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EXECUTIVE SUMMARY 

This interim report describes an alternative approach for evaluating the efficacy of using mercury 

(Hg) offsets to improve water quality. Hg-offset programs may allow dischargers facing higher-pollution 

control costs to meet their regulatory obligations by making more cost effective pollutant-reduction 

decisions. Efficient Hg management requires methods to translate that science and economics into a 

regulatory decision framework.  

This report documents the work in progress by the U.S. Geological Survey’s Western Geographic 

Science Center in collaboration with Stanford University toward developing this decision framework to 

help managers, regulators, and other stakeholders decide whether offsets can cost effectively meet the Hg 

total maximum daily load (TMDL) requirements in the Sacramento River watershed. Two key approaches 

being considered are: (1) a probabilistic approach that explicitly incorporates scientific uncertainty, cost 

information, and value judgments; and (2) a quantitative approach that captures uncertainty in testing the 

feasibility of Hg offsets. 

Current fate and transport-process models commonly attempt to predict chemical transformations 

and transport pathways deterministically. However, the physical, chemical, and biologic processes 

controlling the fate and transport of Hg in aquatic environments are complex and poorly understood.  

Deterministic models of Hg environmental behavior contain large uncertainties, reflecting this lack of 

understanding. The uncertainty in these underlying physical processes may produce similarly large 

uncertainties in the decisionmaking process. However, decisions about control strategies are still being 

made despite the large uncertainties in current Hg loadings, the relations between total Hg (HgT) loading 

and methylmercury (MeHg) formation, and the relations between control efforts and Hg content in fish. 

The research presented here focuses on an alternative analytical approach to the current use of 

safety factors and deterministic methods for Hg TMDL decision support, one that is fully compatible with 

an adaptive management approach.  This alternative approach uses empirical data and informed judgment 

to provide a scientific and technical basis for helping National Pollutant Discharge Elimination System 

(NPDES) permit holders make management decisions. An Hg-offset system would be an option if a 

wastewater-treatment plant could not achieve NPDES permit requirements for HgT reduction.  
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We develop a probabilistic decision-analytical model consisting of three submodels for HgT 

loading, MeHg, and cost mitigation within a Bayesian network that integrates information of varying rigor 

and detail into a simple model of a complex system. Hg processes are identified and quantified by using a 

combination of historical data, statistical models, and expert judgment. Such an integrated approach to 

uncertainty analysis allows easy updating of prediction and inference when observations of model variables 

are made. We demonstrate our approach with data from the Cache Creek  watershed (a subbasin of the 

Sacramento River watershed).  

The empirical models used to generate the needed probability distributions are based on the same 

empirical models currently being used by the Central Valley Regional Water Quality Control Cache Creek 

Hg TMDL working group. The significant difference is that input uncertainty and error are explicitly 

included in the model and propagated throughout its algorithms. This work demonstrates how to integrate 

uncertainty into the complex and highly uncertain Hg TMDL decisionmaking process.  The various sources 

of uncertainty are propagated as decision risk that allows decisionmakers to simultaneously consider 

uncertainties in remediation/implementation costs while attempting to meet environmental/ecologic targets. 

We must note that this research is on going. As more data are collected, the HgT and cost-

mitigation submodels are updated and the uncertainties may be reduced. Subsequently, the value of using a 

probabilistic framework for estimating and explicitly stating these uncertainties within a decisionmaking 

process can be estimated when new data are collected. 

Future work includes the design and implementation of a Bayesian network  decision support 

system (BN-DSS) to produce mitigation scenarios for offset-project evaluation in the Cache Creek 

watershed. The decisionmaker, a wastewater-treatment plant, is expected to evaluate potential Hg-offset 

programs in terms of changes in HgT load changes, MeHg-production potential, project cost, and other 

suitability criteria. Subsequently, scenarios can be analyzed by performing sensitivity analyses and ranking 

environmental and economic uncertainties in terms of the decisionmaker’s preferences and risk choices. 

Such an analysis allows decisionmakers and stakeholders to explore various scenarios and predict the 

consequences of different stated preferences over outcomes.  
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ABBREVIATIONS  

Au: gold 
 
CWA: Clean Water Act 
 
DOC: dissolved organic carbon 
 
EE/CA: engineering evaluation and cost analysis 
 
EIR: environmental-impact report 
 
EPA: Environmental Protection Agency 
 
Hg: mercury 
 
HgT: total mercury 
 
MeHg: methylmercury 
 
NPDES: National Pollutant Discharge Elimination System  
 
NAWQA: National Water Quality Assessment Program 
 
PBT: persistent bio-accumulative toxic  
 
RWQCB: Regional Water Quality Control Board 
 
SRCSD: Sacramento Regional County Sanitation District  
 
TC (L10): total cost (logarithm base 10) 
 
TMDL: total maximum daily load 
 
TSS: total suspended sediment 
 
VolCY (L10): total volume in cubic yards (logarithm base 10) 
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 I. INTRODUCTION  

The United States Geological Survey (USGS)’s Western Geographic Science Center has 

developed empirical approaches for mercury (Hg) loading, remediation-cost estimation, and probabilistic 

decision making that can provide decisionmakers support for the analysis of point/non-point source 

contamination offset. We consider a hypothetical case, using data from the Cache Creek watershed. We 

develop a probabilistic decision-analytical model consisting of three submodels for total Hg (HgT) loading, 

methylmercury (MeHg), and cost mitigation.  

The HgT-loading submodel is developed for various reaches in a watershed where baseline 

loadings are treated as random variables with known conditional-probabilistic relations. In addition, linear-

regression models for predicting MeHg content in water and total offset-mitigation costs are also 

developed. A short discussion of each of these models and their role and interrelation provides the context 

for this report. These empirical models were conceived from past research using linear regression modeling 

to predict MeHg contents in fish (Brumbaugh, 2001) and offset-mitigation costs (Singer et al., 1998). 

 The three submodels are all components of a probabilistic Bayesian network framework. The 

Bayesian network decision analytical model allows the user to evaluate potential Hg-offset programs in 

terms of changes in HgT (from the HgT-loading submodel), MeHg-production potential (from the MeHg 

submodel), project cost (from the cost-mitigation submodel), and other suitability criteria. A probabilistic 

framework composed of the empirical models allows stakeholders to analyze various offset scenarios based 

on different remediation choices to see determine whether discharge-permit requirements can be achieved 

at minimal cost.  

The impetus for a potential Hg-offset program in the Sacramento River watershed originates from 

a National Pollutant Discharge Elimination System (NPDES) permit issued on August 4, 2000, to the 

Sacramento Regional County Sanitation District (2001) (SRCSD). The NPDES permit requires that the 

SRCSD study the feasibility of Hg-offsets. Offsets, which provide a mechanism to reduce Hg loads in the 

Sacramento River, can create the assimilative capacity needed to allow for the inevitable contribution from 

human-population growth. A future offset may be needed for the SRCSD because of potential human-

population growth and consequently larger discharge-effluent levels. Currently, the SRCSD discharges 

below its maximum permit levels.  
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In preparing its “Hg Offset Feasibility Study,” the SRCSD (Sacramento Regional County 

Sanitation District, 2001) has utilized a collaborative process that includes gathering stakeholders and 

soliciting their input, identifying potential projects, specifying project selection criteria, calculating 

creditable load reductions for selected projects, and selecting the most likely feasible study.1 Although over 

the past 2 years USGS and SCRSD staff have participated in several joint activities, including attending 

working- group meetings, reviewing draft documents, and frequently discussing the subject study, the 

present report should not be seen as a companion document or a derivative of the SRCSD process. As a 

result of the timing of SRCSD permit requirements and USGS research objectives, communication between 

the USGS and SRCSD has been more informative than collaborative. However, as the USGS implements 

these alternative statistical approaches, further collaboration between the USGS and SRCSD seems 

promising.  

The SRCSD decides whether offsets are in the best interest of the public should permit levels be 

exceeded in the future. The USGS has been funded to research a decision-theoretic approach to estimate the 

uncertainty in Hg levels and to help provide support for offset issues in future wastewater treatment 

decisionmaking. Two approaches being considered are (1) a probabilistic approach that explicitly 

incorporates scientific uncertainty, cost information, and value judgments; and (2) a quantitative approach 

that captures uncertainty in testing the feasibility of Hg-offsets. 

II. PROBLEM DESCRIPTION 

Mercury Issues  
 

Since the early 1800s, residual Hg from mining has been transported with sediment downstream 

into the Sacramento/San Francisco Bay estuary, where it is believed to have contributed to elevated Hg 

contents in fish, resulting in consumption advisories. Most of the Hg pollution in this area was from placer 

gold mines, which used Hg to extract gold through hydraulic, drift, and dredging methods (Alpers and 

                                                           
1 The SRCSD, along with the consulting firm Larry Walker Associates, initiated the offset discussions by establishing 

an offset working group composed of various Federal, State, and local agencies to evaluate and obtain consensus on 

key offset issues as a result of the many uncertainties involved with establishing potential offset projects. Although 

environmental-advocacy groups did not attend any of the working-group meetings, written input was supplied (See 

app. A).
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Hunerlach, 2000). Gold-enriched gravel deposits within the Sierra Nevada gold belt provided the basis for 

large-scale mining in California during the mid-1800s until the 1890s. Hg mines in the Coast Ranges of 

California provided the Hg used in placer mining, as well as contributing tailings to the Hg-enriched 

sediment in the San Francisco Bay estuary (Bradley, 1918).  

MeHg, an organometallic form of Hg, is a potent neurotoxin that accumulates in humans via fish 

consumption. As a result of its toxicity, numerous environmental studies of Hg contamination have been 

undertaken by various Federal and State agencies throughout California; many of these studies have 

focused on the Sacramento River watershed. The California Bay-Delta Authority2 currently has an Hg 

program, the CALFED Mercury Project,3 that assesses the ecologic and human-health impacts of Hg in the 

bay delta watershed. Past research includes assessments of avian Hg exposure, analysis of the effects of 

wetland restoration on MeHg production, and studies of the geochemical composition of Hg-rich mineral 

deposits.  

Much Hg research in the CALFED program has focused on the Cache Creek watershed because of 

its large Hg contribution to the Sacramento River watershed. Recently, the Central Valley Regional Water 

Quality Control Board (CVRWQCB) released a Cache Creek Hg total maximum daily load (TMDL) report 

outlining the numeric targets for MeHg, the types of Hg source, the linkage analysis between MeHg 

contents in water and large fish, and load allocations (Central Valley Regional Water Quality Control 

Board, 2004). A TMDL is developed under section 303(d) of the Federal Clean Water Act (CWA) to attain 

water-quality standards to protect beneficial uses. These types of TMDL analysis have significant 

implications for Hg management in California. Managing Hg, however, is quite complex as a result of 

physical (sediment dynamics), chemical (MeHg transformation), and biologic uncertainties (food-web 

dynamics and bioaccumulation).  

 

Despite the fact that Hg research has made great strides, the complexity of Hg speciation and its 

associated environmental impacts still challenge the scientific community. The scientific understanding of 

Hg biochemical cycling and transport within California is still incompletely known and contains significant 

                                                           
2 The California Bay-Delta Authority‘s mission is to develop and implement a long-term comprehensive plan that will 

restore ecologic health and improve water management for beneficial uses of the bay-delta. 

3 http://loer.tamug.tamu.edu/calfed/. 
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uncertainties that are not properly incorporated into the decisionmaking process. The CVRWQCB 

acknowledges these complexities and uncertainties in their Cache Creek TMDL report through such 

comments as “it is not possible at present to determine a scientifically defensible sediment mercury 

concentration that will protect the beneficial uses of Cache Creek” (Central Valley Regional Water Quality 

Control Board, 2004). As a s result, Cache Creek TMDL numeric targets and linkage relations are based on 

various deterministic mass- balance assessments, risk reference-dose calculations,4 and bioaccumulation 

factors incorporating implicit margin-of-safety factors.  

Site-specific fish-tissue water-quality objectives and implementation plans for Hg and MeHg 

reductions are anticipated for various watersheds throughout California, and so the CVRWQCB grants 

industrial facilities and wastewater-treatment plants HgT discharge-permit limits on the basis of a TMDL. 

Historically, improvements to water quality in the Sacramento River watershed have been associated with 

controlling point sources, such as discharge pipes from industry and water treatment facilities. Although 

reducing Hg loading to the basin by further controlling point sources (i.e., removing Hg from pipe outflows 

through additional treatments) may be possible, monitoring data suggest that the Hg content of treated 

effluent is minimal and that controlling point sources alone is unlikely to lead to significant improvements 

in reducing Hg loadings. In addition, it is believed that additional point-source-control technologies will be 

extremely costly. For these reasons, among others, the U.S. Environmental Protection Agency (EPA) and 

the regulated community have been interested in exploring the feasibility and cost effectiveness of focusing 

TMDL compliance efforts on controlling diffuse and presently unregulated (i.e., “nonpoint”) Hg sources in 

the Sacramento River watershed through offsets.  

 

Water-Quality Trading and Offsets  
 
Since the 1960s, although considerable progress has been made in reducing point- source 

pollution, the Nation’s water quality has not improved proportionately (Letson, 1992). As a result, 
                                                           
4 Acceptable levels of intake are called reference doses (RfD). An RfD, expressed as an average daily rate (micrograms 

of Hg per kilogram body weight per day) of Hg intake, is calculated by using studies of exposure in specific 

populations to determine a threshold level. This level is then divided by arbitrary uncertainty factors to account for 

differences in metabolism and sensitivity between individuals (Central Valley Regional Quality Control Board, 2004). 
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regulators have shifted their emphasis to non-point-source-related impairments, such as agriculturally 

driven nutrient enrichment and toxic contamination of fish tissue (Letson and Crutchfield, 1993). Non-

point-source pollution is transported by runoff from rainfall or snowmelt moving over and through the 

ground and deposited into sediment, soils, and various water bodies, endangering human health and the 

environment.  

A Non-point-source, technically and legally, is defined as any source of water pollution that does 

not meet the legal definition of a point source in section 502(14) of the CWA. According to the CWA, the 

term “point source” is defined as any “discernible, confined and discrete conveyance, including but not 

limited to any pipe, ditch, or channel” (CWA §502(14); see also 33 U.S.C. §1362(7); 40 C.F.R. §122.2). 

Although diffuse runoff is generally treated as non-point-source pollution, runoff that enters and is 

discharged from such conveyances as those described above is treated as point-source discharge (some 

types of stormwater runoff are subject to NPDES permits) and so is subject to CWA permit requirements 

[(402 (p) (2); (Hoag and Hughes-Popp, 1997)]. In contrast, non-point sources are not subject to Federal 

permit requirements.   

Point-source pollution has been controlled through the application of technology and water-

quality-based requirements administered by the States using the NPDES permit program (Stephenson et al., 

1998). Almost 87 percent of major municipalities and 93 percent of major industrial facilities were in 

compliance with NPDES permits by 1990 (U.S. Environmental Protection Agency, 2002). Despite these 

accomplishments, water- quality problems persist as a result of non-point-source pollution. Natural 

variations in non-point-source pollution, as well as political and legal issues, have made identifying and 

locating sources problematic, thereby hindering implementation of efficient regulatory approaches. Interest 

has been growing among private industries and regulatory agencies in using market-based incentives, 

particularly trading programs, for non-point- source mitigation to improve water quality in numerous 

watersheds and produce cost savings.  

Since the early 1980s, the EPA has been planning new and innovative schemes to manage and 

reduce NPS pollution, including trading programs. The EPA issued a broader Policy Statement on Effluent 

Trading in Watersheds (1996), a proposed water-quality trading policy (2002), and a final water-quality 

trading policy (2003) establishing a more clearly defined role for water regulation. The EPA supports and 

encourages water-quality trading programs for many purposes: to reduce the cost of compliance with 
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water-quality-based requirements, to offset growth, to achieve early reductions and progress toward water-

quality standards pending the development of such standards, and to establish economic incentives for 

voluntary reductions (U.S. Environmental Protection Agency, 2002).  

Trading programs were first used to provide greater flexibility for emission sources to meet air-

quality standards. The first practical application concerned the problem of sulfur dioxide emissions from 

coal-fired powerplants resulting in acid rain negatively impacting vegetation throughout the Eastern United 

States and Canada. Established under the 1990 Clean Air Act, the Acid Rain Program is the most widely 

known and successful trading program. Although cost savings have been difficult to measure because of 

the proprietary nature of industrial pollution-control/cost data, this program was expected to save more than 

$2 billion per year in compliance costs within the next decade relative to the cost of preexisting regulations 

(Jarvie and Soloman, 1998). Watershed-based trading may also provide for cost savings while still meeting 

the stringent limits expected to result from TMDL development (Borsuk and others, 2002).  

Trading programs are founded on the idea that it may be more economically efficient to have 

high-cost polluters pay low-cost polluters to reduce pollution further, providing more pollution reduction at 

a lower total cost (Baumol and Oates, 1994). Differences in the marginal costs of pollutant reduction arise 

because non-point source reduction is generally cheaper on a per-unit basis (relative to point-source 

control) because point sources commonly require expensive technological methods to control further 

discharge, whereas non-point sources rely on cheaper nonstructural methods to reduce pollutant loading. In 

other words, if it costs one entity much more than another entity to reduce the same amount of pollution, 

then these two entities can trade pollution credits. However, application of this theoretical ideal of 

marginal-cost differences becomes much more complex because of additional transaction costs (e.g., 

identifying and negotiating potential projects) that could negate the potential cost savings from trading 

between sources with different marginal costs. 

Under the EPA’s proposed policy to create pollution credits to trade or offset, sources must reduce 

loadings below their applicable trading baseline, which may be technology or water quality based, 

depending on the situation, in order to potentially create tradable credits. Currently, the EPA does not 

support trading or offsets of pollutants that are considered to be persistent bioaccumulative toxics (PBTs), 

such as Hg (U.S. Environmental Protection Agency, 2002). In 2003, the EPA provided funding for this 
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pilot project to assess whether such toxics as Hg could be traded or offset without inflicting irreversible 

health consequences. Potential offsets may include cleaning up Hg mine tailings, erosion control activities, 

and Hg-reduction programs (e.g. Hg recycling). An Hg-offset program would be established and succeed 

only if there was an active participant. Therefore, the approach described in this report evaluates the offset 

potential for Hg-related projects by integrating Earth science and economic information to identify a 

wastewater treatment plant’s interest in becoming an active offset participant (Wood and Bernknopf, 2003). 

 

III. A DECISION-ANALYTICAL MANAGEMENT APPROACH 
 

In thinking about reducing Hg loads and Hg fish-tissue levels within a watershed, decisionmakers 

face many uncertainties, both in terms of modeling current and future environmental behavior and in 

estimating economic outcomes (Labiosa, 2003), included:  

 

• Source and baseline HgT loadings 

• Amount of Hg methylated to form MeHg 

• Changes in Hg/MeHg downstream loadings as a result of changes in upstream loadings, 

given the importance of resuspended sediment as a source 

• Cost of a particular remediation (offset) program 

• Liability for a party paying for such projects in case of non-attainment of load-reduction 

goals (Labiosa, 2003) 
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Our study focuses on an alternative decision-analytical approach to the current use of margin of 

safety factors and deterministic models for Hg TMDL decisionmaking support. The approach uses 

empirical data and informed judgments to provide a scientific and technical basis for helping NPDES 

permit holders make management decisions at the regional watershed scale. Empirical submodels for Hg 

loading, MeHg, and cost mitigation are integrated within a probabilistic decision-support system (DSS) to 

produce various mitigation scenarios. Subsequently, scenarios can be analyzed by performing sensitivity 

analyses and ranking environmental and economic uncertainties in terms of a decisionmaker’s preferences 

and risk choices. In the following sections, we describe these submodels, how they relate to decision 

analysis, and how they can be integrated into a DSS to support Hg-offset program-evaluation and selection. 

Conceptual development of the DSS for the Cache Creek watershed is discussed in the section below 

entitled “Future Research.”  

Hg-program studies by the USGS’ National Water Quality Assessment (NAWQA) in the 

Sacramento River/San Joaquin Delta and San Francisco Bay, CALFED studies, and other additional Hg-

related projects in the region, suggested that the Cache Creek watershed, a major contributor to the annual 

Hg load of the Sacramento River, be selected as a pilot study (Foe and Croyle, 1998; Domagalski, 2002; 

Churchill and Clinkenbeard, 2003). The Cache Creek watershed (figure 1), which encompasses an area of 

approximately 3,000 km2 within the Coast Ranges (upstream areas consist of low, forest, and grazing hills) 

and the Sacramento Valley of California (downstream flatter areas are used mostly for crop production) 

(Domagalski et al., 2004) is considered a significant Hg source, both from anthropogenic sources of 

inorganic Hg (abandoned and inactive mine sites) and natural sources (geothermal springs and native soils), 

to the Sacramento River/San Joaquin Delta and San Francisco Bay. As a result of deposition over the past 

100-150 years by stormwater runoff, abandoned mines, and geothermal sources, streambed sediments is a 

significant source of Hg and MeHg in the Cache Creek watershed (Foe and Croyle, 1998; Domagalski et 

al., 2004). In the following sections, we describe our approach to water-quality-management decisions for 

the Cache Creek watershed.  
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                                  Figure 1. Cache Creek watershed in north-central California 

Decision Analysis for Water Quality Management 
 
Although decision analysis for water-quality management could be done by using a wide variety 

of approaches to water-quality/natural-system forecasting approaches, the research outlined here uses 

Bayesian network models to forecast water-quality and ecologic responses to mitigation strategies. Such 

models are probabilistic representations of a system (Shachter, 1988; Jensen, 2001) in which related 

variables represent a water quality management problem (Varis, 1995; Reckhow, 1999; Borsuk et al., 

2003). Bayesian networks are structured in terms of cause-and-effect relations between random variables 

that describe environmental end points of interest. The probabilistic method contrasts with the deterministic 

approaches currently in use that model system behavior on the basis of mathematical representations of the 

underlying mechanisms and on deterministic approaches that ignore uncertainty. A Bayesian network 

decision-analytical tool has distinct advantages over other decision frameworks, including:  

 Representation and propagation of uncertainty in a computationally efficient manner;  

 Integration of diverse information, including the results from, e.g.,  science-and- engineering models, 

cost-benefit analysis, empirical data summaries, decisionmaker preferences, and expert judgment; 

 Integration of predictions of mitigation consequences into a model that evaluates the various possible 

consequences; and 

 Inclusion of sensitivity analysis and evaluation of “decision robustness.”  
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Because the uncertainties involved in estimating HgT loading and predicting the environmental impacts of 

load-reduction projects are significant, an approach that explicitly treats uncertainty is useful for decision-

support activities (Varis, 1994). The discussion in the rest of this section is largely based on previous work 

(Labiosa, 2003). 

The proposed decision-analytical approach utilizes Bayesian rules and allows the decisionmaker to 

combine various types of information into a unified probabilistic framework. For decisions that involve 

perturbations to complex natural systems, Bayesian networks that are built from the best available scientific 

models, data, and expert judgments can be used to predict the probabilities of the various outcomes of those 

decisions (Reckhow, 1999; Borsuk et al., 2001, 2002; Stow et al., 2003). In practice, empirical models and 

expert judgment are straightforward means to create the needed probabilistic relations.  

A decision-analytical approach recognizes and frames the decisionmaking problem in terms of 

alternatives, information, and preferences. Within the context of environmental decisionmaking that affects 

diverse stakeholders, these terms could be cast as (1) decision framing and strategy generation; (2) data 

interpretation, environmental modeling, and forecasting; and (3) group-preference elicitation (e.g., 

multiattribute utility analysis), negotiation among stakeholders and decisionmakers, or other methods of 

eliciting and representing preferences. The goal of decision analysis is to create clarity of action in a 

complex decision situation, in spite of significant uncertainty (Howard, 1984). Decision analysis is a 

theoretically sound approach for making decisions under uncertainty (e.g., Howard, 1968; 1988; Keeney 

and Raiffa, 1976; Clemen, 1996; Merkhofer, 1999).5

A Bayesian network approach estimates best decisions, given the decisionmakers’ consensus on 

information, alternatives, and preferences and allows the modeler to focus on predictive accuracy over the 

temporal and spatial scales desired for the variables of interest to the decisionmakers, removing details that 
                                                           
5 Many examples of the use of decision analysis for environmental decisionmaking exist in the literature, generally in 

the area of site selection or choice between remediation, restoration, or technology (e.g., Keeney, 1980; Merkhofer and 

Keeney, 1987; Maguire and Boiney, 1994; Reckhow, 1994a; Merkhofer et al.., 1997; Perdek, 1997; Kruber and 

Schoene, 1998; Freeze and Gorelick, 1999; Merkhofer, 1999; Bonano et al.,. 2000; Anderson and Hobbs, 2001; 

Labiosa 2003).  In addition, more recent work has demonstrated that water quality can be effectively modeled by using 

Bayesian networks, producing results that are comparable to those from more complex mechanistic models (e.g., 

Reckhow, 1999; Borsuk et al., 2001, 2002; Stow et al., 2003). 
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are determined to be extraneous to the decisionmaking problem. All decisionmaking is subjective, and so 

any decision- analytical tool must be modified to reflect the beliefs and preferences of the decisionmakers 

before use. As Reckhow (1999) pointed out, this approach generally leads to superior predictive accuracy 

compared to complex mechanistic scientific models of water quality impacts at the temporal and spatial 

scales of interest to decisionmakers.  The loss of mechanistic descriptive power is compensated by the 

ability to perform sensitivity analyses, explore scenarios probabilistically, and estimate the probability that 

water-quality indicators will meet targets, all of which provide useful information to decisionmakers. 

Because compliance is predicted probabilistically, the procedure of using arbitrary margin-of-safety factors 

to hedge against uncertainty can be replaced by an explicit consideration of uncertainty and its 

consequences for mitigation decisions.  

 From a decision analytical perspective, the tradeoff between mitigation costs and the probability 

of compliance (a measure of decision uncertainty) with various environmental/ecologic targets can be 

explicitly modeled with no need for safety factors or other arbitrary hedges against risk (Labiosa, 2003). 

This concept, a basic economic preference, may prove useful for evaluating mitigation strategies because 

strategies that yield higher probabilities of success would naturally be more appealing at a given cost.  

The proposed approach recognizes that the uncertainties in model inputs and propagated through 

the relations between system variables may result in large uncertainties in the relations between mitigation 

efforts and effects on the environmental end points of interest, e.g., HgT loadings and MeHg contents in 

water and fish tissue.  A decision-analytical approach is used so that these large uncertainties can be 

meaningfully interpreted within the decisionmaking context.  Current models incorporate uncertainty 

unsystematically, commonly through consideration of liability and risk outside the analytical framework, or 

by using safety factors and other hedges in the analysis to accommodate uncertainties. As pointed out in the 

literature, probabilistic forecasting approaches are superior to deterministic approaches for supporting 

complex decisions (Howard, 1968; Morgan and Henrion, 1990; Clemen, 1996; Clark et al, 2001). 

 
 

Total-Mercury-Loading Submodel 
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The first submodel is a probabilistic HgT-loading model for the Cache Creek watershed that 

allows the user to predict, on the basis of available data and best understanding of the system behavior, how 

HgT-reduction projects will affect downstream water quality at several points of interest. This submodel 

was designed and researched this past year in collaboration with researchers at Stanford University 

(William Labiosa, James Leckie, and Ross Shachter, written commun., 2003) for a Bayesian network (see 

app. B) that treats HgT loading and streamflow within the various defined stream segments of the Cache 

Creek watershed (fig. 2) as random variables with known conditional probabilistic relations. Data, received 

from the CVRWQCB TMDL working group, included sampling-site name, date of sample taken, HgT and 

MeHg contents, total-suspended-sediment (TSS) concentration, and streamflow data. The HgT-loading 

submodel is developed by estimating the conditional probabilities for various stream segments in the Cache 

Creek watershed, using a log-log (base e) empirical-linear regression model relating Hg load to 

streamflows (flow range, e.g., {<X, [X,Y], >Y}) and season (water season: {wet, dry}) in each stream 

segment.  

 

 

 

 

Streamflow da
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Figure 2. Defined stream segments of the Cache Creek watershed, north-central 

California (fig. 1), showing data flow 
ta are partitioned by range and season to achieve approximately Gaussian HgT 

 space. Flows are simulated by bootstrapping (repeated sampling with replacement) 

w data for each partition. Model error is represented as a random log normally 

19



distributed additive term. The HgT probability distribution, {HgT load|season, flow}, is simulated by using 

Monte Carlo analysis that samples from bootstrapped flows and the random-error term. The HgT loadings 

for each partition are combined by using standard Bayesian-network algorithms to generate the HgT 

distribution over the water year; e.g. the regression equation developed for the Sulphur Creek segment is: 

 
 ln(HgT load, in grams per day) = 0 + 1*ln(streamflow, in cubic feet per second) + ,   (1) 
 

where  is an error term that is assumed to be normally distributed around the predicted value with a 

constant variance. Loading regression equations for the various stream segments differ in dependence on 

Hg-loading contributions from upstream segments. A conceptual Hg-loading submodel for the Sulphur 

Creek and Lower Bear Creek segments is illustrated in figure 3.   
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        HgT load , 
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          HgT load,
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Figure 3.  HgT-Loading Bayesian Network Sub model for Sulphur Creek and Lower Bear Creek 
segments of the Cache Creek Watershed, north-central California (figs. 1,2). 
verall HgT-loading submodel for the Cache Creek watershed is composed of similar 

 the various stream segments and can be shown at the level of detail for individual stream 

ggregated at a watershed-level loading model. Fitting parameter nodes are probabilistically 

the network (i.e., their contribution to the overall uncertainty is incorporated into the 

es), leaving only the variables of interest to decisionmakers. These probabilistic relations are 

able data and can be adjusted as necessary with new sample observations or expert judgment. 

yesian network models for the various stream segments of the Cache Creek watershed are 

g developed by using this procedure. 
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Methyl-mercury Submodel 

 The MeHg submodel uses linear regression to predict MeHg content in water, which have been 

shown by various field-based studies to be an important indicator for predicting Hg uptake in biota (Slotton 

et al., 2004). The chemical transformations of Hg into MeHg have challenged researchers for many years. 

Although scientists have identified some of the critical processes and variables that may be important for 

MeHg production [e.g., temperature, sulfate, dissolved organic carbon (DOC), pH, and wetland density] 

(Marvin-Dipasquale, 2000) the complexity of these processes in various aquatic environments has 

precluded defining general controls on MeHg formation in all types of ecosystems.  

 Because no generally agreed-upon approach exists, our effort began with testing different 

statistical approaches for estimating MeHg content in water (see app. C). On the basis of scientific expert 

judgment, a linear regression is calculated by using variables believed to be significant in the Cache Creek 

watershed to predict MeHg content in water. This method was previously by Brumbaugh (2001) to estimate 

the MeHg contents of fish in watersheds throughout the United States. Again, those data were collected 

from by the Cache Creek CVRWQCB TMDL working group. Sampling sites were categorized on the basis 

of data availability and past studies (fig. 4).  
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Figure 4. Cache Creek watershed in north-central California (figs. 1,2) showing locations of sampling sites (numb ). 
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Several quantitative (HgT content, streamflow data, TSS concentration, and elevation) and 

qualitative [seasonal effect (dry/wet) and a natural sulfur effect] variables were tested to predict MeHg 

content in water. Qualitative variables were those that were deemed important by expert judgment, as 

indicated by a one (1) if the variable is present and a zero (0) if the variable is absent. 

Seasonal variation is an important indicator to take into account in measuring HgT and MeHg 

contents and loadings in the Cache Creek watershed (figs. 1,4). The seasonal effect is indicated by the 

“dry” season (1 in the regression), which is synonymous with the irrigation season that begins on April 1 

and ends on October 31 each year.6 The implication is that "dry”-season flows are generally comparable to 

or greater than "wet”- season (0 in the regression) flows in the North and South Forks. Indian Valley (North 

Fork) and Clear Lake (South Fork) are the major sources of water in the basin, averaging 24% and 58%, 

respectively, of the measured streamflow during the 5-year sampling period (Central Valley Regional 

Water Quality Control Board, 2004). 

Downstream flows from Clear Lake and Indian Valley Reservoir are controlled for release during 

the summer irrigation season for Yolo County (Schwarzbach et al, 2001; Central Valley Regional Water 

Quality Control Board, 2004; Domagalski et al., 2004). During this period, downstream irrigation usage 

removes most of the water volume, diverting flow at Capay Dam into irrigation canals, resulting in minimal 

flows at the outlet of the Cache Creek watershed (CVRWQCB, 2004; Slotton et al., 2004). The point is, 

however, that the flows are managed in much of the watershed north of Rumsey according to a particular 

calendar. Finally, the CVRWQCB Cache Creek TMDL report (Central Valley Regional Water Quality 

Control Board, 2004) states that MeHg contents are observed to be higher in the early, “dry” summer, when 

in place production is greatest, and after the first storms, when MeHg produced in the tributaries is flushed 

downstream (Slotton et al., 2004). 

An additional fixed-effect variable that was insignificant at the p=0.05 (95%- confidence) level for 

the regression model is a sulfate effect, which is important in MeHg production (a statistically positive 

relation) through sulfate-reducing bacteria. Bear Creek and Sulphur Creek are both “hotspots” for sulfate 

derived from geothermal and mineral springs. Sulphur Creek during low flow conditions is dominantly hot 

spring effluent water that differs considerably from water in the other Cache Creek tributaries because of 
                                                           
6 Adopting a fixed-effect variable of dry/wet season for this regression is watershed site specific because of geography 

and watershed resource-management needs. 
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high salinity (Hg chloride complexes are more bioavailable), sulfate, boron, and organic acids. In addition, 

this continuous source of sulfate from Sulphur Creek becomes available for the growth of sulfate-reducing 

bacteria and subsequent MeHg production. These bacteria are active in anaerobic sediment, not in the river, 

within an anoxic environment.  

Hg loads in Bear Creek are largely influenced by Sulphur Creek, a tributary to Bear Creek (figs. 

1,2). Sulfur Creek drains the Wilbur Mining District which includes the Elgin Mine, the Wide Awake 

Mine, the Abbot Mine and the Empire Mine (Suchanek et al., 2002). Bear Creek receives recently 

deposited Hg - sulfide and Hg-enriched pyrite that is being deposited from hot springs which vent in and 

near Sulphur Creek, as well as higher-sulfate water discharged from the hot springs in Sulphur Creek and 

cold carbon dioxide high-sulfate springs that vent along Bear Creek (Oscarson et al., 1992). Therefore, 

Bear Creek and Sulphur Creek distinguish themselves from most other tributaries to Cache Creek because 

of this direct input of recently deposited Hg and sulfate. Bear Creek loads are typically a smaller part of the 

Cache Creek load in general, but Bear Creek may contribute more of the Hg load in early season storms 

(Central Valley Regional Water Quality Control Board, 1998), when the other two tributaries with 

reservoirs are in storage mode (Schwarzbach et al., 2001). 

The linear regression MeHg submodel was estimated by using the S-plus statistical data analysis software of 

Insightful Corp. Many different models were examined with alternative combinations of independent variables.  The 

results for the MeHg submodel are expressed as:  

 

y = -0.817 + 0.43*HgT(log 10) - 0.072* FL(log 10) - 0.19*Elev (log 10) + 0.45*DRY     (2) 

 

All the independent variables in equation 2 were significant at the p = 0.05 (95%-confidence) level where y 

is the logarithm of total MeHg content in water, HgT is the HgT content in water at a particular sampling 

site, FL is the streamflow (in cubic feet per second), Elev is the elevation (in feet), and DRY is the dry 

season (1 = yes, 0 = no). The linear regression had 122 degrees of freedom [the number of samples tested 

(127) minus the number of terms estimated (5) (independent variables and intercept)]; a standard error of 

0.37, and an r2 factor of 0.63 (an r2 factor measures the proportion of the total variation of log MeHg that is 

explained by the model). In other words, about 63% of the variation in MeHg content can be explained by 

equation 2.  
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Given these specifications, we might include expecting a higher MeHg content in water at higher 

HgT content (larger potential for HgT methylation), at lower streamflow levels (slow-moving waters, 

allowing methylation), lower elevation (areas containing more organic material), and in a “dryer” season 

(more organic material available for reactions). On the basis of these relations, our results agree with those 

of previous field- based studies (Domagalski et al., 2002).  

Regression results for MeHg content in water are mapped in figure 5 to provide decisionmakers 

with a geospatial visual resource showing areas of high methylation potential and subsequently potential 

offset-mitigation projects if target reductions include MeHg reduction. The predictions at each sampling 

site consist of two types of estimated MeHg content: (1) predictions using the same variables from the 

regression (127 samples), and (2) predictions based on other samples without measured MeHg content but 

using the input variables from the regression (196 samples).  

The regression results for MeHg content in water mapped in Figure 5 agrees with observations 

from CALFED studies and past Hg research in the Cache Creek watershed (figs. 1,2). The highest MeHg 

contents are predicted for the tributaries to Sulphur Creek, the main stem of Sulphur Creek, and the 

tributary to Harley Gulch West –all areas that are known to have Hg sources with high levels of HgT and 

sulfate which contribute to MeHg formation. The CVRWQCB Cache Creek TMDL report (Central Valley 

Regional Water Quality Control Board, 2004) states that the “watershed above Rumsey was the major 

source of MeHg. The highest concentrations and production rates were observed below the Hg mines in 

Harley Gulch, and Sulphur Creek and Bear Creeks and in the canyon above Rumsey.” 
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Figure 5. Cache Creek watershed in north-central California (figs. 1, 2), showing locations of sampling sites (numbered circle orrelated with median MeHg content at each sampling site 
as predicted from equation 2. 
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The higher MeHg concentrations downstream at the settling basin are attributable primarily to 

resuspension of previously deposited Hg in the bottom sediment because of the managed flows (Domagalski et 

al, 2004). The broad, flat flood plain between Capay Dam and the settling basin is undergoing continuous 

streambed erosion and redeposition of Hg-enriched sediment during all but the highest streamflows (Central 

Valley Regional Water Quality Control Board, 2004). Downstream irrigation usage (as well as evaporation, 

ground-water recharge, and consumption by riparian vegetation; Central Valley Regional Water Quality Control 

Board, 2004) removes most of the water volume, resulting in minimal flows at the outlet of the Cache Creek 

watershed and providing suitable conditions for methylation (Foe and Croyle, 1998; Slotton et al., 2004). 

The uncertainty in the predicted MeHg content at sampling sites in the Cache Creek watershed  is 

illustrated  by a plot of minimum, maximum, median, and 25th  and 75th percent in figure 6. Consideration of the 

variation or uncertainty in outcomes is essential when analyzing various remediation scenarios. As more data 

become available for each of the sampling sites over various seasons, seasonal aspects (by calendar) of MeHg 

production could be more thoroughly tested and incorporated into the model if significant (Slotton et al., 2004).  

 

 

 

 

 

T

 

Figure 6. Predicted MeHg Contents in Water at sampling sites in the Cache Creek Watershed, north-central 
California (figs. 1,2). Maximum value was 8.8 ng/L at sampling site 9 and 2.6 ng/L at sampling site 14.  
he date in figures 5 and 6 provide decisionmakers with visual resources to assess areas of the Cache 
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Creek watershed that may contain high MeHg contents in water (e.g., Sulphur Creek, Sulphur Creek tributaries, 

Harley Gulch, fig.2), as well as indicating where MeHg contents are high and targeting those areas for offset 

projects (again, if the permit requirements target MeHg-content reductions). The considerable uncertainty in 

MeHg content at particular sampling sites is also evident. Subsequently, these results can be used as inputs to 

the Bayesian probabilistic framework. We note that the regression equation does not address other factors 

affecting total MeHg content in water, such as demethylation processes (Marvin-Dipasquale et al., 2000).7

The difference between predicted and observed MeHg contents at various sampling sites in the Cache 

Creek watershed in the linear regression model are plotted in figure 7. Two observations can be gained from 

such a plot. The observed MeHg contents in most of the samples from the North Fork at Highway 20 are 

overpredicted suggesting a seasonal effect. Newly flooded impoundments are known to increase the 

methylation rates, but Indian Valley Reservoir (at the headwaters of the North Fork) has been in operation since 

1975 and should therefore act as an environment for decreasing MeHg contents (Domagalski, written commun., 

2004). In contrast, the observed MeHg contents in the samples from Upper Bear Creek are underpredicted, 

suggesting an unmeasured “sulfate effect.” MeHg contents are expected to be higher at Rumsey than at Clear 

Lake because of runoff from geothermal sources and because of naturally occurring Hg in upstream soils 

(Domagalski et al., 2004). Although these effects were not statistically significant in the regression model, the 

plots in figures 6 and 7 suggest the importance of these effects and may be used to direct additional sampling in 

the future. 

                                                           
7 See app. D for summary statistics of the MeHg submodel  
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Figure 7. Logarithms. The diagonal line is used to illustrate which observed samples are over and under-
predicted from the regression equation. Samples above the line are under-predicted and those below the 
line are over-predicted.  
Though equation 2 may provide suitable results for the Cache Creek watershed, the terms used in the 

ation may not necessarily provide suitable predictive power for other watersheds, within the Sacramento 

er basin or elsewhere, because of uncertainties in the factors promoting methylation and demethylation. 

rther testing of the regression model will be conducted after additional data have been collected (see app. E). 

st-Mitigation Submodel 
 
The cost-mitigation submodel uses a multivariate-regression approach to predict a remediation cost 

ed on environmental and locational attributes and a series of fixed-effect variables to help wastewater 

atment plants decide whether offsets are cost effective, and whether a financial incentive of implementing an 

set exists. For example, remediation costs could be minimized by cleaning up mine tailings instead of 

29



building a new treatment plant or installing tertiary controls.8 Total offset costs are composed of remediation 

costs and transaction costs:  remediation costs include capital (investments in plant and equipment) and 

operating costs (regular and periodic expenditures on labor and materials) and generally are estimated through 

standard engineering procedures; transaction costs include time searching for offset partners, bargaining and 

negotiating, administrative costs, and liability costs (costs to gain liability protection for mine remediation). 

An alternative approach for estimating remediation costs is to use statistical methods, similar to how 

mining costs have been estimated (Singer et al., 1998). Several different potential offset-remediation projects 

(e.g., abandoned mines, best management practices) may be undertaken with different costs (Wood, 2003) 

Because hundreds of potential remedial solutions for Hg control exist, a simple and consistent approach could 

be used to estimate the expected total cost for each of these potential controls without spending large amounts 

of time and money. In our empirical approach, transaction costs are estimated on the basis of a literature review 

of liability issues.  

Remediation Costs   

Engineering cost estimates are typically made through methodical steps based on standard engineering 

practice. Project costs are site specific. Site variables commonly include type of contaminant, type of 

remediation technology selected, size of affected area, characteristics of the contaminants, and required cleanup 

standards (Federal Remediation Technologies Roundtables, 1998). Costs are estimated on the basis of various 

worksheets under such categories as source control, active treatment, passive treatment, general treatment and 

polishing, and discharge methods (Tetra Tech, Inc., 2000). Costs are generally broken down into capital (one-

time costs typically occurring at the beginning of a project: construction, equipment, and installation) and 

operating costs (recurring costs: costs associated with doing the work necessary to maintain required 

remediation levels, labor, etc.). Use of these worksheets, though consistently practices by engineers, is time and 

resource intensive. For selecting an Hg-offset program, these approaches would have substantial upfront costs 

requiring estimation for hundreds of various sites.  

One example of such an evaluation is the Engineering Evaluation and Cost Analysis (EE/CA) for 

remediation of Hg associated with multiple abandoned mines and geothermal springs within the Sulphur Creek 

                                                           
8 These are only hypothetical examples of what WWTP could do; however, it is not known for certain what the WWTP 

would have to do, if anything, in order to meet current or future discharge permit requirements. 
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Mining District, a subbasin of the Cache Creek watershed (Tetra Tech, Inc., 2003). The purpose of the EE/CA 

is to present a detailed analysis of remediation alternatives that regulatory agencies and the scientific 

community can use for decision-making. Although the EE/CA provides a comprehensive assessment of specific 

engineering controls and mine-remediation alternatives, the process was time and resource intensive (~2 years). 

In addition, the actual remediation decisions that are made under the recommendations of the engineering 

analysis may take additional time and resources. Under this EE/CA, the selection of the appropriate remediation 

alternative(s) for mines throughout the entire Sulphur Creek Mining District depended on six different 

categories subject to three phases of screening and evaluation (Churchill and Clinkenbeard, 2003; Tetra Tech, 

Inc., 2003). This process itself may prevent decisionmakers from identifying and selecting the solution in a 

timely manner. Given the nature of TMDL analyses, permit requirements, and budget limitations, decisions 

need to be swift and expeditious.   

A regional multivariate-regression model can provide decisionmakers with an initial indication of what 

a mitigation project may cost on the basis of the physical and locational attributes of existing projects. Once a 

group of projects are identified as being possibly cost effective, a refined EE/CA could then be performed for a 

few selected sites. Quantitative attribute data collected include total cost, total soil volume treated/collected (in 

cubic yards), and elevation (in feet) of the site; qualitative data include ownership of the property (private or 

public), location in California or not, project area containing acid mine drainage or not, high or low slope of the 

remediation area, and type of mineral deposit in the remediation area (e.g., silica-carbonate Hg, epithermal gold, 

gold, porphyry copper, massive sulfide, industrial). 

A national database was developed, primarily of mine sites, for this regression to provide as large a 

dataset as possible (see app. F). Numerous project managers from local, State, and Federal agencies provided 

cost and attribute data for various past, current, and proposed projects. In addition, data were collected from the 

EPA’s Superfund database. Results are based on currently available data.9 A subsidiary USGS report (Wood, 

2003) describes how the database was developed and how the remediation-cost estimates were normalized into 

same-year costs. These results show that the following three variables were significant: porphyry copper (PoCu) 

(a type of mineral deposit), whether the site is in California (CA) or not, and the logarithm of volume in cubic 

yards (VolCY L10). The coefficient of determination, r2, is 0.76. About 76% of the variation in total costs can 

be explained by the three-variable regression equation. The cost mitigation submodel produced the following 

                                                           
9 Linear-regression analysis was conducted by using S-plus software. 
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equation based on 30 data points (see app. G): 

 

y = 5.05 + 0.77PoCu – 0.62CA + 0.39VolCY L10                  (3) 

 

All the independent variables in equation 3 were significant at the p = 0.05 (95%-confidence) level 

where y is the predicted total cost (logarithm) for any type of remediation project.10 This empirical approach can 

provide decisionmakers with a screening tool to identify potential cost-effective mitigation scenarios by using 

the coefficients to estimate a dollar cost.  

Testing the Cost Mitigation Submodel  

Although the cost mitigation submodel was developed from a national database that included variables 

which may not be relevant on a regional and (or) local scale, these cost estimates are tested against those in 

Tetra Tech, Inc.’s (2003) EE/CA report for the Sulphur Creek Mining District. The attribute inputs -- offset 

project site, total volume (in cubic yards) of mine waste mitigated, location of offset project site, and deposit 

type – are listed in table 1, and the USGS and Tetra Tech, Inc. cost estimates based on these input values are 

listed in table 211 (Tetra Tech, Inc., 2003, table 9-11). The cost estimates for these sites are based on the selected 

mitigation strategy and waste medium at each site. The linear-regression  total-cost outputs are listed in table 2 

along with Tetra Tech, Inc.’s cost estimates and the differences between the two estimates. The USGS 

regression-cost model is compared with Tetra Tech, Inc.’s engineering estimates in figure 8. Appendix H 

verifies that the cost mitigation submodel passes all the requirements of linear regression models. 

 
 
 

Table 1. Environmental and Locational Attributes       Table 2. Total-Cost Estimates  
Vol. CY = volume in cubic yards, CA = California,         USGS = U.S. Geological Survey, 

                                                           
10 We note that the development of this submodel is on going. The analysis depends on the availability and accuracy of the 

data attributes. Updating the database may cause some attributes to be added to or dropped from equation 3. 

11 Only final mitigation strategy cost estimates were used for this example. Transaction costs are omitted in this comparison 

because Tetra Tech, Inc. cost estimates are based strictly on remediation engineering controls. However, the decisionmaker, 

a point source, can substitute their own assumptions about the transaction costs using their own risk preferences and 

applying percentages or specific values that they believe are fair for specific cost runs.    
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PoCu= porphyry copper                     RPD = Relative Percent Difference12

Offset Site Vol. CY Logarithm 
of Vol. CY  

CA PoCu 

Abbott 174,022 5.241 1 0 
Turkey Run 13,424 4.128 1 0 
Wide Awake 10,014 4.001 1 0 
Elgin 4,227 3.626 1 0 
West End 3,722 3.571 1 0 
Cherry Hill 811 2.909 1 0 
Central 166 2.220 1 0 
Manzanita 150 2.176 1 0 
Rathburn 6,546 3.816 1 0 
Rathburn-
Petray 95,896 4.982 1 0 

Petray-North 4,980 3.697 1 0 
Petray-
South 400 2.602 1 0 

 
          
   
               

 

 

 

 

 

  

y = 1.0392x - 0.2801
R2 = 0.7807

y =

4.00

5.00

6.00

7.00

8.00

9.00

4.00 5.00 6.00 7
LOGARITHM OF TOTAL CO

LO
GA

RI
TH

M
 O

F 
TO

TA
L 

CO
ST

S 
OB

SE
RV

ED

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

This type of regression model is a simple and consistent

cost for various Hg controls without spending large amounts of t

                                                           
12 An explanation of relative percent difference (RPD) is provided in Ta
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Offset Project Logarithm of Cost 
Estimates 

 

Site Name USGS  Tetra 
Tech 

RPD 

Abbott 6.47 6.69 -3.29 
Turkey Run 6.04 5.96 1.36 
Wide Awake 5.99 6.01 -0.28 
Elgin 5.84 5.79 0.91 
West End 5.82 5.58 4.18 
Cherry Hill 5.57 5.30 4.90 
Central 5.30 5.47 -3.30 
Manzanita 5.28 5.55 -5.08 
Rathburn 5.92 5.56 6.18 
Rathburn-Petray 6.37 6.46 -1.41 
Petray-North 5.87 5.69 3.13 

Petray-South 5 45 5 19 4 77
 

 1.0405x - 0.2878
R2 = 0.7349

.00 8.00 9.00
STS PREDICTED
Figure 8. Comparison of USGS remediation-cost linear-regression model with engineering estimates by 
Tetra Tech, Inc. (2003). Dots, observed data used in developing regression model; triangles, Tetra Tech, 
Inc.’s cost estimates. Data points lie along a slope of 1.04, similar to slope in original cost model. Red 
dashed trendline, USGS model predictions with Tetra Tech, Inc. attribute data; blue trendline, regression-
model predictions for same samples.
 approach that can estimate an expected total 

ime and money. In addition, the analysis 

ble D2.  



reflects the uncertainty in remediation-project costs, on the basis of the information that we currently have. A 

reduction in uncertainty could be achieved with site-specific and project-specific cost estimates made by a 

contractor, but accessing such information is difficult, and so the spread of the cost estimates cited reflects our 

current uncertainty. Research will continue to refine this cost-mitigation submodel. 

Transaction Costs  

Transaction costs are considered to be the additional costs of implementing an offset project beyond the direct 

remediation costs. Identifying potential offset locations/projects, negotiating a project with regulators and the public, 

monitoring water quality, and using government or private administration all contribute to transaction costs, which could 

negate the potential cost savings from making offsets between sources with different marginal costs. 

Transaction costs include:   

• Search and information costs, including the time, effort, and cost to gather environmental data in 

order to determine which offset sites will meet a point source’s required loading reduction.   

• Bargaining, negotiation, and approval costs, including costs to gain regulatory approval through 

bargaining and negotiating with a non-point source (if not abandoned) and the regulatory body, 

receiving credit for the offset, and future liability costs. 

• Contingent costs that might or might not be incurred at some point in the future, including potential 

liability costs due to remediating unknown or future releases of pollutants and compensating for 

undiscovered or future damage to property or people.  

Transaction costs are the additional costs (beyond the remediation costs) imposed on a point source 

when making an offset decision. Administrative and data gathering costs can vary, depending on the availability 

and accessibility of information. A data clearinghouse can help reduce these types of costs by providing 

information for a point source to distinguish which locations contain suitable offset projects. Bargaining and 

negotiation costs depend on whether certain negotiation mechanisms are in place. Establishing reconciliation 

periods, banking-offset credits, and credit agreements all incur a cost. Setting up an approach like the one 

described here could reduce such costs to help facilitate discussion between stakeholders. Assuming that a data 

clearinghouse and this approach are in place, both types of cost can be limited. 
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Contingent costs arise from potential liability lawsuits when unilateral remediation action at a 

particular site is committed for an offset and contamination resurfaces in the future. Under the current CWA, a 

“Good Samaritan,” e.g., a wastewater-treatment plant that wants to clean up a site is not protected from liability 

if more discharges occur after the cleanup work is completed. Other legal issues include antibacksliding rules 

(CWA), the extent to which regulations authorize new or renewed permits, and potential liability post 

remediation (Wilson, 2001).  

An offset program must do more than substitute one contributing source for another because Federal 

law prohibits new discharges from contributing to violations of water quality standards. The antibacksliding 

rule draws on this distinction between new and existing sources by forbidding, unless certain exceptions are 

met, permits to be renewed or modified “to contain effluent limitations which are less stringent than the 

comparable effluent limitations in the previous permit except in compliance with section 1313(d)(4) of this 

title” (CWA 33 U.S.C.  1342 (o)).  The application of antibacksliding rules could have significant 

consequences in terms of permissibility of offsets because, in theory, offsets provide dischargers with flexibility 

in lieu of the application of an otherwise-stringent effluent limitation. Furthermore, provisions must be 

consistent with the CWA, such as developing baselines for offsets derived from TMDLs, not accepting 

pollutant-reduction credits that would cause a localized impairment, requiring that NPDES permits describe 

how baselines or limits for offsets will meet water-quality standards, etc. (U.S. Environmental Protection 

Agency, 2002). A more in depth look at contingent liabilities regarding offsets is documented in appendix I.  

 

Framework for a Bayesian Network Decision Support System  
 
These three submodels will be integrated into a DSS to evaluate various Hg-mitigation scenarios, using 

the same stream segment scheme proposed by the Cache Creek TMDL working group (Central Valley Regional 

Water Quality Control Board, 2004). The Bayesian network DSS (BN-DSS) user is expected to evaluate 

potential Hg-offset projects in terms of changes in HgT load, MeHg-production potential, project cost, and other 

suitability criteria. For this application, the primary user would be a wastewater-treatment plant evaluating 

various mitigation scenarios to see whether any projects meet their environmental and economic needs. 

Whereas the amount of HgT that is discharged from a wastewater-treatment plant may be well characterized, 

the predicted downstream impact of an Hg-offset program is highly uncertain in terms of response magnitude 
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and timing. For this specific situation, the SRCSD has created no “harm” that requires mitigation (the 

Sacramento Regional Wastewater Treatment Plant has never exceeded its permit limit for Hg), however, if an 

offset does occur in the future, mitigation of Hg loadings would take place. The BN-DSS is structured around 

these various submodels, allowing predictions of the downstream impacts of HgT loading reductions from Hg-

offset programs. This model takes a watershed- scale perspective for the purpose of project evaluations. 

The BN-DSS integrates the available relevant water quality and streamflow data into the various 

submodels using the same stream segment scheme proposed by the Cache Creek TMDL working group 

(Central Valley Regional Water Quality Control Board, 2004). The model links HgT loadings by stream 

segment to within-segment and downstream MeHg contents in water and fish tissue on the basis of conditional 

probabilistic relation from stochastic empirical models of the available data.  The data and the basis for many of 

the empirical relations used come from the Cache Creek TMDL report and its appendices (Central Valley 

Regional Water Quality Control Board, 2004). Watershed-data scarcity can be dealt with by using a Bayesian 

hierarchical model that incorporates relevant data from other watersheds. If watershed-specific data are too 

sparse to build an empirical model and a Bayesian hierarchical model is inappropriate, expert judgment can be 

used to elicit conditional-probabilistic relations between the needed variables.  Well-studied practical methods 

for probability-distribution elicitations exist that have been used extensively in various fields (Howard and 

Matheson, 1984; Morgan and Henrion, 1990). 

A BN-DSS is designed by first identifying the desired environmental end points (performance 

measures or decision values) of interest to stakeholders and decisionmakers.  These end points reflect the values 

at stake in the offset decision. Examples of end points in an offset-implementation project include mitigation 

costs, annual Hg-load reduction, and Hg contents in fish. After end points are identified, the next step is to 

identify relevant management options (potential offset-mitigation decisions), such as percent reduction in Hg 

loading. The Bayesian network model is designed to reflect the significant relations between end points of 

interest and management options via intermediate nodes, which are the variables necessary for predicting the 

impacts of management options on the end points of interest (Labiosa 2003). These models incorporate the 

uncertain relations between Hg loading, MeHg formation, and MeHg bioaccumulation.  

From a decision-analytical perspective, the Bayesian network model of interest is the influence 

diagram, which combines decisions (“what you can do”) with a model of key uncertainties (“what you know”), 

subject to a valuation model (“what you care about”) (Howard and Matheson, 1984; Shachter, 1986, 1988). 
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Influence diagrams allow determinations of optimal decisions, sensitivity of an optimal decision to key 

uncertainties and assumptions, and value of information on uncertainties, which may then be used to plan future 

information gathering activities. A simplified influence diagram for Hg-offset decisionmaking is shown in 

figure 9. Sensitivity analysis can be performed to explore the relations between key uncertainties and variables 

of interest, allowing the decisionmakers to explore “what-if” scenarios of interest.  
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Figure 9. Example of an Hg-Offset Influence Diagram  
diagram can be used throughout the offset-mitigation decisionmaking process. The 

larly important in determining information and modeling/forecasting needs because 

 technical experts/scientists communicate about what information is important in 

 made. In addition to graphically representing important aspects of the 

e influence diagram can be used to determine information/forecasting requirements, 

r, and, if decision trees are to be used, decision-tree structure (Labiosa, 2003). 

lated to offset scenarios requires making predictions relevant to evaluating 

 sources. The relevant predictions are, however, highly uncertain, whether owing to 

f natural processes, analytical error, or the stochastic variation inherent in natural 
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systems. Uncertainty is a reality that any water-quality-management decision framework must explicitly 

recognize, assess, and, when possible, reduce (National Research Council, 2001). Because a Bayesian network 

is built upon the conditional-probabilistic relations between random variables, uncertainty is explicitly 

represented in these models, and the propagation of uncertainty is straightforward. We emphasize that although 

an influence diagram is an imperfect representation of the natural system, it should faithfully represent how the 

decisionmaker believes the natural system will behave, given the available data and current scientific 

understanding.  

IV. FUTURE RESEARCH  

A Bayesian Network Decision-Support System for Evaluating Mercury-Offset Programs  
 

The major focus of the second phase of this project will consist of finishing the HgT-loading model, 

integrating it with the empirical MeHg model described above, and implementing the BN-DSS for offset-

project decisionmaking in the Cache Creek watershed (figs. 1, 2). With this extension, the Bayesian network 

model will be able to predict MeHg contents in water, invertebrates, and fish, on the basis of an empirical 

approach relating model relating HgT loads to MeHg contents, as described by Slotton et al. (2004). This model 

would propagate the substantial uncertainties in the relations between HgT loading and MeHg production and 

bioaccumulation, allowing probabilistic predictions about the impacts of HgT-load reductions on future MeHg 

contents in water and biota. 

The ability of a Bayesian network to propagate uncertainty between variables allows the user to 

predict, for example, the degree of uncertainty in the downstream effects from local mitigation efforts. This 

uncertainty may include contributions from initial mass-load reduction uncertainty, rainfall/streamflow 

uncertainty, and the relations between local and downstream effects: local streamflow and HgT mass loads, 

HgT concentrations and MeHg concentrations, and between MeHg concentrations and ecological impacts, etc.   

For illustration purposes, the results of what a mitigation scenario might look like in a BN-DSS are 

listed in table 3. Each project will have predicted local water quality and ecologic impacts, predicted 

downstream water quality and ecologic impacts, and many associated attributes relevant to project desirability, 

including cost effectiveness, technical feasibility, legal liability, etc. The BN-DSS will make predictions 

relevant to these selection criteria, including predictions relevant to local and downstream HgT mass load 

reductions, local and downstream MeHg concentration reductions, probabilities of meeting environmental 
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targets locally and downstream (e.g., mass-load-reduction targets, median MeHg contents, and Hg content in 

fish tissue). 

Table 3. Hypothetical example of a Cache Creek Hg-Offset Project Evaluation Using a BN DSS 

Offset 
Mitigation 

Project 

Project 
Location 

% HgT Source 
Load Reduction1

HgT Load 
Downstream, 

g/day 
(Std Dev)2

Annual HgT 
Load, kg/yr

(Std Dev)3

Cost, K$ 
(Std Dev) 

Cost Effectiveness, 
$K/unit reduction

(lower is more cost-
effective) 

Technical 
Feasibility 

Score4 

(1 (Best) – 5 
(Worst) 

1 Status quo No reductions 32 (1,120) 85 (408) 0 (0) NA NA 

2 
Cache Creek 
settling basin 

50% 
30 (1,120) 83 (408) 350 (25) 

117 2 

3 
Abbott-Turkey 

Run Mine 
75% 

 32 (1,120) 85 (408) 200 (30) 
1920 4 

 

Notes:   1)  Targeted % HgT load reduction from stream segment source (Std Dev) 

2)  Predicted median % HgT load reduction at Rumsey (Std Dev) 

3)  Predicted resulting annual HgT load reduction in kg/year at Rumsey (Std Dev) 

4) Composite score from 1 (Best) – 5 (Worst), based on site access and “workability,”   

      state of science for chosen mitigation approach, state of experience with chosen  

      mitigation approach, ease of project startup, and expected level of effort for operations  

     and maintenance (O&M) and monitoring 
   

From those various decision variables, a wastewater-treatment plant can decide which projects meet 

their permit requirements based on their risk preferences. Various methods exist for a wastewater treatment 

plant to organize their decisions for evaluating various offset scenarios and choices made to reflect the wishes 

of the decisionmaker. Implementation of an offset program may not even be realistic. Therefore, the question 

then becomes, is it cost effective for a wastewater-treatment plant to invest in more information for future offset 

decisions, or instead, resort to earlier regulatory approaches and update their own operations? 

 If the decisionmakers are willing to work with decision analysts in structuring the decisionmaking 

problem, eliciting probabilities for the various uncertainties faced by the decisionmakers, and eliciting 

preferences over possible outcomes/consequences, then decision analysis can be used to determine best 

decisions, decision robustness, and information value. A hypothetical decision diagram illustrates the 

relationships between decisions (possible future actions), key uncertainties faced by decisionmakers 

(conditional-probability distributions representing uncertain future states), and the value of the project (project 

construction and operation/maintenance costs, liabilities, project benefits from reduced Hg fish tissue burdens, 

etc.). This decision diagram is simplified for illustration purposes, and we make no claim that the wastewater-

treatment plant would agree that it accurately represents their decision.   

 39



 

 

However, if a collaborative process were set up 

diagram could be created and the necessary information 

figure 10, the selected offset program may influence loca

potential (MeHg potential), which would have an uncerta

[MeHgT], water).  The uncertain downstream effects due

content at a point of compliance ([HgT, water, point of c

trophic level ([HgFish], TLx); (further impacts on MeHg

uncertain associated total project cost (cost of mitigation

modeled as the project’s net benefits, but this is only one

desired by the decisionmaker.  Decision analysis is espec

An application of decision analysis for offset-pr

practice in decision analysis, because Bayesian network 

 40
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probabilities that describe the behavior of the natural system. Such an integrated decision model should prove to 

be useful for project selection decisions of the sort faced by the wastewater treatment plants. A partly 

hypothetical decision model will be developed to illustrate and explore the approach from a research 

perspective.  

Finally, an approach that could be developed in support of the BN-DSS that is also based on decision 

analysis is using decision trees to determine best strategies, to perform sensitivity analysis, and to rank 

uncertainties in terms of information value. The relevant uncertainties and value measures in the draft decision 

trees come from the wastewater treatment plant’s working-group meeting process. For this approach to be 

directly useful to a wastewater treatment plant, it would have to be modified to reflect the decisionmakers’ 

beliefs about uncertainties and values. We recognize that the wastewater treatment plant may be unable to 

collaborate to the needed degree, and so this tool will at least demonstrate how decision analysis could be 

performed for suggesting best decisions of this sort.  Note that the first tool, the watershed Hg-loading model, 

can be used to estimate probabilities for Hg loading baselines and future environmental impacts of Hg-load 

reductions for use in the decision trees in this offset-project decision analysis. Note also that this approach is an 

extension of current decision-analytical applications, because it uses a Bayesian network to generate the 

“science-informed” probability distributions needed for performing decision analysis involving complex natural 

systems. 

We conclude this section with a brief description of the concept of information values, which can be 

used to prioritize information gathering/modeling activities. 

 

 

 

Information Value  
 

 New information may change a decisionmaker’s beliefs about the uncertainties relevant to the 

decisionmaking problem. Information value refers to the fact that improvements in the state of information 

could lead to a change in the prescribed optimal policy under relevant scenarios (Labiosa, 2003). It is precisely 

the potential for changing the optimal policy that generates economic value (see Howard, 1968; Lawrence, 

1999).  Thus, new information may or may not have value within the context of the decisionmaking process. 
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The benefits of additional watershed information are computed by comparing the economic impacts of 

decisions that would be made by using the new watershed information relative to decisions based on existing 

watershed data.  

This analysis may conclude that a particular uncertainty has a high associated information value and 

that it may be in the decisionmaker’s best interest to collect further information or to make better use of existing 

information through modeling, analysis, or consultation with experts (Arrow and Fisher, 1974). For instance, 

real option theory (ROT), relating to investment decisions under uncertainty, explains that when facing 

irreversibility and uncertainty, delaying the investment and waiting for information may be advisable to avoid 

the downside risk (Kolstad, 1996). Information value analysis may also demonstrate that, even though a 

particular variable is highly uncertain, reduction of that uncertainty will not have much (or any) decision value. 

Insights of this sort should prove particularly useful in Hg-offset programs. The concept of information value is 

related to the concept of “decision robustness.” If a best decision strategy is highly robust, then additional 

information would be predicted not to change that strategy (Morgan and Henrion, 1990). 

V. SUMMARY  
 

 This interim report describes the development of a decision analytical approach to decision support for 

Hg-offset programs. The proposed empirical model makes use of a Bayesian network, which treats uncertainty 

as a probability and allows the decisionmaker to combine various types of information with the best available 

scientific models, data, and expert judgments into a unified probabilistic framework. In practice, empirical 

models and expert judgment are a straightforward means of creating the needed probabilistic relations. 

Although the uncertainty analyses of mechanistic models can be used for this purpose, the computation burden 

is excessive. Therefore, given the lack of detailed understanding of Hg environmental behavior, empirical 

models are justifiable.  

The key hypothesis is whether a probabilistic approach explicitly incorporating scientific uncertainty, 

cost information, and value judgments is applicable. Future research directions will focus on the application of 

this approach through a BN-DSS to support  Hg-offset decisionmaking by a wastewater treatment plant in 

evaluating potential Hg-mitigation projects in terms of changes in HgT load, MeHg-production potential, 

project cost, and other suitability criteria. Subsequently, scenarios can be analyzed through decision-analytical 

models by performing sensitivity analyses and ranking environmental and economic uncertainties in terms of 

the decisionmakers’ preferences and risk choices. A wastewater treatment plant may decide that the offset-
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mitigation scenarios proposed will not meet their environmental and economic needs. If scenarios lead to such a 

decision, then a study will be conducted analyzing the level of environmental and economic information needed 

to encourage an Hg-offset program. 

This research seeks to innovatively analyze available science, data, and statistics in a manner 

maximally applicable within a stakeholder framework. In addition, the research might provide alternative 

statistical methods for TMDL and water-quality analyses, providing a more accurate and better representation 

of environmental water-quality conditions. 
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APPENDIX A 

Environmental Concerns for Mercury Offsets 

The EPA published a Water Quality Trading Policy on January 13, 2003. Four environmental-

advocacy organizations (American Rivers, the National Wildlife Federation, the Natural Resources Defense 

Council, and the Sierra Club) provided comments to that policy document on March 14, 2003. Members of the 

national environmental community strongly opposed the inclusion of toxics trading in the policy, even in such 

relatively limited circumstances. Environmentalists argued that trades are likely to lead to the creation of      

hotspots, areas of aquatic toxicity, that severely threaten human health and aquatic life. Such localized 

concentrations of pollutants could result in fish kills, contamination, and adverse human exposure. Participation 

from local environmental-advocacy groups at various local and regional stakeholder meetings has been limited. 

Although these concerns are valid from environmentalists, the environmental conditions in the 

Sacramento River watershed reduce the potential of hotspots occurring from offset projects. The Hg contents in 

SRCSD’s effluent and in the Sacramento River are far below levels at which aquatic toxicity from Hg has been 

observed. All wastewater dischargers in the watershed combined add up to less than 2% of the annual HgT load 

to the San Francisco Bay-Delta. As a result of low point-source discharge levels, offsets would not cause an 

exceedance of criteria.  

Offsets are a potentially useful mechanism for trying a remediation option in the short term and 

improving the environment in the long term. As a result of Hg’s serious threat as well as the severe limitation of 

remediation funds, offsets may serve as a suitable tool to meet water-quality objectives cost effectively. The 

“pilot” nature of this effort provides a mechanism for attempting remediation even though results cannot be 

assured (until someone attempts remediation and monitors its effectiveness). Although local and regional 

responses from environmental-advocacy groups have been absent, the offset working-group meetings conducted 

by the SRCSD have been essential in identifying most of the stakeholders’ interests for assessing the feasibility 

of offsets for meeting Hg-discharge-permit requirements and ancillary concerns.  
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APPENDIX B 

Background on Bayesian Probabilistic Networks 

Bayesian network models are probabilistic representations of a system of related variables of interest 

(Shachter, 1986, 1988; Pearl et al., 1990; Jensen, 2001), e.g., variables representing a water-quality-

management problem (Varis, 1995; Reckhow, 1999; Borsuk et al., 2002). Although non causal models are 

common, the Bayesian network models described in this report are assumed to be structured in terms of causal 

relations between the random variables that describe environmental end points of interest. These relations are 

identified and quantified by using historical data, physical process-based models, other conceptual models, and 

expert judgment. Bayesian network models are probabilistic and are based on a coherent set of beliefs about the 

relations between system variables, in contrast to deterministic approaches that model system behavior on the 

basis of mathematical representations of underlying mechanisms and on empirical deterministic approaches that 

ignore uncertainty. Bayesian network models do not ignore scientific knowledge about system mechanisms and 

behavior, but instead, represent this knowledge in terms of causal relations between random variables and 

conditional probabilities that describe these cause and effect relationships.  

In the Bayesian network model of the Cache Creek Hg-offset project, causal relations and conditional 

probabilities are based on what is currently known about the relations between HgT loading, MeHg loading, Hg 

fish-tissue burdens, and other natural-system variables. The model is a probabilistic representation of what is 

currently known about how mitigation efforts may impact the natural system. 

This approach takes advantage of the specific modularity of a problem domain, greatly simplifying the 

computational requirements for making predictions and inferences based on the conditional probabilistic 

relations between the system’s variables (Chen, 2001, p. 215).  These relations can be quantified in a modular 

fashion suitable to the type and amount of information available, allowing various types of probabilistic 

information (from data, models, and expert judgment) to be integrated into a single model that can be used for 

various purposes useful to decisionmaking. 

A Bayesian network consists of a graph and probabilistic data associated with the nodes in the graph.  

The graph consists of nodes (ovals) connected by arrows, where the ovals represent chance (uncertain) nodes, 

each of which is associated with a random variable.  The random variables in the Bayesian network represent 

the attributes of interest to decisionmakers.  Arrows represent potential conditional-probabilistic dependence 

between the various random variables and can be drawn in a causal direction. Graphically, an arrow from a 
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parent node to an uncertain variable (child) means that the probability distribution in the uncertain variable 

(child) is conditioned by the state of the parent node. The absence of an arrow between two variables in a 

network indicates that these variables are conditionally independent given their parents (Labiosa, 2003).   

The variables included in a Bayesian network may be included for various reasons, including the 

decisionmaker’s direct interest in the state of a variable or the variable’s usefulness in interpreting or predicting 

variables of direct interest. Importantly, variables needed from a technical perspective for modeling a particular 

complex system do not need to be shown in the version of the Bayesian network used for decision analysis, 

communicating with decisionmakers or stakeholders, etc. (Shachter, 1988; Pearl et al., 1990). One way to 

understand the difference between “technical variables” needed for modeling purposes only and “variables of 

interest” at the decisionmaking level is to think in terms of a “submodel level” and “model level.”  At the 

submodel level, one or more variables in the submodel are of interest at the model level, but the remaining 

technical variables are needed only for modeling purposes. These technical variables are explicitly included at 

the submodel level for determining the conditional-probability distributions for the variables of interest at the 

model level. Once the conditional-probability distributions for the variables of interest at the model level have 

been determined, the technical variables are probabilistically absorbed (i.e., their uncertainty is transferred to 

the remaining model-level variables). After the technical variables have been probabilistically absorbed, only 

the variables of interest at the decisionmaking model level remain.    
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APPENDIX C 

Statistical Analyses for Water-Quality Management 

The objective of statistical analysis is to predict some response, such as in Hg content, given a set of 

variables. A common procedure, multiple linear regression, is used to model the relation among variables. The 

method requires a dataset that includes the independent variables and associated values of the dependent 

variable. Multiple linear regression requires on assumption of normally distributed errors and a linear relation 

among the variables, or one that can be linearized such transformations as logarithms. Thus, the functional form 

is assumed to be linear and is imposed on the data—the outcome is assumed to be related to a linear 

combination of the independent variables. An advantage of linear regression is that it allows the testing of 

individual coefficients for statistical significance. Large deviations from normality, nonlinearity, or multimodal 

distributions, however, cause this and related methods to fail.   

Artificial neural networks, which have been used for various applications that are commonly thought 

of as statistical, compose a group of methods, originally motivated by models of the human brain, that can be 

used for classification (binary or multiple class), auto association (noise reduction), and function approximation 

(prediction) (Warner and Misra, 1996). Neural networks can typically handle highly complex distributions and 

can approximate any continuous function. The network stores the weights of the inter-neuronal connections that 

are acquired from the training data. Neural networks do not allow the testing of individual coefficients for 

statistical significance, and the functional form is not known. Neural networks are most useful where the 

functional form of the relations is unknown and deeply hidden, where interactions occur among the variables, 

and where the data are subject to large errors. Neural networks determine the relations among variables from the 

data with which they are trained, and so they typically require considerable amounts of data (Masters, 1993, 

1995).  

On the basis of this research, statistical analysis was undertaken to investigate whether neural networks 

were appropriate for predicting MeHg contents in water. Although the analysis provided interesting results, the 

data were insufficient to train a credible neural network, and the available data tended to have inconsistent 

numbers of variables and missing fields.  However, additional studies (not presented here) showed that neural 

networks are credible predictors of empirical functions when the data requirement is met.  As more data become 

available, neural networks can be tested once again with chemical variables.  
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Another statistical method is useful when data are sparse and yet expert information is available to help 

in making predictions. Classical inferential models do not permit the introduction of previous knowledge into 

the estimation. At times, the use of previous knowledge would be a useful contribution to the evaluation 

process. Bayesian networks can be used to integrate information from experts and observations to construct a 

simple model and represent uncertainty in our knowledge. The uncertainty comes from the experts themselves 

concerning their own knowledge, inherent uncertainty in the subject being modeled, uncertainty in translation of 

the knowledge, and uncertainty about the accuracy and availability of knowledge. Relations can be defined by 

using data and expert judgment. Bayesian networks use probability theory to manage uncertainty by explicitly 

representing the conditional dependencies, enabling an intuitive graphical visualization of the knowledge 

including the interactions among the various sources of uncertainty. Bayesian networks provide an integrated 

approach to uncertainty analysis and allow easy updating of prediction and inference when observations of 

model variables are made. This approach allows new information to be integrated as it becomes available and 

the graphical representation of a Bayesian network shows the relations among variables in a manner that eases 

the communication, as well as providing a means to update initial probabilities and beliefs as more data are 

gathered. 

 Problems exist, however, when developing a Bayesian network. The first problem is the computational 

difficulty of exploring a previously unknown network. To calculate the probability of any branch of the 

network, all branches must be calculated. Although the resulting ability to describe the network can be 

performed in linear time, this process of network discovery is difficult and possibly costly to perform, or even 

impossible given the number and combination of variables. The second problem is the quality and extent of 

previous beliefs used in Bayesian inference processing. A Bayesian network is only as useful as this previous 

knowledge is reliable.  Either an excessively optimistic or pessimistic expectation of the quality of these 

previous beliefs will distort the entire network and invalidate the results. Related to this concern is the selection 

of the statistical distribution induced in modeling the data. Selecting the proper distribution model to describe 

the data has a notable effect on the quality of the resulting network. 

If the research situation involves a great deal of data representing all the variables of interest, then 

multiple linear regression or neural networks are good candidates as methods of analysis and prediction. If the 

functional form of the relation is known to be linear, or can be linearized, then multiple regression is preferred 

over neural networks because it is more parsimonious and easier to understand. Multiple linear regression 
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performs well when theory or experience suggests an underlying linear relation among the variables, and it can 

deal with small datasets. A Bayesian network would be appropriate when data are sparse for some of the 

variables and experts have knowledge about the relations and likelihoods of events.   

 Uncertainty is a reality that any water-quality-management decision framework must explicitly 

recognize, assess, and, when possible, reduce (National Research Council, 2001). Although various 

deterministic and empirical models have been developed for Hg, the uncertainty of Hg scientific processes may 

produce large uncertainties in the decisionmaking process. As a result, the USGS’ Western Geographic Science 

Center decided to focus its research efforts on the statistical models mentioned above.  Uncertainty is explicitly 

represented in these models and is better incorporated in policy decisionmaking, in contrast to deterministic 

models that calculate Hg loads without explicitly quantifying the uncertainty at each segment of the watershed 

and that propagate the uncertainty in loading by combining or subtracting Hg loads for various watershed 

segments. When dealing with such skewed frequency distributions as Hg loads, the expected amount (and 

higher values) can be a fairly unlikely outcome. Being able to estimate the probabilities of different outcomes 

allows the decisionmaker to take appropriate actions. (For further information, contact Donald Singer at 

singer@usgs.gov).   
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APPENDIX D 

Verification of the Methylmercury Submodel 

Table D1.  Summary of Predicted MeHg Contents of Sampling Site in the Cache Creek Watershed, 
north-central California [All values in nanograms per liter. NA, not available] 

 

Study Site Mean 25% 
Percentile Median 75% 

Percentile 
Standard 

Error 
No. of 

Samples 
1 Cache Creek at Lower Lake 0.11 0.08 0.11 0.14 0.01 22 

2 
North Fork Cache Creek at 
Hwy 20 0.13 0.07 0.11 0.15 0.02 27 

3 South Fork Confluence 0.14 0.11 0.11 0.16 0.03 3 
4 North Fork Confluence 0.14 0.08 0.17 0.18 0.03 6 
5 Petrified Canyon 0.07 0.05 0.07 0.09 0.04 2 
6 Rocky Creek 0.17 0.15 0.17 0.20 0.05 2 
7 Harley Gulch 0.62 0.37 0.48 0.07 0.10 14 
8 Stemple Creek 0.16 0.13 0.16 0.19 0.05 2 
9 West Harley Gulch 2.10 0.64 0.88 1.72 0.91 10 

10 
Judge Davis Creek at Cache 
Creek 0.08 0.06 0.08 0.09 0.03 2 

11 Brushy Creek at Cache Creek 0.05 NA 0.05 NA 0.00 1 
12 East Harley Gulch  0.34 0.21 0.24 0.43 0.14 3 
13 Sulphur Creek tributary 0.75 0.61 0.86 0.95 0.20 3 
14 Sulphur Creek at Cache Creek 1.23 0.72 1.03 1.64 0.13 23 
15 Upper Bear Creek  0.07 0.05 0.08 0.10 0.01 10 
16 Trout Creek at Bear Creek 0.14 0.10 0.17 0.19 0.05 3 
17 Jack Canyon at Cache Creek 0.13 NA 0.13 NA 0.00 1 
18 Crack Canyon 0.12 0.08 0.11 0.16 0.05 3 
19 Davis Creek at Cache Creek 0.28 0.12 0.21 0.31 0.08 9 
20 Lower Bear Creek  0.36 0.32 0.38 0.43 0.03 13 

21 
Cache Creek before Bear 
Creek 0.28 0.15 0.24 0.27 0.06 14 

22 
Cache Creek and Bear Creek  
Confluence 0.36 0.23 0.37 0.46 0.03 18 

23 Cache Creek at Rumsey 0.21 0.12 0.17 0.24 0.02 74 
24 Capay 0.48 0.28 0.37 0.62 0.20 3 
25 Cache Creek below Hwy 505 0.21 0.10 0.17 0.29 0.04 11 
26 Road 102 at Cache Creek 0.46 0.29 0.48 0.62 0.05 24 
27 Cache Creek into settling basin 0.38 0.18 0.33 0.43 0.10 9 

28 
Cache Creek out of settling 
basin 0.43 0.25 0.38 0.63 0.06 17 
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APPENDIX D cont. 

Table D2.  Logarithms (base 10) of observed and predicted MeHg contents at sampling sites in the 
Cache Creek Watershed, north central California, with relative percent difference and residual MeHg 

Predictions, L10 Observed MeHg Concentrations, RPD, and Residuals 
 

[Relative percent difference (RPD) measures the precision between two values. 
Thus, an RPD of 5 or less between observed and predicted value indicated good precision. 

RPD is calculated by subtracting the observed from the predicted value, dividing the difference by the average 
of the two values, and multiplying the result by 100] 

 

MeHg content (ng/L) 
Sampling Site (number) Observed Predicted 

Relative Percent  
Difference  Residual 

Clear Lake outflow (1)  -0.89 -1.114 -22.8 0.23 
Clear Lake outflow (1) -1.30 -1.022 24.0 -0.28 
Clear Lake outflow (1) -0.92 -0.928 -0.8 0.01 
Clear Lake outflow (1) -0.96 -1.071 -11.0 0.11 
Clear Lake outflow (1)  -0.82 -1.201 -37.2 0.38 
Clear Lake outflow (1)  -0.33 -0.815 -85.3 0.49 
Clear Lake outflow (1)  -0.74 -0.775 -3.9 0.03 
Clear Lake outflow (1)  -1.52 -0.854 56.3 -0.67 
Clear Lake outflow (1)  -1.70 -1.678 1.3 -0.02 
Clear Lake outflow (1)  -1.70 -1.620 4.8 -0.08 
Clear Lake outflow (1)  -1.30 -1.102 16.5 -0.20 
Clear Lake outflow (1)  -1.05 -1.237 -16.7 0.19 
Clear Lake outflow (1)  -0.85 -1.066 -22.1 0.21 
Clear Lake outflow (1)  -0.59 -0.860 -38.1 0.28 
Clear Lake Outflow (1)  -0.89 -0.943 -6.2 0.06 

North Fork at Highway 20 (2) -1.10 -1.046 4.8 -0.05 
North Fork at Highway 20 (2) -1.70 -1.284 27.8 -0.41 
North Fork at Highway 20 (2) -0.77 -0.622 21.3 -0.15 
North Fork at Highway 20 (2) -1.15 -1.114 3.6 -0.04 
North Fork at Highway 20 (2) -1.30 -1.310 -0.7 0.01 
North Fork at Highway 20 (2) -1.70 -0.790 73.0 -0.91 
North Fork at Highway 20 (2) -1.10 -0.943 15.1 -0.15 
North Fork at Highway 20 (2) -0.72 -0.870 -18.7 0.15 
North Fork at Highway 20 (2) -1.40 -0.830 51.0 -0.57 
North Fork at Highway 20 (2) -1.70 -1.409 18.7 -0.29 
North Fork at Highway 20 (2) -1.52 -1.357 11.6 -0.17 
North Fork at Highway 20 (2) -1.22 -1.046 15.5 -0.18 
North Fork at Highway 20 (2) -1.05 -1.328 -23.8 0.28 
North Fork at Highway 20 (2) -1.15 -0.848 30.7 -0.31 

North Fork confluence (4) -1.52 -1.337 13.0 -0.19 
North Fork confluence (4) -1.70 -1.347 23.1 -0.35 

Harley Gulch (7) -1.15 -0.432 91.1 -0.72 
Harley Gulch (7) -1.05 -0.452 79.2 -0.59 
Harley Gulch (7) -0.01 -0.183 -181.7 0.17 
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Harley Gulch (7) -0.46 -0.310 38.2 -0.15 
Harley Gulch (7) -0.92 -0.538 52.6 -0.38 
Harley Gulch (7) -0.35 -0.034 164.4 -0.31 
Harley Gulch (7) 0.89 0.118 153.2 0.77 
Harley Gulch (7) 0.04 -0.328 -251.5 0.37 
Harley Gulch (7) -0.18 -0.446 -84.8 0.27 
Harley Gulch (7) 0.93 0.173 137.4 0.76 

Sulphur Creek (14) -0.32 -0.200 45.8 -0.12 
Sulphur Creek (14) 0.61 0.123 132.6 0.48 
Sulphur Creek (14) 1.26 0.413 101.3 0.85 
Sulphur Creek (14) 1.31 0.391 108.3 0.92 
Sulphur Creek (14) -0.66 -0.309 72.1 -0.35 
Sulphur Creek (14) -0.18 0.158 3023.1 -0.34 
Sulphur Creek (14) 0.39 -0.082 306.1 0.47 
Sulphur Creek (14) 0.20 0.281 -35.7 -0.09 
Sulphur Creek (14) -0.82 0.294 422.0 -1.12 
Sulphur Creek (14) -0.04 0.034 5869.6 -0.07 
Sulphur Creek (14) -0.12 0.281 -494.6 -0.40 
Sulphur Creek (14) -0.39 -0.149 89.0 -0.24 
Sulphur Creek (14) 0.11 0.005 182.6 0.11 
Sulphur Creek (14) 0.39 -0.139 420.8 0.53 
Sulphur Creek (14) -0.48 -0.346 32.8 -0.14 
Sulphur Creek (14) -1.22 -0.298 121.7 -0.92 
Sulphur Creek (14) -0.12 0.209 -730.9 -0.33 

Upper  Bear Creek (15) -0.74 -1.229 -49.1 0.48 
Upper  Bear Creek (15) -0.68 -1.081 -45.8 0.40 
Upper  Bear Creek (15) -1.30 -1.357 -4.2 0.06 
Upper  Bear Creek (15) -1.05 -1.032 1.4 -0.01 
Upper  Bear Creek (15) -1.05 -1.081 -3.3 0.04 
Upper  Bear Creek (15) -1.15 -1.509 -26.6 0.35 
Upper  Bear Creek (15) -1.22 -0.991 20.8 -0.23 
Upper  Bear Creek (15) -0.64 -0.947 -38.9 0.31 
Upper  Bear Creek (15) -0.52 -0.991 -61.9 0.47 
Upper  Bear Creek (15) -1.30 -1.469 -12.1 0.17 

Davis Creek at Cache Creek (19) -0.57 -0.860 -40.8 0.29 
Davis Creek at Cache Creek (19) -0.44 -0.176 86.5 -0.27 
Davis Creek at Cache Creek (19) -0.96 -0.551 54.0 -0.41 
Davis Creek at Cache Creek (19) -0.62 -0.190 106.2 -0.43 
Davis Creek at Cache Creek (19) -0.13 -0.509 -118.2 0.38 
Davis Creek at Cache Creek (19) -1.70 -0.936 58.0 -0.76 

Lower Bear Creek (20) -0.59 -0.845 -36.3 0.26 
Lower Bear Creek (20) -0.33 -0.433 -27.6 0.11 
Lower Bear Creek (20) -0.24 -0.496 -70.9 0.26 
Lower Bear Creek (20) 0.04 -0.417 -239.5 0.45 
Lower Bear Creek (20) -0.77 -0.371 70.0 -0.40 
Lower Bear Creek (20) 0.45 -0.408 4517.8 0.85 
Lower Bear Creek (20) -0.89 -0.386 78.6 -0.50 
Lower Bear Creek (20) -0.46 -0.282 47.0 -0.17 
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Lower Bear Creek (20) 0.06 -0.421 -262.5 0.48 
Lower Bear Creek (20) -0.72 -0.321 76.9 -0.40 
Lower Bear Creek (20) -0.09 -0.311 -109.0 0.22 
Lower Bear Creek (20) -0.49 -0.712 -36.0 0.22 
Lower Bear Creek (20) -0.66 -0.721 -9.2 0.06 

Bear Creek confluence (21) -0.09 -0.388 -127.3 0.30 
Rumsey (23) -0.66 -0.893 -30.3 0.24 
Rumsey (23) -0.52 -0.627 -18.1 0.10 
Rumsey (23) -0.64 -0.747 -15.7 0.11 
Rumsey (23) -1.00 -1.155 -14.4 0.15 
Rumsey (23) -0.77 -0.767 0.3 0.00 
Rumsey (23) -0.70 -0.772 -9.9 0.07 
Rumsey (23) -0.39 -0.405 -4.4 0.02 
Rumsey (23) -1.40 -0.936 39.6 -0.46 
Rumsey (23) -0.11 -0.440 -121.2 0.33 
Rumsey (23) -0.96 -0.728 27.3 -0.23 
Rumsey (23) -1.00 -1.174 -16.0 0.17 
Rumsey (23) -0.55 -0.848 -42.1 0.29 
Rumsey (23) -1.30 -1.252 3.9 -0.05 
Rumsey (23) -1.40 -0.824 51.7 -0.57 
Rumsey (23) -1.15 -1.114 3.6 -0.04 
Rumsey (23) -0.89 -0.870 1.9 -0.02 
Rumsey (23) -0.70 -0.772 -9.9 0.07 

Cache Creek below Highway 505 (25) -0.64 -0.839 -27.1 0.20 
Cache Creek below Highway 505 (25) 0.03 -0.299 -250.3 0.33 
Cache Creek below Highway 505 (25) -0.82 -0.936 -12.7 0.11 
Cache Creek below Highway 505 (25) -0.72 -0.757 -4.8 0.04 
Cache Creek below Highway 505 (25) -1.05 -1.046 0.0 0.00 
Cache Creek below Highway 505 (25) -0.72 -0.738 -2.2 0.02 
Cache Creek below Highway 505 (25) -0.57 -0.429 27.9 -0.14 
Cache Creek below Highway 505 (25) -0.85 -0.684 22.1 -0.17 
Cache Creek below Highway 505 (25) -1.05 -1.276 -19.8 0.23 
Cache Creek below Highway 505 (25) -1.15 -1.292 -11.2 0.14 
Cache Creek below Highway 505 (25) -0.57 -0.429 27.9 -0.14 
Cache Creek into Settling Basin (27) -0.32 -0.366 -13.7 0.05 
Cache Creek into Settling Basin (27) -0.74 -0.519 35.8 -0.23 
Cache Creek into Settling Basin (27) -0.46 -0.478 -4.6 0.02 
Cache Creek into Settling Basin (27) -0.29 0.033 250.9 -0.33 
Cache Creek into Settling Basin (27) -1.05 -1.149 -9.4 0.10 
Cache Creek into Settling Basin (27) -1.05 -0.745 33.6 -0.30 
Cache Creek into Settling Basin (27) -0.74 -0.971 -26.3 0.23 
Cache Creek into Settling Basin (27) -0.59 -0.268 74.5 -0.32 
Cache Creek into Settling Basin (27) -0.24 -0.398 -50.9 0.16 

Cache Creek out of Settling Basin (28) -0.70 -0.857 -20.3 0.16 
Cache Creek out of Settling Basin (28) -0.36 -0.412 -14.5 0.06 

   Variance of residuals 0.13 
   Mean of residuals 0.00 
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APPENDIX D cont. 

The USGS’ analyzed the data in terms of the meeting the following requirements to verify the 

necessary assumptions inherent in regression modeling in order to use the regression analyses properly for 

prediction purposes (Stuart and Ord (1991)):  (1) The residuals should be independent; (2) The residuals have a 

mean of zero; (3) The residuals have a constant variance; and (4) The residuals have a normal distribution. 

Residuals, which represent the unexplained variation in the regression model, and are calculated as the 

differences between observed and predicted values.  Examination of the residuals confirms whether the fitted 

model is correct.  To confirm the residual behavior, most commonly graphical analyses are performed and 

examined its adequacy.   

The purpose of the MeHg submodel is to predict MeHg contents in Cache Creek at the watershed 

scale.  Our model builds on the observation by Slotten et al. (2004) that, at the watershed scale in Cache Creek, 

aqueous raw HgT “explains” about 52% of the variation in aqueous raw MeHg.  Our model improves upon this 

predictive power (explaining 63% of the variation) by the inclusion of other relevant variables, as explained 

above. The linear- regression model was developed by transforming both the response variables and relevant 

predictor variables into log arithmetic space.  To address concerns, we provide the following analysis, using the 

appropriate data which show that the relevant regression assumptions stated above are met.  

(1) The residuals are independent:  Graphical plots for residual error analysis (fig. D1) suggest that the 

residuals are independent and trendless.  
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Figure D1. Logarithmic plot of MeHg residuals versus predicted MeHg contents in the Cache 
Creek Watershed, north-central California 
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(2) The residuals have a mean of zero. (See table D1).  

(3) The residuals have a constant variance:  We do acknowledge that the predictions vary site-to-site. We 

attempted to deal with these differences when incorporating fixed- effect variables, such as a local 

source effect (whether n immediate source was nearby, such as the Abbott-Turkey Run Mine) and a 

sulfate effect (see table D1). 

(4) The residuals have a normal distribution:  The following plot shows that the residuals do have a normal 

distribution, as tested by either the “Shapiro Wilks W test” and/or the “Lilliefors test.” Both of which 

demonstrate normality for this equation. 

 

 

 

 

The MeHg regressio

 

 

Figure D2. Logarithm of Residuals from MeHg Regression 
n model’s predictive value is adequately described by the statistics shown in this report. 
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APPENDIX E 

Observed MeHg Contents 

 

Figure E1. Cache Creek watershed, north-central California, showing locations of sampling sites (numbered circles and dots) and observed 
MeHg contents 
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APPENDIX E cont. 

Table E1. Summary of observed MeHg Contents in the Cache Creek watershed, north-central 
California [All values in nanograms per liter] 

Sampling Site Mean Standard 
Error Median Standard 

Deviation 
95% 

Confidence 
No. of 

Samples 
1 Cache Creek at Lower Lake 0.13 0.03 0.12 0.11 0.06 16 

2 
North Fork Cache Creek  
at Hwy 20 0.08 0.01 0.07 0.05 0.03 16 

4 North Fork confluence 0.03 0.00 0.03 0.00 0.04 2 
7 Harley Gulch 2.01 1.03 0.56 3.26 2.33 10 

13 Sulphur Creek tributary 4.13 2.75 1.28 7.27 6.72 7 
14 Sulphur Creek at Cache Creek 3.26 1.50 0.76 6.18 3.18 17 
15 Upper Bear Creek 0.12 0.02 0.09 0.08 0.05 12 
19 Davis Creek at Cache Creek 0.29 0.10 0.26 0.25 0.26 6 
20 Middle Bear Creek 0.63 0.16 0.41 0.65 0.35 16 

22 
Cache Creek and Bear Creek 
Confluence 0.82 NA 0.82 NA NA 1 

23 Cache Creek at Rumsey 0.23 0.05 0.18 0.22 0.11 18 
24 Capay 0.17 0.05 0.12 0.11 0.17 4 
25 Cache Creek below Hwy 505 0.25 0.09 0.19 0.28 0.19 11 
27 Cache Creek into settling basin 0.26 0.03 0.21 0.15 0.06 23 

28 
Cache Creek out of  
settling basin 0.32 0.12 0.32 0.17 1.52 2 
 

              

Table E2. Summary of observed versus predicted MeHg Contents in the Cache Creek watershed, 
north-central California 

 

Sampling 
Site  Name 

No. of 
Samples

Median 
observed 

MeHg content 
(ng/L) 

Median 
Predicted 

MeHg content 
(ng/L) 

Relative 
percent 

Difference  
1 Clear Lake 15 0.12 0.09 33.3 
2 N. Fork Cache Creek at Highway 20 14 0.07 0.09 -31.4 
4 North Fork confluence 2 0.03 0.05 -54.2 
7 Harley Gulch 10 0.56 0.48 15.0 

14 Sulphur Creek 17 0.76 1.08 -34.3 
15 Upper Bear Creek 10 0.09 0.08 6.3 
19 Davis Creek at Cache Creek 6 0.26 0.30 -13.6 
20 Lower Bear Creek  13 0.35 0.38 -8.4 
22 Bear Creek confluence 1 0.82 0.41 66.6 
23 Rumsey 17 0.17 0.15 12.3 
25 Cache Creek below Highway 505 11 0.19 0.18 5.4 
27 Cache Creek into settling basin 9 0.26 0.33 -23.7 
28 Cache Creek out of settling basin 2 0.32 0.26 20.6 
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APPENDIX F 

Economic Cost Data Sample Sites  
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APPENDIX G 

Economic Cost Database  

 
 For comparison purposes, a Gross Domestic Price (GDP) deflator was used to adjust costs from 

one year to another using a GDP deflator inflation index (http://www.jsc.nasa.gov/bu2/inflateGDP.html).   

All of the costs in this table report 2003 deflator costs. Variables used in developing linear regression-cost 

model: (1) a dependent variable, the total costs (TC); and (2) several independent variables: 

 

• Volume moved, removed, or capped (in cubic yards) (VolCy);  

• Elevation of remediation site (EleFT); 

• Ownership of project site (OWN);  

• Whether the area contains acid mine drainage (AMD); 

• Location of the site [location is in California (1)] (CA); 

• Slope is relatively high (1) or low (0) at the site (Slo); 

• Deposit type or type of site of proposed remediation site: Epithermal gold (EpiAu), Gold (Au), 

Industrial (Ind), Poly metallic (Poly), Porphyry Copper (PoCu), Silica Carbonate Hg (SiCaHg), 

Sulfur (Su). Deposit types for the various remediation project sites were identified using expert 

judgment from a USGS geologist (James Rytuba) and a USGS mineralogist (Don Singer) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 59



Table G1. Economic-cost database used for developing linear regression model. 

 

Project site         TC      VolCY EleFT OWN SiCaHg EpiAu Au PoCu Su Poly Ind AMD CA Slo 
Buena Vista 4,718,507 474,100 880 1 1 0 0 0 0 0 0 1 1 1 

Klau 2,300,804 192,400 1250 1 1 0 0 0 0 0 0 1 1 1 
Gambonini 3,060,000 218,000 600 0 1 0 0 0 0 0 0 0 1 1 
Polar Star 1,623,024 500 420 1 0 0 1 0 0 0 0 0 1 1 

Sulphur Bank 12,000,000 193,600 1400 1 1 0 0 0 0 0 0 1 1 0 
Gibraltar Mill 550,612 5,555 1600 0 1 0 0 0 0 0 0 0 1 1 

Aurora 344,890 8,000 3900 0 1 0 0 0 0 0 0 0 1 1 
Alpine 132,650 5,000 3600 0 1 0 0 0 0 0 0 0 1 1 

Carson River 3,350,214 9,087 5200 1 0 1 0 0 0 0 0 0 0 0 
Oak Ridge Site 2,026,902 8,300 875 0 0 0 0 0 0 0 1 0 0 0 
Alcoa/Lavaca 

Bay 59,573,205 467,773 50 1 0 0 0 0 0 0 1 0 0 0 
Lava Cap 3,162,000 80,000 2850 1 0 0 1 0 1 0 0 0 1 1 
Leviathan 7,843,918 69,373 7000 0 0 0 0 0 1 0 0 1 1 0 

Penn 10,757,736 408,000 380 1 0 0 0 0 1 1 0 1 1 1 
Walker 3,500,000 4,800,000 6000 1 0 0 0 0 0 1 0 1 1 0 

Cleveland Mill 7,897,560 164,960 7100 0 0 0 0 0 0 1 0 0 0 1 
Kennecott 

(South) 38,6327,000 14,600,000 4347 0 0 0 0 1 0 0 0 1 0 0 
Kennecott 

(North) 91,870,000 2,200,000 4347 0 0 0 0 1 0 0 0 1 0 0 
Smuggler 
Mountain 7,200,000 217,800 8000 1 0 0 0 0 0 1 0 0 0 0 
Sailor Flat 247,000 4,033 3200 0 0 0 1 0 0 0 0 0 1 0 

Almaden Park 3,996,000 2500 2800 0 1 0 0 0 0 0 0 0 1 1 
Red Top 627,382 180 1700 0 1 0 0 0 0 0 0 0 0 1 

Grey Eagle 2,016,279 475,000 1360 1 0 0 0 0 1 0 0 1 1 1 
Gilt Edge 42,175,069 10,500,000 4600 1 0 1 0 0 0 0 0 1 0 1 

Richmond  Hill 8,500,000 645,333 5750 1 0 0 1 0 0 0 0 1 0 1 
Zortman 41,580,600 40,000 4018 0 0 1 0 0 0 0 0 1 0 1 
Molycorp 
Questa 405,361,110 1,210,000 8300 1 0 0 0 1 0 0 0 1 0 1 

Tar Creek 107,000,000 350,000 700 0 0 0 0 0 0 1 0 1 0 0 
Whitewood 

Creek 1,108,549 4,500 2700 1 0 0 1 0 0 0 0 0 0 0 
Deer Trail 150,000 400 540 0 1 0 0 0 0 0 0 0 1 1 
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Project site        TC     PoCu CA L10VolCY L10Costs 
L10Predicted 
Costs 

      TC 
Prediction 

Buena Vista 4,718,507 0 1 5.68 6.67 6.66724 4,647,720 
Klau Mercury Mine 2,300,804 0 1 5.28 6.36 6.51004 3,236,235 
Gambonini Hg Mine 3,060,000 0 1 5.34 6.49 6.53362 3,416,803 
Polar Star Au Mine 1,623,024 0 1 2.7 6.21 5.4961 313,401 
Sulphur Bank Hg Mine 12,000,000 0 1 5.29 7.08 6.51397 3,265,653 
Gibraltar Mine Mill 550,612 0 1 3.74 5.74 5.90482 803,193 
Aurora Mine 344,890 0 1 3.21 4.19 5.69653 497,199 
Alpine Mine 132,650 0 1 3.81 5.37 5.93233 855,717 
Carson River  3,350,214 0 0 3.96 6.53 6.60728 4,048,368 
Oak Ridge  2,026,902 0 0 3.92 6.31 6.59156 3,904,451 
Alcoa/Lavaca Bay  59,573,205 0 0 5.67 7.78 7.27931 19,024,358 
Lava Cap Mine 3,162,000 0 1 4.9 6.5 6.3607 2,294,563 
Leviathan Mine 7,843,918 0 1 4.84 6.89 6.33712 2,173,302 
Penn Mine  10,757,736 0 1 5.61 7.03 6.63973 4,362,445 
Walker Mine  3,500,000 0 1 6.68 6.54 7.06024 11,487,883 
Cleveland Mill Mine  7,897,560 0 0 5.22 6.9 7.10246 126,607,667 
Kennecott (South) Mine 386,327,000 1 0 7.16 8.59 8.63088 427,444,762 
Kennecott (North) Mine 91,870,000 1 0 6.34 7.96 8.30862 203,526,048 
Smuggler Mountain 
Mine 7,200,000 0 0 5.34 6.86 7.14962 14,113,021 
Sailor Flat Mine 247,000 0 1 3.61 5.7 5.85373 714,052 
Almaden Park 3,996,000 0 1 3.4 6.6 5.7712 590,473 
Red Top Mine 627,382 0 0 2.26 5.8 5.93918 869,321 
Grey Eagle Mine 2,016,279 0 1 5.68 6.3 6.66724 4,647,720 
Gilt Edge Mine 42,175,069 0 0 7.02 7.63 7.80986 64,544,613 
Richmond  Hill 8,500,000 0 0 5.81 6.93 7.33433 21,593,846 
Zortman 41,580,600 0 0 4.6 7.62 6.8588 7,224,370 
Molycorp Questa Mine 405,361,110 1 0 6.08 8.61 8.20644 16,0857,013 
Tar Creek 6,096,290 0 0 5.54 8.03 7.22822 16,912,975 
Whitewood Creek 1,108,549 0 0 3.65 6.04 6.48545 3,058,088 
Deer Trail 150,000 0 1 2.6 5.18 5.4568 286,286 

APPENDIX G cont. 

Table G2. Economic-cost results for developing a linear regression model 

 Final Regression Equation: L10TC ~ PoCu + CA + L10VolCY
     
                        Value   Std. Error   t value      Pr(>|t|)  
(Intercept)      5.0510    0.3940      12.8184     0.0000 
       PoCu       0.7661    0.3363      2.2780       0.0312 
         CA        -0.6161   0.1874     -3.2869      0.0029 
   L10VolCY   0.3934   0.0762      5.1637      0.0000 
 
Residual standard error: 0.4759 on 26 degrees of freedom 
Multiple R-Squared: 0.7614  
F-statistic: 27.65 on 3 and 26 degrees of freedom, the p-value is 3.007e-008 
  
L10 TC = 5.05 + 0.77PoCu – 0.62CA + 0.39Log10VolCY 
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APPENDIX H 

Verification of Cost-Mitigation Submodel 
 

The USGS’ Western Geographic Science Center analyzed the data in terms of meeting the 

following requirements to verify the necessary assumptions inherent in the regression modeling in order to 

use the regression analyses properly for prediction purposes (Stuart and Ord (1991)): (1) The residuals 

should be independent; (2) The residuals have a mean of zero; (3) The residuals have a constant variance; 

and (4) The residuals have a normal distribution. 

Residuals, which are the unexplained variation of the regression model, are calculated as the 

differences between the observed and predicted values. Examination of the residuals confirms whether the 

fitted model is correct. To confirm the residual behavior, most commonly graphical analyses are performed 

and examined for their adequacy. The cost-mitigation submodel predicts HgT mitigation costs. The 

residuals were analyzed to verify the assumptions of regression modeling. Below are the results: 

 

(1) The residuals appear to be independent:  The following graph shows that there is no trend in the 

residuals.  
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Figure H1. Logarithmic plot of total cost residuals versus predicted 
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(2) The residuals have a mean close to zero (~0.03):  Excel generally provides an approximation in its 

calculations.  

(3) The residuals have a constant variance: (0.18) Again, Excel provides an approximation in its 

calculations.  

(4)  The residuals have a normal distribution.  

    

This analysis reflects the uncertainty in remediation-project costs, based on the information that 

we currently have.  A reduction in uncertainty could be achieved with site-specific project-specific cost 

estimates made by a contractor, but we have no access to this information, and so the spread cited reflects 

our current uncertainty. We acknowledge that the cost model was developed on a national scale and 

contains variables that are irrelevant on a regional scale, such as copper deposits and whether the project is 

in California or not. This is one reason why we tested the model using Tetra Tech figures, Inc. data--cost 

estimates in the Sulphur Creek area.  
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APPENDIX I 

Liability Issues for Offsets 

The agency undertaking Hg cleanup can be liable for postremediation contamination in several 

ways. Most commonly, the agency paying for remediation is also the owner.  Whether a public agency—

which now owns property polluted by a previous owner—or a private party—who may or may not have 

been the polluting party —liability for contamination runs through ownership and/or previous actions.  

Estimating future liability costs for offset projects are difficult because, for each remediation site, no 

obvious owner or responsible polluter exists. The main issue is whether entering and cleaning up 

properties, with which the point source has no connection, can result in potential liability for 

postremediation contamination.  Answering this question requires evaluating several contingent scenarios 

that may confront the point source during remediation.  The following section lays out the contingent 

scenarios and proposes solutions—where possible—for addressing liability issues.  The scenarios presented 

are for point sources to use when evaluating a remediation site. 

The first question is whether a potential remediation offset project site currently belongs to an 

existing entity (person, corporation, limited liability company, limited liability partnership, etc)? The 

polluting party has abandoned many of the sites, but nevertheless, the current titleholder can be held liable 

for existing contamination.  If an existing entity can be found that holds title to the land, several options are 

available for the potential offset participant. 

 

Ownership Established 

The first option is to work with the EPA under the Comprehensive Environmental Response, 

Compensation, and Liability Act (CERCLA) to require the owner to perform the necessary remediation.  

The EPA has the authority to require a polluting property to remediate and/or can require reimbursement 

from the owner for remediation efforts.  This option would essentially place the point source in the form of 

a third party, who would merely work with the EPA and the owner in case the EPA requires the owner to 

remediate the site.  Alternatively, the point source can pay for the remediation, and the EPA can require the 

owner to reimburse the point source.  In either case, the costs of remediation and future liability will stay 

with the current owner.  The current owner would have several options: 
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1. They may have comprehensive general liability, which would cover an       EPA-mandated 

cleanup. (Courts have looked at these controversies on a case-by- case basis.)  AIU INS. Co. v. 

Superior Court, 51 Cal. 3d 807, (1990); (Julian and Schlumberger, 1996).

2. If they do not have an applicable insurance policy, they will have to assume the remediation 

costs.  In paying for remediation, they can purchase Cleanup Cost Cap (CCC) Insurance (which 

will cover remediation-cost overruns) and postremediation or pollution liability insurance to 

ensure against future torts for property and bodily harm due to remaining contamination. 

 

In the event that EPA will not mandate cleanup under CERCLA, then the point source will likely 

have to bear the costs of remediation (this is a general assumption of the project), which case the point 

source will be entering land owned by an existing entity and performing cleanup on private property.  This 

situation presents several different issues. The current owner may challenge the point source’s authority to 

enter the land.  There are several reasons for taking such a stance. 

 

a. Privacy and Property   

First, the owner may simply be against government interference on his/her/its property.  The 

owner will cite right to privacy and property in trying to keep the point source out. In this case, the 

government may be forced into a regulatory takings or nuisance action. The best course of action would be 

to sue the owner on the grounds of a current nuisance (in the form of pollution) and potentially collect 

damages and/or an injunction allowing entry and remediation.  For the point source, such an action may 

provide the potential for remediation-cost reimbursement, but it would be a risky lawsuit entailing time and 

money in litigation (Bailey and Gulledge, 1997). 

The owner may argue in that the point source’s plans will result in a takings, or eminent domain, 

of their property (either temporarily or permanently). If the court finds that a temporary taking occurs, the 

point source may not only have to pay for the time it inhabited a section of land for remediation (in terms of 

lost use of that part of land), but may also have to pay for the consequences of their actions while on the 

land—such as negligent cleanup leading to post-remediation contamination. If an owner were to win a 

permanent takings issue, the point source would have to buy the remediation site from the owner for full 

market value and then would be responsible for the land as an owner in full title.  However, since the land 
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in question is contaminated, the market value may be determined as very low or potentially negative and so 

“buying” the land may not be an issue.  Postremediation liability would rest on the point source.   

Generally, none of these contests will make it to court, but to plan for settlement of such questions 

ahead of time (i.e. before deciding which sites to pay for full-scale remediation-cost estimates) the point 

source should know all potential contingencies.  The worst-case scenario for confronting a privacy/property 

rights owner would be buying the land and assuming post remediation liability.  Thus, the highest-cost 

solution would be buying remediation and post remediation/pollution liability insurance.   

 

b. Reputation and Liability   

Second, the owner may not necessarily be against government action but may be wary of the 

potential liability or reputation damage that may occur if it becomes common knowledge that they own 

contaminated land. An owner in this case is looking for reassurances that they will not be harmed—in any 

way—by the impending point source’s remediation efforts, while still wanting to control/own their land.  

To avoid costly legal battles described in the privacy/property-rights scenario, the point source would be 

wise to negotiate with the reputation/liability owner.  Both the point source and the owner will be in 

awkward positions.  Without a nuisance claim or an EPA mandate, the point source will basically be paying 

for the remediation; still, the owner will not want to assume the high-profile reputation as an owner of 

polluted land, or the long-term liability.  Even if the owner has commercial general liability (CGL) 

insurance that may cover postremediation costs, the owner would be unlikely to want to risk higher 

premiums by contacting or relying upon their insurance company to cover postremediation liability.   

Both parties may want the same goal—the cleanup of contamination—but to get to that stage, the 

point source may have to arrange a deal on sharing or explicitly determining who will have postremediation 

liability and how to keep the confidentiality of the owner.  Such a scenario brings up important issues of 

freedom of information, unconscionable contracts, and insurance fraud.  The point source should be ready, 

in a worst-case scenario, to assume full postremediation liability for the site. We note, however, that short 

of negligently performing on remediation (i.e., hiring an incompetent contractor), no real precedent exists 

for making a nonowner of property pay for postremediation liability.  Thus, in cases where the point source 

does not have to assume ownership of land, there is no guarantee that they should pay for postremediation 
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liability.  However, to accomplish smooth transactions and avoid legal battles, it may be worth assuming 

the costs (the costs may be reimbursable—as discussed below) 

 

c. Holdout   

Third, the owner may no longer use the land and may want to hold out for government purchase 

rather than allow entry. In this case, the owner is holding out for the point source to purchase the land and 

thus assume responsibility for any contamination issues.  Two issues may arise. First, if the owner is 

responsible for the contamination, they may still be held liable—even if they sell to the point source—for 

postremediation property and bodily damage. Second, if the current owner was not responsible and did not 

know about the contamination, they may still be held liable after selling the property to the point source.  

This would be a complex legal issue on which the point source would be wise to avoid trying to pursue a 

decision.  In either case, the owner may want the point source to buy the land, potentially adding to the cost 

of remediation because contamination should be factored into the market value and may make the purchase 

price below zero. Also, the point source could bargain the purchase down to only the land necessary for 

remediation by arguing eminent domain.  This would be a negotiation threat; actual litigation would be cost 

prohibitive.   

The worst-case scenario would be the point source having to pay for some costs of title transfer 

(including purchase price), postremediation liability and the costs of cleanup. The options would be to 

purchase CCC insurance and postremediation/pollution liability insurance (Steneri, 2002). Another 

scenario is that the current owner may be the responsible party.  In this case, even without an EPA 

mandate, the point source may be able to require the owner cleanup the site at the owner’s expense.  

Fortunately, this will not be the point source’s responsibility.   

 

Lack of Ownership 

A scenario of no current owner and no remaining responsible party represents probably the most 

likely case for potential offset remediation sites.  In such cases, there is no transfer of liability issues exist 

because there is no current liable party.  However, the question becomes, does the point source assume all 

liability for undertaking remediation on the site? This seems to be a question of first impression.  States and 

municipalities commonly remediate abandoned property—and assume ownership—under CERCLA 
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Brownfield suits (Fletcher, 2002).  However, in such cases, the public agency assumes ownership knowing 

that Superfund will reimburse remediation costs and cover postremediation liability. Even municipalities 

responsible for polluted sites are generally immune to Superfund liability (Steinway, 2001).   

Offset projects will most likely be dealing with postremediation liability for non Superfund sites 

as well as third-person/citizen suits. The first issue is whether the point source will be liable under 

CERCLA for any remaining contamination issues. Considering the EPA involvement, it would not make 

sense for the point source to enter into a remediation program without an agreement that the EPA will not 

hold the point source liable for postremediation Superfund purposes. Even without Superfund liability, the 

potential remains for postremediation liability for third-party suits against the point source (Mink et al, 

1997). 

Another question is whether the point source is liable for contamination that occurs after the 

cleanup. Generally, ownership creates strict liability where the owner is liable regardless of whether they 

act negligently or recklessly.  Here, however, it is unclear whether the point source will be the owner of the 

abandoned site. If the point source becomes the owner, the point source will likely be strictly liable 

(regardless of whether a mistake is made during remediation) for post-cleanup contamination.  If the PS is 

not considered the owner postremediation, then the PS will likely be held liable only for negligent or 

reckless or intentional flaws in remediation.   

Thus, the liability and ownership issue is vital but rather uncertain. On a case-by-case basis, the 

point source will have to evaluate the ownership issue. These property issues will be complex, leading to a 

transaction cost that we have not looked at: property acquisition and management. The best solution may 

be for the point source to create a nonprofit organization to hold title to the land as a buffer for tax and 

liability issues. In any case, assuming the worst—i.e., responsibility for the most legal transaction costs—

the point source should consider the following insurance packages: 

 

1. During remediation, hire only a contractor who has contractor insurance—holding the 

contractor responsible for any potential liability resulting from mistakes during remediation.  

In this report, contractor insurance is assumed to be reflected within the direct-cost model. 
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2. The point source should consider purchasing CCC insurance, which will provide (Bressler, 

2001):  

a. Cover against cost overruns during performance of remediation plan, such as 

known conditions that exceed costs + a buffer 10-20%, unknown conditions that 

contribute to exceeding predicted remediation costs +10-20% buffer or changes 

in regulations during remediation 

b. Typically, coverage of costs up to 100% of expected remediation costs, with the 

option to purchase more coverage. 

c. Deductible of usually 10-20% of expected remediation costs.   

d. Duration the length of project plus a few months 

e. Pricing 8-12% of the limit of liability purchased.  

 

3. The point source should consider purchasing postremediation or pollution liability (PR/PL) 

insurance which generally covers onsite and offsite cleanup of known and unknown 

contamination, as well as torts by third parties against the site for property and bodily 

damage.  Limits of liability can range from $1 million to more than $100 million. The 

deductible is variable and can be tailored to the purchaser’s level of risk aversions (i.e., from 

$10,000 to $1 million). The variables for determining premiums are type of contaminant 

found and remediated, surrounding properties, slope and location to adjacent properties, depth 

to ground water, and composition of the soil. The pricing varies, depending on the choice of 

deductible, length of policy term, and site conditions, but generally, premiums will range 

from 0.5 to 3% of transaction costs (for a new purchaser of remediated property) and 

determination of purchasing postremediation liability premiums will be more difficult for the 

remediating agency. Generally, a 10-year policy with a $1 million limit will have a $10,000 

annual premium, leading to an estimate of 10% of the desired limit as the cost of insurance. 

The insurance length runs approximately 1 to 10 years, with option for renewal.   
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Finally, we note that in many States, including California, insurance premium tax refunds are 

available from the State. Eligibility is not guaranteed, however, for non-Superfund sites. Regardless of 

whether the point source purchases insurance, any postremediation claim could be linked to orphan shares 

of liability—nonexistent parties who caused the pollution.  By California law, as much as 75% of liability 

can be attributed to orphan shares and paid by a State fund (New California Superfund Law, Regulatory 

Alert). Again, it is uncertain whether orphan shares liability applies to non-Superfund sites.  The best 

estimate may be that annual premiums for a 10-year policy will be 1% of the desired limit.  Thus, total 

insurance costs are equal to 10% of the desired limit.13

                                                           
13 See Robb Kapla for further information (kapla2005@student.law.ucla.edu);(rkapla@usgs.gov). 
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