Instruments for x- and y-ray astronomy

Detecting x- and γ -rays

Detectors

Gas-filled detectors Scintillators Semiconductors

Telescope systems

geometric optics

quantum optics

wave optics

Cargèse, 3 April 2006

instrumentation

Life cycle of matter

Who's missing ?

IR	Herschel	1800
UV	Ritter	1801
radio	Hertz	1886
Х	Röntgen	1895
γ	Villard	1900

Session de l'Académie des Sciences du 9 avril 1900

PHYSIQUE. — Sur la réflexion et la réfraction des rayons cathodiques et des rayons déviables du radium (*). Note de M. P. VILLARD.

* Les rayons émis par un petit tube de verre rempli de matière active passaient par une ouverture rectangulaire de 6^{mm} de largeur, pratiquée dans une barre de plomb, et traversaient un champ magnétique. Une plaque photographique 13×18 , disposée sous une incidence presque rasante, euregistrait les trajectoires : dans ces conditions, on observe que les rayons admis dans le champ se divisent en deux groupes distincts, entièrement séparés après un trajet de quelques centimètres.

» L'un de ces groupes est dévié dans le sens prévu; l'autre, formé par les rayons non déviables, se propage rectilignement dans toute la longueur de la plaque. Ce faiscenu non dévié est assez pénétrant pour impressionner, à 25^{cm} de distance, une plaque sensible protégée par plusieurs feuilles de papier noir et une lame d'aluminium; on peut même lui faire traverser une lame de plomb de 0^{mm}, 2 d'épaisseur.

» Les résultats complexes que j'avais observés s'expliquent donc sans difficulté : le faisceau qui, dans mes expériences, traversait sans se réfracter la lame d'aluminium inclinée, correspond aux rayons non déviables : l'expérience a en effet montré qu'il est insensible au champ magnétique. Les rayons déviables, au contraire, se comportent comme les rayons cathodiques et émergent normalement à la lame traversée (^a).

» Je me propose de reprendre ces expériences avec des rayons déviables purs.

» Les faits précédents conduisent à admettre que la partie non déviable de l'émission du radium contient des radiations très pénétrantes, capables de traverser des lames métalliques, radiations que la méthode photographique permet de déceler. »

Telescope systems

aperture	antenna mirror lens Compton D1 detector hodoscope non / 4π
detector	coherent detection bolometer photovoltaic film photon counter

Instrument concepts in nuclear astrophysics

The instrumental categories in nuclear astrophysics reflects our current perception of *light* itself.

Detecting x- and γ-rays

I conversion : Gamma-rays do not interact with matter unless they undergo a "catastrophic" interaction. In all cases of practical interest, Gamma-rays are detected by their production of secondary electrons.

Il ionization of detector medium by fast electrons -> creation of large number of charge carriers

III collection (reconversion) of detector signal, current amplification and conversion by an ADC

Detecting x- and γ-rays

Gas-filled detectors

Ionization chambers

Proportional counters

Geiger counters

Scintillators

Scintillators

Photomultipliers

Spectral resolution : scintillators vs semiconductors

Semiconductors

Narrow gap / low temperature semiconductors Wide bandgap / high temperature semiconductors

Examples

Detectors at ultra-low temperatures

Bolometers Phonon-detectors

Cargèse, 3 April 2006

Gaz-filled detectors

Ionization chambers, Proportional counters, Geiger counters

creation of n_o ion pairs (free electron and positive ion)

 $n_o \approx E_{\gamma} / W$ (e.g. N \approx 30000 for a 1 MeV gamma-ray)

- E_i ionization energy (least tightly bound e) $\approx 10 20 \text{ eV}$
- W average energy required to produce ion pair \approx 30-35 eV
- $E\gamma \sim n_o$ (for W independent of $E\gamma$)

Gaz detectors

X- et Gamma-ray absorption en Fe

Gaz-filled detectors

with enhancing electric field ... recombination of electrons and ions is overcome :

ionisation chambers

- all charges created by direct ionization are collected
 - usually operated in current mode (radiation dose meas.)

proportional counters

- gas multiplication of directly ionized charge
- amplified charge proportional to incident photon energy

Geiger counters

gas multiplication by typically 10⁶ to 10⁸

after every pulses there is an exponential recovery with a characteristic time of RC where RC is the resistance in serie with the HV supply.

Proportional Counters

ionisation are rarely used as radiation detectors in high energy astronomy

proportional counters have spectroscopic capabilites

very similar, bu

- higher voltage

as a consequence

=> high electric field close to the anode

 \Rightarrow e- that are close to the anode,

 \Rightarrow free e⁻ will be accelerated to energies larger than the ionization energies => additional ion pairs avalanche ! (signal amplification by ~10⁴)

Proportional Counters

At higher electric fields, free e^{-} will be accelerated to energies larger than the ionization energies => additional ion pairs

threshold for gas multiplication ~ 10^6 V/m (at 1 atm)

 $dn_e/n_e = \alpha dx$ increase of number of e⁻ per unit pathlength α Townsend coeff. ~ with field strength

 $n(x) = n_e(0)e^{\alpha x}$ exponential growth : Townsend avalanche

in a proportional counter

- the avalanche terminates when all e⁻ collected
- $n_{secondary ion pairs} \sim n_{primary ion pairs} \sim E\gamma$
- multiplication by $> 10^3$ (=> external amps.)
- improved S/N with resp. to ion chambers

fill gases : e.g. Ne, Ar, Xe quench gas : absorbs undesired UV photons (e.g. CH_4) energy resolution : 10% - 13% (12% for Ar + 0.5 % CH_4)

Proportional Counters

MWPCs

Cargèse, 3 April 2006

instrumentation

Scintillators

fluorescence

- instantaneous emission of visible light after excitation / ionization
- (>>> phosphorescence retarded fluorescence)

the ideal scintillator :

- converts fast electron energy into scintillation light with high efficiency
- linear conversion
- medium transparent to its own scintillation light
- fast decay time of induced luminescence (fast signals)
- large size at constant quality
- refraction index \approx 1.5 (close to glass <-> PMT's)

two main scintillator types

organic scintillators (liquid, plastic) <-> PSD/neutrons **inorganic** scintillators : spectroscopy (<-density)

inorganic scintillators

electrons in isolators / semicond. can only occupy two discrete energy bands

- conduction band : e- can freely migrate through crystal
- *forbidden* band (band gap) : no e⁻ in pure crystal
- valence band : e⁻ bound at lattice sites

Solution :

small amounts of activators (impurities) modify band structure

- => 3 excited states within gap
- => deexcitation to valence band results in the emission of visible photons

inorganic scintillators Scenario of an interaction

hv e-	γ-ray interaction with matter produces a secondary e ⁻ photoeffect, Compton, pair-production
	ionization : fast e ⁻ traversing crystal gen. a large number of e ⁻ /hole pairs e ⁻ are raised from the valence-band to the conduction-band
	holes quickly drift to an activator site Eionization of impurity < Eionization of typical lattice site
e-	e ⁻ are free (conduction) until they encounter an ionize impurity
	excitation : e ⁻ fall into impurity => neutral, excited atom (possibly with allowed transition to ground state)
hv'	deexcitation : transition in visible domain (for appropriate activators) (excited states t _{1/2} ~10 ⁻⁷ s)
hv e-	visible photons interact with matter e.g on the photocathode of a PMT (who transforms em-radiation back into electrons)
ourgese, e / pri	

Photomultipliers (PMT)

*photocathod*e

- conversion of incident photon -> photoelectron
- photoelectric effect : $hv = E_e + W (1.5-2eV) \approx 3eV$ quantum efficiency QE $\approx 20-30\%$

electron multiplication

- $E_{photoelectron} < 1 \text{ eV}$
- electrons are focused by electrodes
- secondary e⁻ emission on dynodes (bandgap≈2-3 eV)
 - potential of 1st dynode $U_1 \approx X.100 \text{ V} => X.30 \text{ e}^{-1}$

charge collection on anode

amplification factors of 107 - 109

effects on energy resolution :

- electron statistics (PMT)
- gain variation
- information loss (vis. light refl. in crystal etc.)

instrumentation

thermal agitation =>

n e⁻ pass to the CB leaving vacant p states in the VB : p holes

n = p

ee eeeeee
eee eeeee
eeee eeee
eeeee eee
eeeeee ee
eeeeee e

electric field : $e^- \rightarrow CB$, $H^+ \rightarrow VB$

Cargèse, 3 April 2006

instrumentation

Semiconductor Detectors : junction pn

equilibrium : zone w/o free carriers (depleted) : high resistivity

instrumentation

Détecteurs à Gaz - Détecteurs à semi-conducteur

Cargèse, 3 April 2006

Gaz filled detectors vs. semiconductor detectors

Gaz filled detectors

- Ions,
- free electrons
- Density ~ 0.01 g cm $^{\text{-}3}$
- window to contain gaz
- W (energy to form electron-ion pair) tens of eV
- maximum energy ~ 50 keV (high pressure Xe detector)

semiconductor detectors

- Holes in valence band,free electrons in conduction band
- Density ~ 1.5 5 g cm⁻³

window not (always) required

- W (energy to form electron-hole pair) some eV
- maximum energy ~ 10 MeV (large size Ge detectors)

probability P that electron-hole pair is thermally generated

 $T^{3/2} e^{(-Eg/2kT)}$

Т

Intrinsic semiconductors (pure material) :

~

n : concentration of e⁻ in conduction band $\approx 1.5 \cdot 10^{-10}$

p : concentration of holes in valence band

Impurities / doping

P(T)

eg. in Si $n_i \approx 10^{10}$ cm-3, with 2 ppm of impurities, this is 10^{17} atoms cm⁻³

 $np = n_i p_i$ => $n \approx 10^{17} \text{ cm}^{-3}$, $p \approx 10^3 \text{ cm}^{-3}$

lonization energy : energy to form a e⁻/hole pair e ~ 3 eV (Ge), 30 eV (Nal)

Composition	Density [g/cm ³]	Mean Z	Bandgap [eV]	E e ⁻ hole pair[e	eV]
Si (300 K)	2.33	14	1.12	3.61	
Ge (77 K)	5.32	32	0.74	2.98	
Cargèse, 3 April 2006	6 in	strumentatio	n	2	9

Narrow bandgap semiconductor detector materials

Eg	bandgap energy
k	Boltzmann const
$n_i = p_i$	≈ 2.4 [.] 10 ¹³ cm ⁻³ in Ge
$\approx 1.5.10$	10 cm^{-3} in Si

temperature

Wide bandgap semiconductor detector materials

room temperature : wider bandgap (> 1.5 eV) reduces thermal leakage current

 $p(T) \sim T^{3/2} e^{[-Eg/2kT]}$ probability that e-/hole pair is thermally generated per unit time

compound semiconductor materials with one or more high Z elements => excellent efficiencies

practical limitations :	small size of sufficiently pure detectors
	low drift velocities (holes)
	=> recombination, trapping enhanced

Composition	Density [g/cm ³]	Mean Z	Bandgap [eV]	energy per e ⁻ -hole pair [eV]
CdTe	6.2	50	1.6	4.43
Hgl ₂	6.36	62	2.15	4.22

Cargèse, 3 April 2006

Scintillation eff. ~ 12% => 120 keV (V/UV) Vis. photon energy ~ 3eV => 40'000 V/UV phon photocathode => 20'000 photons quantum eff. QE $\approx 20\% => 4'000 photo-e^{-} (N_{sci})$

 $R = 0.42 (N_{sc}/F_{sci})^{1/2} \approx 25$

Energy to form e-/hole pair :
$$E_{eh} \approx 3 \text{ eV}$$

 $N_{sem} \approx 10^{6}/3 \text{eV} \approx 300'000 \text{ charge carriers}$
 $F_{sem} \approx 0.06\text{-}0.14$ (Fano factor)

$$R = 0.42 (N_{sem}/F_{sem})^{1/2} \approx 500$$

Comparison : scintillator / semiconductor spectra

Cargèse, 3 April 2006

instrumentation

γ -ray interaction and spectra

Gamma-Ray Spectra

coherent vs incoherent spectroscopy systems

coherent spectroscopy

spatial decomposition ("dispersive systems") or temporal modulation of photon energy deposit in detector incoming wave

uses periodic quality of light

spectrometer	domain	R
gratings	visible, UV	10 ³ -10 ⁶
	soft X rays	10 ² -10 ³
Bragg-crystal	soft X rays	10 ³
Fabry-Perot	visible, IR	10 ⁴ -10 ⁶
heterodyne	radio	> 10 ⁶
	mm, sub-mm	> 10 ⁵
atomic resonance	visible, UV	10 ⁷
resolution		
eg. grating	$R \le 2N_{a}/\lambda$	
	N _a : grating wi	dth

incoherent spectroscopy

non-dispersive systems : measurement of

uses quantum quality of light

spectrometer	domain	R
semiconductors	soft X	< 50
tunneling junction	soft X	10 ²⁻ (6·10 ²)
Nal	hard X	< 10
CdTe	hard X	10-10 ²
Ge	hard X, γ	10 ² - 10 ³

resolution	
eg. semiconductor	$R \sim N^{1/2} \sim \epsilon^{-1/2}$
N number of charge of	carriers produced
$\epsilon~$ energy required to	create e ⁻ /hole pair
(ϵ > E _g bandgap en	ergy)