ND LE, pME pHE data : Data/MC comparisons
N. Saoulidou, Fermilab, ND/CC Phone Mtg 01-06-05

Outline

- Data/MC comparisons using a clean CC sample
- LE March data (whole data set)
- PME May data (fraction of total data set)
- PHE May data (fraction of total data set)
- Observations
- Summary/ Plans

Events, releases,POTs e.t.c

- March LE data
-POT : 5.470 E17(after imposing beam quality cuts)
-Release Data \& MC : R1.15
- March pME data
-POT : 5.318 E17(after imposing beam quality cuts)
-Release Data \& MC : R1.16
- March pHE data
-POT: 1.787 E17(after imposing beam quality cuts)
-Release Data \& MC : R1.16
- Known features of DATA \& MC :
-ND Not calibrated
-DATA \& MC have different Field Maps

Total Events \& Track Rates DATA/MC (pot normalization)

LE	EVENTS	TRACKS
DATA	20951	16713% of "good" tracks : 80\%
MC	20201	16971% of "good" tracks : 84%
diff	$+4 \%$	-1.5%
pME	EVENTS	TRACKS
DATA	36579	28773% of "good" tracks : 79\%
MC	41080	33327% of "good" tracks : 81\%
diff	-11%	-14%
pHE	EVENTS	TRACKS
DATA	18818	14982% of "good" tracks : 80\%
MC	20617	16800% of "good" tracks : 81%
diff	-9%	-11%

Total Events \& Track Rates DATA/MC con’t

- From previous number I can conclude that:

1) March LE event rates seem to agree within 5% between data and MC
2) May pME and pHE event data rates less by $\sim 10 \%$ than expectations.

Sam C. told me that ACNET devices that measure protons on target show different behavior with increase in beam intensity.

- March data <intensity>:8E12
- May pME \& pHE data <intensity>: 10E12
(Is that a significant difference? I don't know, need to find out more about this)
- May running so far shows a quite large beam sigma, which is again dependent on intensity. That could account for small percentage of "lost" POTs (again I want to test this with May data of smaller beam size)

All distributions shown are normalized on unit area (to better compare shapes), unless otherwise stated.

Reco Energy Distributions: Events with "good" track

 Red MC, Magenta : true CC , Blue true NC, Black Data

LE : Peak of energy distribution the same, higher energy tail in data
PME : Peak of energy distribution lower in data by $\sim 1 \mathrm{a} \mathrm{GeV}$ PHE : Peak of energy distribution lower in data by ~ 1 a GeV

- This time I started a bit backwards, from higher level plots to lower ones.
- The "good track" samples are enhanced in CC events BUT have large contamination in NC.
- For these initial studies I decide to impose a plane cut (40 planes) that rejects the vast majority of NC events, and I can use a clean CC sample.
- Of course later (in order not to bias myself) I would like to use "CC-like" events using the existing PIDs i.e David PDFs and my ANNs

Reco Energy Distributions : Events with "good" Long Track: Clean Sample of CC events

Red MC, Magenta : true CC , Blue true NC, Black Data

LE : Peak of energy distribution the same, higher energy tail in data PME : Peak of energy distribution lower in data by $\sim 1 \mathrm{a} \mathrm{GeV}$ higher energy tail in data
PHE : Peak of energy distribution lower in data by ~ 1 a GeV

- Differences are quite significant. Want to check muon momenta and shower energies for these events

Reco Shower Distributions : Events with "good" Long Track: Clean Sample of CC events
Red MC, Magenta : true CC , Blue true NC, Black Data

LE : Lower shower energy in data, clear excess on lowest bin PME : Lower shower energy in data, clear excess on lowest bin PHE : Lower shower energy in data, clear excess on lowest

- Differences are quite significant and in all three energy scales towards the same direction. Physics or detector/reco effect. I want to study that.

Reco Emu Distributions : Events with "good" Long Track: Clean Sample of CC events Red MC, Magenta : true CC , Blue true NC, Black Data

LE : Slightly higher momenta in data.
PME : Different shapes : excess of lower momenta in data, while high energy tail data slightly higher than MC.

PHE : Different shapes : excess of lower momenta in data and slightly higher momentum in MC.

- Differences are quite significant. In data, regardless of the momentum estimation, there is a significant excess of exiting tracks for the pME and pHE (not for low) (difference in magnetic field? Need to check with same field maps)

Reco Emu (range) Distributions : Events with "good" Long Track: Clean Sample of CC events Red MC, Magenta : true CC , Blue true NC, Black Data

LE : Less stoping tracks in data, contained tracks with slightly lower momenta

PME : Less stoping tracks in data, contained tracks with slightly lower momenta

PHE : Less stoping tracks in data, contained tracks with slightly lower momenta

- Differences are quite significant and in all three energy scales towards the same direction.

Y Distributions : Events with "good" Long Track : Clean Sample of CC events

Red MC, Magenta : true CC , Blue true NC, Black Data

LE : Excess of QE-like events in MC. Different shape at QE-RES region.

PME : Excess of QE-like events in Data. Different shape at QE-RES region.
PHE : Excess of QE-like events in Data. Different shape at QE-RES region.

Conclusions - Plans

* pME and pHE Data show quite significant differences from MC.
* These differences I believe are quite big to be accommodated by detector/reco effects. (under investigation)
* I am going to focus on initially selecting "easy/clean" populations of CC -DIS events (and possibly QE), in order to factorize and quantify differences.
* Suggestions are welcome.

