AMIDA RT07s speaker diarization system

EEPOUL

Matej Konečný and David van Leeuwen

TNO | Knowledge for business

TNO Defence, Security and Safety

40,404

Changes w.r.t. RT06s

- Project, name
 - EU AMI ended, EU AMIDA started
 - DA: Distant Access (not like MDM:)
- Personel
 - Marijn Huijbregts went from AMI to ICSI
 - Matej Konečný AMI/DA trainee from Brno with TNO
- Algorithm
 - Use MDM beamforming
 - signal enhancement
 - delay parameters
 - Cross Likelihood Ratio-based clustering (SID)
 - 'no more tunable parameters'
 - Minimum duration Viterbi-decoder
- Tasks
 - No lecture room, no more SAD :(,
 - Segmentation/clustering for STT, SASST

Overview

- Differences
- This overview
- Overview SPKR approach
- SAD experiments
- Overlap detection experiments
- Conclusions

AMIDA System design (Matej)

RT07s system: mix of choices

- Speech activity detection
 - Wiener filter
 - Initial segmentation
 - Re-segmentation / clustering
- Speaker/cluster modeling
 - Segmentation
 - Gaussian Mixture Models, #Gaussians(size data)
 - Cluster criterion
 - UBM-GMM, Cross-Likelihood Ratio

System design: front end processing

- Delay and sum beamforming
 - Use Xavie's BeamformIt 2.0
 - use only 32 ms window and 16 ms stepsize
 - different from 500 ms / 250 ms default
 - aligned with PLP feature extraction
- Use Wiener filtering noise reduction
 - after beamforming
 - Qualcomm-ICSI-OGI toolkit
 - SAD from toolkit
- Use SAD trained on
 - 10 AMI meetings from RT05s development, SDM
 - not beamformed/filtered

System design: features and modeling

- 13 PLP features (no derivatives)
 - ICSI / Dan Ellis' rasta tool
- N-1 delay parameters from delay&sum
 - N microphones in MDM
- Speaker/cluster modeled by Gaussian Mixture Model
 - 1 Gaussian for delay parameters
 - 1–64 Gaussians for PLP features
 - Cluster complexity ratio ~ 300
 - 4.8 sec speech / Gaussian
- Initialization of GMMs
 - doubling N_G until power of 2 below desired N_G
 - Iteratively increasing N_G by one

Segmentation

- Initialization
 - Generate initial segments using BIC segmenter / clusterer
 - $\lambda_{\text{BIC}} = 1$ for both
 - many short segments
 - many small clusters
- Use segmentation for training initial GMMs for diarization
- Viterbi re-segmentation (5x)
 - decode
 - keep track of $N_{\rm G}$ for each cluster dependent on amount of data
 - 4.8 sec / Gaussian
 - grow N_G by splitting
 - reduce N_G by retraining GMM from scatch

Segmentation

Clustering

- Build 64 Gaussian UBM from entire meeting (once)
- MAP adapt UBM to data found by segmentation
- compute cross likelihood ratio for each pair of clusters

$$R_{ij} = \frac{1}{n_i} \log \frac{p(x_i | \lambda_j)}{p(x_i | \lambda_{\text{UBM}})} + \frac{1}{n_j} \log \frac{p(x_j | \lambda_i)}{p(x_j | \lambda_{\text{UBM}})}$$

- Merge clusters i and j for which
 - *R_{ij}* is largest and
 - positive
- Stop if maximum $R_{ij} < 0$

Progress, effect of delay parameters

System	DER RT05s (overlap)	DER RT06s (overlap)	DER RT07s (overlap)	
AMI RT06s	21.7%	32.4%	26.2%	
AMIDA RT07s primary	16.3%	18.1%	22.0%	
AMIDA RT07s no delay params	20.5%	24.3%		

- System has become slightly more robust
- But there still is high variability along dataset
- Delay parameters seem to help quite a bit

Another SAD story

- Good history in Speech Activity Detection performance
 - using 10 AMI meetings for modeling non/speech
 - SDM
- This year using Forced Aligned reference non/speech
- Also using Beamforming/MDM
- Two sets of non/speech models
 - (1) original SDM AMI RT05s-dev
 - (2) new RT05/RT06 FA MDM beamformed
- Best results (mixsad)
 - using (1) for BIC segmentation/clustering
 - using (2) for final frame selection

Results 2006/2007, effect of Speech Activity Detection

BIC seg/ clust SAD	Final SAD	DER RT06s (overlap)	DER RT07s (overlap)	DER RT07s (no overlap)	SAD err
AMI	AMI	18.1%	22.0%	18.9%	6.7%
AMI	RT forced alignment	20.1%	17.0%	13.4%	2.9%
RT forced alignment	RT forced alignment		18.6%	15.3%	2.9%

- DER very dependent on SAD
- Still no consistent behaviour between RT years
- Still a lot depends on initialization of GMMs

Overlapping speech approach

- Two steps:
 - overlap detection
 - overlapping speaker attribution
- Cheating experiment:
 - perfect overlap detection
 - assign most talkative speaker as 2nd speaker
 - about 2% reduction in DER
- Overlap detection
 - BeamformIt: 6.65% FA @ 85.7% miss
 - *d'* = 0.2, or EER = 46%
 - not good enough detection
 - Training GMMs with/out overlapping speech, decode
 - Building 'overlapping' GMMs from 'single' clusters

Conclusions

- Front-end processing finally pays off
 - SNR improvement
 - delay&sum
 - Wiener filter
 - Modeling of Delay parameters helps
- Initialization of GMMs seems to be important
 - used deterministic estimation this year
- Hardly any 'tunable parameters'
 - Cluster complexity ratio
- SAD still very important
- Overlapping speech still is a challenge

