2 \theta$
where the factor $2 \mathrm{i}=$ omitted from the term for which n iv cuen and $h=\frac{n}{2}$.
'The -ric- (A, maty be writen ar
"hume

$$
I^{\prime}=\sum_{n-0}^{\infty} \sum_{n=1}^{\frac{n}{2}, \frac{n}{2}-1} A_{n, k}^{n} \cos \left(n-2 l_{i}\right) 2 \theta
$$

Espanding thi series and rearranging the terms in the form of a Fombier serio-

$$
H \cdot=-1 \sum_{-1}^{\infty} A_{23,!}+\sum_{n-1}^{c} \cos 2 \gamma \theta \sum_{k=0}^{\infty} A_{n+2 k, k}
$$

But

$$
\frac{1}{2} \sum_{k=0}^{\infty} A_{2 k . k}=\sum_{k=0}^{\infty}(k+1)^{2}\left(\sigma^{4} \lambda^{i}\right)^{k}=\frac{1+\sigma^{4} \lambda^{4}}{\left(1-\sigma^{4} \lambda^{4}\right)^{3}}
$$

and

$$
\begin{aligned}
\sum_{k=0}^{\infty} A_{n+2 k, k} & =2\left(\sigma^{2} \lambda^{2}\right)^{n} \sum_{k=0}^{\infty}(n+k+1)(k+1)\left(\sigma^{4} \lambda^{4}\right)^{k} \\
& =2\left(\sigma^{2} \lambda^{2}\right)^{n} \frac{(n+1)-(n-1) \sigma^{4} \lambda^{4}}{f\left(1-\sigma^{4} \lambda^{4}\right)^{3}}
\end{aligned}
$$

Therefore

$$
\begin{align*}
H^{2} & =\frac{1}{\left(1-\sigma^{4} \lambda^{4}\right)^{3}}\left\{\left(1+\sigma^{4} \lambda^{4}\right)+2 \sum_{n=1}^{\infty}[(n+1)\right. \\
& \left.\left.-(n-1) \sigma^{4} \lambda^{4}\right]\left(\sigma^{2} \lambda^{2}\right)^{n} \cos 2 n \theta\right\} \tag{0}
\end{align*}
$$

REFERENCES

1. Poggi, Lorenzo: Campo di velocitá in una corrente piana di fluido compressibile. Parte II.-Caso dei profli oitenuti con rappresentazione conforme dal cerchio ed in particolare dei profili Joukowski. I.Aerutecnica, vol. NIV, fasc. 5, May 1934, pp. 532-5:50.
2. Hooker, S. G.: The Tw Fluids at Sub-Sonic Speed: Past Elliptic Cylinders. K. \& M. No. 1684, Britith A. I. C., 1936.
3. Pistolesi, Enrico: La portanza alle alte velocitá inferiori a quella del sumo. R-mbe Aceademia ditalia, Classe delle Scienze Fisiche, Mat matiche e Naturali, vol. NIII, 1935.
4. Poggi, Lorenzo: Campu d. velociti in una correnta piana di fluido compresibible. I.Acrotecnica, vol. XII, fasc. 12, Dec. 1932, pp. 1579-1593.
