APPENDIX A

Tables of Select Method Quality Control Requirements

Quality Control Item	4-C12), Diesel (C12-C23), and Motor Oil Frequency	Acceptance Criteria	Corrective Action
Initial Calibration Initial Calibration Verification (ICV)	Each time the instrument is set up and when CCV standard acceptance criteria are not met. Initial calibration consists of a minimum of five concentrations levels (one standard must be at or below reporting limit). Heated purge required for calibration standards associated with solid samples for GRO analysis.	If %RSD≤20% for CFs for each target and surrogate compound quantitate using average CF. Generate a calibration curve for analytes which do not meet this criterion. The calibration curve must have a correlation coefficient (R) ≥0.99 or a coefficient of determination (\mathbb{R}^2) ≥0.99. 1. For each target and surrogate	1. %RSDs >20% require quantitation using a calibration curve. 2. If the %RSD >20%, R<0.99, and R ² <0.99 for a target compound, a new initial calibration must be performed.
Standard and Continuing Calibration Verification (CCV) Standard	of the daily sequence, unless initial calibration is performed. CCVs must bracket each set of 10 sample analyses (inclusive of all laboratory and field QC). The concentration of the CCV standard must be at or near the mid-point of the calibration range of the instrument. Heated purge required for calibration standards associated with solid samples for GRO analysis.	 compound ≤15%D based on "true" concentration when quantitated as a sample. 2. RT of each target compound must be within RT window (reset daily at the beginning of the sequence for the 24-hour day and only permitted once per 24 hours). 	Criteria must be met berore sample analysis may begin. Reanalyze all samples and QC not bracketed by compliant CCV standards. Exception: If there are no positive results (results for the noncompliant target compound are <detection and="" associated="" in="" limit)="" samples,="" the="" the<br="">noncompliant CCV standard shows increased sensitivity (<i>i.e.</i>, CCV standard target compound recovery >115%) no further action needed.</detection>
Retention Time (RT) Windows	 Established at ±3-sigma of the mean RT of each compound determined over 72 hours (if window is too narrow, use default windows per SW-846 Method 8000B [Section 7.6]). Recentered daily based on RT of each of the compounds in the daily ICV. 	Refer to Frequency column (left) regarding RT window Acceptance Criteria. RT windows for target compounds must not overlap and recentering the retention time windows is only permitted once per 24 hours.	Adjust system and recalibrate.

Table A-1 Gasoline (C4	-C12), Diesel (C12-C23), and Motor Oil (C23-C40) — SW-846 Method 8015B (Quality Control Requirements-Continued
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action
Retention Time (RT) Shift	Each CCV analysis: RTs of analytes in the CCV are evaluated against the daily ICV.	Column and compound specific, varies with each ICV: compound should be within window established by ICV RT ± the calculated RT window or a default based on the calculated RT window.	 Inspect chromatographic system for malfunctions; correct identified malfunctions, if appropriate. Evaluate data based on a comparison with other standards run during the analytical sequence, consider the RTs for the surrogate and spiked compounds analyzed before and after the sample in question. i) Expand the RT windows to encompass the shift in compound location. ii) If no peaks are found in the expanded window, report the compound as non-detected.
Method Blank	One per batch of ≤20 samples of the same matrix per day. Must undergo all sample preparative procedures.	 Concentration less than the reporting limit of the compound. Not applicable if positive results were not reported for any associated samples. Must meet surrogate criteria. 	 Reanalyze blank to determine if instrument contamination was the cause. If the method blank is compliant upon reanalysis, then reanalyze all samples, unless samples contain >10× amount found in blank or there are no positive results. If the method blank is still non-compliant, then follow 2 or 3 below. If the samples are within the holding time, then reextract and reanalyze all associated samples, unless samples contain >10× amount found in blank or there are no positive results. If samples are past the holding time or if blank is still out after reanalysis, report both sets of data and notify QAM.

Table A-1 Gasoline (C4	-C12), Diesel (C12-C23), and Motor Oil (C23-C40) — SW-846 Method 8015B (Quality Control Requirements-Continued
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action
Laboratory Control Sample (LCS)	One per batch of ≤ 20 samples per matrix per day. Must undergo all preparative procedures. The LCS must have a concentration at or near the mid-point of the calibration range.	Limits on Tables A-19 and A-20.	 Reanalyze LCS. If the LCS is compliant upon reanalysis, then reanalyze all associated samples (see exception). If still non-compliant, then follow 2 or 3 below. If the samples are within the holding time, then reprepare and reanalyze the LCS and all associated samples (see exception). If samples are past the holding time or if LCS is still non-compliant after reanalysis, report both sets of data and notify QAM. Exception: If LCS recovery is high and there are no positive results (<detection in="" limit)="" the<br="">associated samples, then address in SDG Narrative and no further action needed.</detection>
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	One per batch of ≤ 20 samples per matrix per concentration level per day. Must undergo all sample preparative procedures. Must be spiked with all target analytes at concentrations at or near the mid-point of the calibration range.	Limits on Tables A-19 and A-20.	 If recoveries for the spiked compounds are not within limits, check for documentable errors (<i>e.g.</i>, calculations and spike preparation). Check unspiked sample results and surrogate recoveries for indications of matrix effects. If no errors are found and the associated LCS are within limits, then sample matrix effects are the most likely cause. Note in SDG Narrative.

Table A-1 Gasoline (C4	Cable A-1 Gasoline (C4-C12), Diesel (C12-C23), and Motor Oil (C23-C40) — SW-846 Method 8015B Quality Control Requirements-Continued				
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action		
Internal Standards (Optional)	Add to all blanks, standards, QC samples, and samples.	 Peak area within -50% to +100% of area in bracketing CCVs. RT within 30 sec of RTs for bracketing CCVs. 	 Inspect instrument for malfunction; correct identified malfunctions, then reanalyze samples If no instrument malfunction identified, proceed as follows: Reanalyze sample. Reanalyze sample. If reanalysis is out, report both sets of data and note in SDG Narrative. If in, report only second set. If the sample was chosen for the MS/MSD analysis and the MS and/or MSD internal standards are outside limits, then no reanalysis is required. 		
Surrogate Compounds	 Added to all standards, blanks, samples, and QC samples. Calibrated and quantitated as target compounds. 	Limits on Table A-23.	 If recovery is not within limits: 1. Check to be sure that there are no errors in calculations and surrogate solutions. Also, check instrument performance. 2. If no problem is found, reprepare and reanalyze the sample. 3. If the reanalysis is within limits and holding times, then report only the reanalysis. 4. If the reanalysis is within limits, but out of holding time, then report both sets of data and note in SDG Narrative. 5. If the reanalysis is still out of limits, then report both sets of data and note in SDG Narrative. 6. If the sample was chosen for the MS/MSD analysis and the MS and/or MSD surrogate recoveries are outside limits, then no reanalysis is required. 		

Table A-1 Gasoline (C4	Cable A-1 Gasoline (C4-C12), Diesel (C12-C23), and Motor Oil (C23-C40) — SW-846 Method 8015B Quality Control Requirements-Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Qualitative/Quantitative Issues	 If instrument level of any compound in a sample exceeds the instrument level of that compound in the highest level standard, the sample must be diluted to approximately mid-level of the calibration range and reanalyzed. If the concentration of the target analyte that exceeded the calibration range is present in the sample analyzed immediately after the high level sample at a level ≤5× reporting limit, then that sample must be reanalyzed to determine if carryover occurred. For each sample, evaluate the chromatographs for potential interferences. 	 The instrument level of all compounds must be within the calibration range for all samples. The sample analyzed immediately after a high-level sample must display concentrations of the high-level target compounds greater than 5× reporting limit. Sample chromatographs should not display levels of interference in the RT window of any target compound at a level greater than the reporting limit. 	 Dilute the sample to bring the level of the highest concentration of target compounds within the calibration range. A sample, which was analyzed immediately after a high-level sample, displaying concentrations of target compounds ≤5× the reporting limit must be reanalyzed. If the results do not agree within the reporting limit, report only the second analysis. If chromatographic interference is observed during the RT window of any target compound, then report in the SDG Narrative that the reported results are quantitatively estimated and are tentative identifications (flag "N"). A discussion regarding the qualitative and quantitative reliability of the analyses must be included in the SDG Narrative. 	

Table A-2 Organochlo	Table A-2 Organochlorine Pesticides — SW-846 Method 8081A Quality Control Requirements			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Initial Calibration (Quantitation Column - used for all samples)	Each time the instrument is set up and when CCV acceptance criteria are not met. Initial calibration consists of a minimum of five concentrations levels (one standard must be at or below reporting limit).	If %RSD≤20% for CFs for each target and surrogate compound quantitated using average CF. Generate a calibration curve for analytes which do not meet this criterion. The calibration curve must have a correlation coefficient (R) ≥0.99 or a coefficient of determination (\mathbb{R}^2) ≥0.99.	 %RSDs>20% require quantitation using a calibration curve. If the %RSD>20%, R<0.99, and R²<0.99 for a target compound, a new initial calibration must be performed. 	
		Evaluate endrin and 4,4'-DDT for degradation (degradation of each compound must not exceed 15%).		
Confirmation Column	One standard at reporting limit.	The peaks for each target compound must be distinct and identifiable on the chromatographs.	Correct system and reanalyze.	

Table A-2 Organochlo	Cable A-2 Organochlorine Pesticides — SW-846 Method 8081A Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Initial Calibration Verification (ICV) Standard and Continuing Calibration Verification (CCV) Standard (Quantitation Column)	ICV will consist of all single-component analytes and will be analyzed at the beginning of the daily sequence, unless initial calibration is performed. CCVs will consist of all single-component analytes and must bracket each set of 10 sample analyses (including all laboratory and field QC samples). Do <u>not</u> analyze hexane or instrument blanks prior to ICV/CCVs. Note: if this method is to be used as a screen for PCBs, then the laboratory should analyze a low-concentration ICV standard for all PCB mixtures.	 ≤15% D based on "true" concentration when quantitated as a sample. RT of each compound must be within RT window (reset daily at the beginning of the sequence for the 24-hour day). NOTE: Each peak for which an average CF was generated must be evaluated and reported for multi-component analytes. 	Correct system, if necessary, and recalibrate. Criteria must be met before sample analysis may begin. Reanalyze all field and QC samples that are not bracketed by compliant CCVs. If a failed CCV (<i>e.g.</i> , for an autosampler analysis) returns to acceptable calibration later in the sequence, samples following the acceptable CCV will be reported; samples between the failed CCV and subsequent compliant CCV and between the failed CCV and the previous compliant CCV will be reanalyzed.	
Retention Time (RT) Windows	 Established at ±3-sigma of the mean RT of each compound determined over 72 hours (if window is too narrow, use default windows per SW-846 Method 8000B [Section 7.6]). Must be established whenever a new column is installed. Recentered daily based on RT of each of the compounds in the ICV. 	Refer to Frequency column (left) regarding RT window Acceptance Criteria. RT windows for quantitation peaks of target compounds must not overlap. Recentering windows is permitted once per 24 hours.	Adjust system and recalibrate.	

Table A-2 Organochlo	Cable A-2 Organochlorine Pesticides — SW-846 Method 8081A Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Retention Time (RT) Shift	Each CCV analysis: RTs of analytes in the CCV are evaluated against the daily ICV.	Column and compound-specific, varies with each ICV: compound should be within window established by ICV RT ± the calculated RT window or a default based on the calculated RT window.	 Inspect chromatographic system for malfunction; correct identified malfunctions, if appropriate. Evaluate data based on a comparison with other standards run during the analytical sequence, consider the RTs for the surrogate and spiked compounds analyzed before and after the sample in question. i) Expand the RT windows to encompass the shift in compound location. ii) If no peaks are found in the expanded window, report the compound as non-detect. iii) If peaks are present, use the confirmation column to verify identification. 	
Instrument Blank	Must bracket each set of 10 sample analyses (analyze immediately after CCV).	 All target compounds <reporting applicable="" if<="" limit.="" not="" p=""> positive results were not reported for any of the associated samples. </reporting> Must meet surrogate criteria. 	Reanalyze blank and associated samples.	

Table A-2 Organochlorine Pesticides — SW-846 Method 8081A Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action
Method Blank	One per extraction batch of ≤ 20 samples per matrix per day. Must undergo all sample preparative procedures. Do <u>not</u> analyze hexane or instrument blanks prior to method blanks.	 Concentration less than the reporting limit of the compound. Not applicable if positive results were not reported for any associated samples. Must meet surrogate criteria. 	 Reanalyze blank to determine if instrument contamination was the cause. If the method blank is compliant upon reanalysis, then reanalyze all samples (unless samples contain >10× amount found in blank or there are no positive results). If the method blank is still non-compliant, then follow 2 or 3 below. If the samples are within the holding time, then reextract and reanalyze all associated samples, unless samples contain >10× amount found in blank or there are no positive results. If samples are past the holding time or if blank is still out after reanalysis, report both sets of data and notify QAM.

Table A-2 Organochlo	Cable A-2 Organochlorine Pesticides — SW-846 Method 8081A Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Laboratory Control Sample (LCS)	One per extraction batch of ≤20 samples per matrix per day. Must undergo all sample preparative procedures. The LCS must have concentrations of the target analytes, except multi-peak and coeluting analytes, at the mid- point of the calibration curve.	Limits on Tables A-19, A-20, and A-22.	 Reanalyze LCS. If the LCS is compliant upon reanalysis, then reanalyze all associated samples (see exception). If still non-compliant, then follow 2 or 3 below. If the samples are within the holding time, then reextract and reanalyze the LCS and all associated samples (see exception). If samples are past the holding time or if LCS is still non-compliant after reanalysis, report both sets of data and notify QAM. Exception: If LCS recovery is high and there are no positive results (<detection in="" limit)="" the<br="">associated samples, then address in SDG Narrative and no further action needed.</detection> 	
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	One per extraction batch of ≤20 samples per matrix per day. Must undergo all sample preparative procedures. The MS/MSD sample must be spiked with all target analytes, except multi-peak and coeluting analytes, at concentrations at or near the mid-range of the calibration curve.	Limits on Tables A-19, A-20, and A-22.	 If recoveries for the spiked compounds are not within limits, check for documentable errors (<i>e.g.</i>, calculations and spike preparation). Check unspiked sample results and surrogate recoveries for indications of matrix effects. If no errors are found and the associated LCS are within limits, then sample matrix effects are the most likely cause. Note in SDG Narrative. 	

Table A-2 Organochlo	Table A-2 Organochlorine Pesticides — SW-846 Method 8081A Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Surrogate Compounds (Recovery calculated from results obtained on the quantitation column.)	 Added to all standards, blanks, samples, and QC samples. Calibrated and quantitated as a target compound. 	Limits on Table A-23.	 If recovery is not within limits: 1. Check that there are no errors in calculations and surrogate solutions. Also, check instrument performance. 2. If no problem is found, reextract and reanalyze the sample. 3. If the reanalysis is within limits, then report only the reanalysis. 4. If the reanalysis is within limits but out of holding time, then report both sets of data. 5. If the reanalysis is still out of limits, then report both sets of data. 6. If the sample was chosen for the MS/MSD analysis, and the MS and/or MSD surrogate recoveries are outside limits, no reanalysis is required. 	
Internal Standards (Optional)	Add to all blanks, standards, QC samples, and samples.	 Peak area within -50% to +100% of area in bracketing CCVs. RT within 30 sec of RTs for bracketing CCVs. 	 Inspect instrument for malfunction; correct identified malfunctions, then reanalyze samples. If no instrument malfunction identified, proceed as follows: Reanalyze sample. If reanalysis is out, report both sets of data. If in, report only second set. If the sample was chosen for the MS/MSD analysis and the MS and/or MSD internal standards are outside limits, then no reanalysis is required. 	

Table A-2 Organochlo	Cable A-2 Organochlorine Pesticides — SW-846 Method 8081A Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Qualitative/Quantitative Issues	 If the instrument level of any compound in a sample exceeds the instrument level of that compound in the highest level standard, the sample must be diluted to approximately mid-level of the calibration range and reanalyzed. For each sample, evaluate the chromatographs for possible interferences. Each positive result must be qualitatively confirmed by analysis on a second, dissimilar column. If the concentration of the target analyte that exceeded the calibration range is present in another sample analyzed immediately after the high level sample and is greater than the reporting limit but ≤5× reporting limit, then that sample must be reanalyzed to determine if carryover occurred. 	 The instrument level of all compounds must be within the calibration range for all samples. Sample chromatographs should not display levels of interference in the RT window of any target compound at a level greater than the reporting limit. All results must be quantitated on and reported from the primary column but confirmed on a second dissimilar column. The sample analyzed immediately after a high-level sample must display concentrations of the high-level target compounds less than the reporting limit or greater than 5× reporting limit. 	 Dilute the sample to bring the level of the highest concentration of target compounds within the calibration range. If chromatographic interference is observed during the RT window of any target compound, then report in the SDG Narrative that the reported results are quantitatively estimated and are tentative identifications (flag "N"). A discussion regarding the qualitative and quantitative reliability of the analyses must be included in the SDG Narrative. A sample displaying concentrations of target compounds between the reporting limit and 5× reporting limit analyzed immediately after a highlevel sample must be reanalyzed. If the results do not agree within the reporting limit, report only the second analysis. 	

Table A-3 Polychlorinated Biphenyls - SW-846 Method 8082 Quality Control Requirements				
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Initial Calibration (Quantitation	Established initially and when CCV fails criteria at five concentration levels for	If %RSD≤20% for CFs for each surrogate and Aroclor mixture	1. %RSDs>20% require quantitation using a calibration curve.	
Column - used for all samples)	Aroclor 1016/1260 combined. One standard at or below the reporting limit. One standard	quantitate using average CF. Generate calibration curve for	2. If the %RSD >20%, R<0.99, and R^2 <0.99 for a target analyte a new initial calibration must be	
	calibration for the remaining Aroclor mixtures, at concentrations near the middle of	analytes which do not meet this criterion. The calibration curve	performed.	
	the linear range of the analysis.	must have a correlation coefficient (R) ≥ 0.99 or a		
		coefficient of determination (\mathbb{R}^2) ≥ 0.99 . Each Aroclor must display		
		distinctive pattern for multipeak analytes.		
Confirmation Column	One standard at reporting limit for each	Must display distinctive pattern	Correct system and reanalyze.	
	Aroclor mixture.	for multipeak analytes.		

Table A-3 Polychlorina	ated Biphenyls - SW-846 Method 8082 Qua	ality Control Requirements - Co	ntinued
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action
Initial Calibration Verification (ICV) Standard and Continuing Calibration Verification (CCV) Standard (Quantitation Column)	ICV will be analyzed at the beginning of the daily sequence (when >2-hour break in continuous analysis, all analytes), unless initial calibration is performed. CCVs must bracket each set of 10 sample analyses (including all laboratory and field QC samples). ICV will consist of the Aroclor 1016/1260 mixture, and CCV will consist of the Aroclor 1016/1260 mixture every 10 samples. Do <u>not</u> analyze hexane or instrument blanks prior to ICV/CCVs.	 ≤15% D based on "true" concentration when quantitated as a sample. RT of each peak used for identification of the Aroclor must be within RT window (reset daily at the beginning of the sequence for the 24-hour day). NOTE: Each peak selected for an Aroclor must be evaluated and reported. 	Correct system, if necessary, and recalibrate. Criteria must be met before sample analysis may begin. Reanalyze all field and QC samples that are not bracketed by compliant CCVs. If a failed CCV (<i>e.g.</i> , for an autosampler analysis) returns to acceptable calibration later in the sequence, samples following the acceptable CCV will be reported; and samples between the failed CCV and subsequent compliant CCV will be reanalyzed.
Retention Time (RT) Windows	 Established at ±3-sigma of the mean RT of each compound determined over 72 hours (if window is too narrow, use default windows per SW-846 Method 8000B [Section 7.6]). Must be established whenever a new column is installed. Recentered daily based on RT of each of the peaks used for Aroclor identification in the daily ICV. 	Refer to Frequency column (left) regarding RT window Acceptance Criteria. RT windows for quantitation peaks of the Aroclors must not overlap. Recentering windows is permitted once per 24 hours.	Adjust system and recalibrate.

Table A-3 Polychlorinated Biphenyls - SW-846 Method 8082 Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action
Retention Time (RT) Shift	Each CCV analysis: RTs of the peaks chosen for the identification of the Aroclors in the CCV are evaluated against the daily ICV.	Column and peak-specific, varies with each ICV: peak should be within window established by ICV RT ± the calculated RT window or a default based on the calculated RT window.	 Inspect chromatographic system for malfunction; correct identified malfunctions, if appropriate. Evaluate data based on a comparison with other standards run during the analytical sequence, consider the RTs for the surrogate and spiked Aroclors analyzed before and after the sample in question. Expand the RT windows to encompass the shift in Aroclor peak location. If no peaks are found in the expanded window, report the compound as non-detect. If peaks are present, use the confirmation column verify identification.

Table A-3 Polychlorina	Table A-3 Polychlorinated Biphenyls - SW-846 Method 8082 Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Internal Standards (Optional)	Add to all blanks, standards, QC samples, and samples.	 Peak area within -50% to +100% of area in bracketing CCVs. RT within 30 sec of RTs for bracketing CCVs. 	 Inspect instrument for malfunction; correct identified malfunctions, then reanalyze samples. If no instrument malfunction identified, proceed as follows: Reanalyze sample. 	
			ii) If reanalysis is out, report both sets of data and note in SDG Narrative. If in, report only second set.3. If the sample was chosen for the MS/MSD analysis and the MS and/or MSD internal standards are outside limits, then no reanalysis is required.	
Instrument Blank	Must bracket each set of 10 sample analyses.	 All Aroclors <reporting limit.<br="">Not applicable if positive results were not reported for any associated samples.</reporting> Must meet surrogate criteria. 	Reanalyze blank and associated samples.	

Table A-3 Polychlorina	Table A-3 Polychlorinated Biphenyls - SW-846 Method 8082 Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Method Blank	One per extraction batch of ≤20 samples of the same matrix per day. Must undergo all sample preparative procedures. Do <u>not</u> analyze hexane or instrument blanks prior to method blanks.	 All Aroclors <reporting limit.<br="">Not applicable if positive results were not reported for any associated samples.</reporting> Must meet surrogate criteria. 	 Reanalyze blank to determine if instrument contamination was the cause. If the method blank is compliant upon reanalysis, then reanalyze all samples, unless samples contain >10× amount found in blank or there are no positive results. If the method blank is still non-compliant, then follow 2 or 3 below. If the samples are within the holding time, then reextract and reanalyze all associated samples, unless samples contain >10× amount found in blank or there are no positive results. If samples are past the holding time or if blank is still out after reanalysis, report both sets of data and notify QAM. 	

Table A-3 Polychlorina	ated Biphenyls - SW-846 Method 8082 Qua	ality Control Requirements - Co	ntinued
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action
Laboratory Control	One per extraction batch of ≤ 20 samples per	Limits on Tables A-19, A-20, and	1. Reanalyze LCS. If the LCS is compliant upon
Sample (LCS)	matrix per day. Must undergo all sample	A-22.	reanalysis, then reanalyze all associated samples
	preparative procedures. The LCS must have		(see exception). If still non-compliant, then
	concentrations of two chromatographically		follow 2 or 3 below.
	distinct target Aroclors at the mid-point of the		2. If the samples are within the holding time, then
	calibration curve.		reextract and reanalyze the LCS and all associated
			samples (see exception).
			3. If samples are past the holding time or if LCS is
			still non-compliant after reanalysis, report both sets
			of data and notify QAM.
			Exception: If LCS recovery is high and there are
			no positive results (<detection in="" limit)="" td="" the<=""></detection>
			associated samples, then address in SDG Narrative
			and no further action needed.
Matrix Spike/Matrix	One per extraction batch of ≤ 20 samples per	Limits on Tables A-19, A-20, and	1. If recoveries for the spiked Aroclors are not
Spike Duplicate	matrix per day. The MS/MSD sample must	A-22.	within limits, check for documentable errors (<i>e.g.</i> ,
(MS/MSD)	be spiked with two chromatographically		calculations and spike preparation).
	distinct target Aroclors at concentrations at or		2. Check unspiked sample results and surrogate
	near the mid-range of the calibration curve.		recoveries for indications of matrix effects.
			3. If no errors are found, and the associated LCS
			are within limits, then sample matrix effects are the
			most likely cause. Note in SDG Narrative.

Table A-3 Polychlorina	Table A-3 Polychlorinated Biphenyls - SW-846 Method 8082 Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Surrogate Compounds (Recovery calculated from results obtained on the quantitation column.)	 Added to all standards, blanks, samples, and QC samples. Calibrated as a target compound in the Aroclor 1016 and 1260 standards. 	Limits on Table A-23.	 If recovery is not within limits: 1. Check to be sure that there are no errors in calculations and surrogate solutions. Also, check instrument performance. 2. If no problem is found, reextract and reanalyze the sample. 3. If the reanalysis is within limits and holding time, then report only the reanalysis. 4. If the reanalysis is within limits, but out of hold, then report both sets of data and note in SDG Narrative. 5. If the reanalysis is still out of limits, then report both sets of data and note in SDG Narrative. 6. If the sample was chosen for the MS/MSD analysis and the MS and/or MSD surrogate recoveries are outside limits, then no reanalysis is required. 	
Sulfuric Acid Cleanup	All samples for PCB <u>only</u> .	Not applicable.	Not applicable.	

Table A-3 Polychlorinated Biphenyls - SW-846 Method 8082 Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action
Qualitative/Quantitative Issues	 If instrument level of any Aroclor in a sample exceeds the instrument level of that Aroclor in the highest level standard, the sample must be diluted to approximately midlevel of the calibration range and reanalyzed. If chromatographic interference is observed during the RT window of any peak used for Aroclor identification and quantitation, a different peak may be chosen for the identification and quantitation of the Aroclor. If severe interferences exist, and the identity of any Aroclor is prevented by the interferences, the laboratory shall discuss the issue in the SDG Narrative. 	 The instrument level of all Aroclors must be within the calibration range for all samples. Sample chromatograms should not display levels of interference in the RT window of any Aroclor at a level greater than the reporting limit. 	 Dilute the sample to bring the level of the highest concentration of Aroclors within the calibration range. A discussion regarding the qualitative and quantitative reliability of the analyses must be included in the SDG Narrative.

Table A 4 Harbieidae	- SW-846 Method 8151A Quality Cont	rol Doquiromonts	
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action
Initial Calibration (Quantitation Column - used for all samples)	Each time the instrument is set up and when CCV acceptance criteria are not met. Initial calibration consists of a minimum of five concentrations levels (one standard must be at or below reporting limit).	If %RSD≤20% for CFs for each target and surrogate compound quantitated using average CF. Generate a calibration curve for analytes which do not meet this criterion. The calibration curve must have a correlation coefficient (R) ≥0.99 or a coefficient of determination (\mathbb{R}^2) ≥0.99.	 %RSDs>20% require quantitation using a calibration curve. If the %RSD>20%, R<0.99, and R² <0.99 for a target compound, a new initial calibration must be performed.
Initial Calibration Verification (ICV) Standard and Continuing Calibration Verification (CCV) Standard (Quantitation Column)	ICV will be analyzed at the beginning of the daily sequence, unless initial calibration is performed. CCVs must bracket each set of 10 sample analyses (including all laboratory and field QC samples). Do <u>not</u> analyze hexane or instrument blanks prior to ICV/CCVs.	 ≤15% D based on "true" concentration when quantitated as a sample. RT of each compound must be within RT window (reset daily at the beginning of the sequence for the 24- hour day). 	Correct system, if necessary, and recalibrate. Criteria must be met before sample analysis may begin. Reanalyze all field and QC samples that are not bracketed by compliant CCVs. If a failed CCV (<i>e.g.</i> , for an autosampler analysis) returns to acceptable calibration later in the sequence, samples following the acceptable CCV will be reported; samples between the failed CCV and subsequent compliant CCV and between the failed CCV and the previous compliant CCV will be reanalyzed.
Retention Time (RT) Windows	 Established at ±3-sigma of the mean RT of each compound determined over 72 hours (if window is too narrow, use default windows per SW-846 Method 8000B [Section 7.6]). Must be established whenever a new column is installed. Recentered daily based on RT of each of the compounds in the daily ICV. 	Refer to Frequency column (left) regarding RT window Acceptance Criteria. RT windows for quantitation peaks of the target compounds must not overlap. Recentering windows is permitted once per 24 hours.	Adjust system and recalibrate.

Table A-4 Herbicides –	Fable A-4 Herbicides — SW-846 Method 8151A Quality Control Requirements - Continued				
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action		
Retention Time (RT) Shift	Each CVS analysis: RT of analytes in the CVS are evaluated against the daily ICV.	Column and compound specific, varies with each ICV: compound should be within window established by ICV RT ± the calculated RT window or a default based on the calculated RT window.	 Inspect chromatographic system for malfunction; correct identified malfunctions, if appropriate. Evaluate data based on a comparison with other standards run during the analytical sequence, consider the RTs for the surrogate and spiked compounds analyzed before and after the sample in question. Expand the RT windows to encompass the shift in compound location. If no peaks are found in the expanded window, report the compound as non-detect. If peaks are present, use the confirmation column to verify identification. 		
Instrument Blank	Must bracket each set of 10 sample analyses (analyze immediately after CCV).	 All target compounds <reporting limit. Not applicable if positive results were not reported for any of the associated samples.</reporting Must meet surrogate criteria. 	Reanalyze blank and associated samples.		

Table A-4 Herbicides –	Table A-4 Herbicides — SW-846 Method 8151A Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Method Blank	One per extraction batch of ≤20 samples per matrix per day. Must undergo all preparative procedures. Do <u>not</u> analyze hexane or instrument blanks prior to method blanks.	 Concentration less than the reporting limit of the compound. Not applicable if positive results were not reported for any associated samples. Must meet surrogate criteria. 	 Reanalyze blank to determine if instrument contamination was the cause. If the method blank is compliant upon reanalysis, then reanalyze all samples, unless samples contain >10× amount found in blank or there are no positive results. If the method blank is still non-compliant, then follow 2 or 3 below. If the samples are within the holding time, then reextract and reanalyze all associated samples, unless samples contain >10× amount found in blank or there are no positive results. If samples are past the holding time or if blank is still out after reanalysis, report both sets of data and notify QAM. 	

Table A-4 Herbicides –	- SW-846 Method 8151A Quality Con	trol Requirements - Continued	
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action
Laboratory Control Sample (LCS)	One per batch of ≤20 samples per matrix per day. Must undergo all preparative procedures. The LCS must have concentrations of the target analytes at the mid-point of the calibration curve.	Limits on Tables A-19, A-20, and A-22.	 Reanalyze LCS. If the LCS is compliant upon reanalysis, then reanalyze all associated samples (see exception). If still non-compliant, then follow 2 or 3 below. If the samples are within the holding time, then reextract and reanalyze the LCS and all associated samples (see exception). If samples are past the holding time or if LCS is still non-compliant after reanalysis, report both sets of data and notify QAM. Exception: If LCS recovery is high and there are no positive results (<detection in="" limit)="" the<br="">associated samples, then address in SDG Narrative and no further action needed.</detection>
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	One per extraction batch ≤20 samples per matrix per day. Must undergo all preparative procedures. The MS/MSD must be spiked with all target compounds at levels at or near the mid- point of the calibration range.	Limits on Tables A-19, A-20, and A-22.	 If recoveries for the spiked compounds are not within limits, check for documentable errors (<i>e.g.</i>, calculations and spike preparation). Check unspiked sample results and surrogate recoveries for indications of matrix effects. If no errors are found and the associated LCS are within limits, then sample matrix effects are the most likely cause. Note in SDG Narrative.

Table A-4 Herbicides –	- SW-846 Method 8151A Quality Con	trol Requirements - Continued	
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action
Surrogate Compounds (Recovery calculated from results obtained on the quantitation column.)	 Added to all standards, blanks, samples, and QC samples. Calibrated and quantitated as target compounds. 	Limits on Table A-23.	 If recovery is not within limits: 1. Check to be sure that there are no errors in calculations, surrogate solutions, and internal standards. Also, check instrument performance. 2. If no problem is found, reextract and reanalyze the sample. 3. If the reanalysis is within limits and holding times, then report only the reanalysis. 4. If the reanalysis is within limits, but out of hold, then report both sets of data. 5. If the reanalysis is still out of limits, then report both sets of data. 6. If the sample was chosen for the MS/MSD analysis, and the MS and/or MSD are outside limits, then no reanalysis is required.
Internal Standards (Optional)	Add to all blanks, standards, QC samples, and samples.	 Peak area within -50% to +100% of area in bracketing CCVs. RT within 30 sec of RTs for bracketing CCVs. 	 Inspect instrument for malfunction; correct identified malfunctions, then reanalyze samples. If no instrument malfunction identified, proceed as follows: Reanalyze sample. If reanalysis is out, report both sets of data. If in, report only second set. If the sample was chosen for the MS/MSD analysis and the MS and/or MSD internal standards are outside limits, then no reanalysis is required.

Fable A-4 Herbicides — SW-846 Method 8151A Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action
Qualitative/Quantitative Issues	 If the instrument level of any compound in a sample exceeds the instrument level of that compound in the highest level standard, the sample must be diluted to approximately mid-level of the calibration range and reanalyzed. For each sample, evaluate the chromatographs for possible interferences. Each positive result must be qualitatively confirmed by analysis on a second, dissimilar column. If the concentration of the target analyte that exceeded the calibration range is present in another sample analyzed immediately after the high level sample and is greater than the reporting limit but ≤5× reporting limit, then that sample must be reanalyzed to determine if carryover occurred. 	 The instrument level of all compounds must be within the calibration range for all samples. Sample chromatographs should not display levels of interference in the RT window of any target compound at a level greater than the reporting limit. All results must be quantitated on and reported from the primary column but confirmed on a second dissimilar column. The sample analyzed immediately after a high-level sample must display concentrations of the high-level target compounds less than the reporting limit or greater than 5× Reporting Limit. 	 Dilute the sample to bring the level of the highest concentration of target compounds within the calibration range. If chromatographic interference is observed during the RT window of any target compound, then report in the SDG Narrative that the reported results are quantitatively estimated and are tentative identifications (flag "N"). A discussion regarding the qualitative and quantitative reliability of the analyses must be included in the SDG Narrative. A sample, which was analyzed immediately after a high-level sample, displaying concentrations of target compounds between the reporting limit and 5× the reporting limit must be reanalyzed. If the results do not fall within the reporting limit, report only the second analysis.

Table A-5 Volatile Org	able A-5 Volatile Organic Compounds - SW-846 Method 8260B Quality Control Requirements				
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action		
Tune Check (50ng BFB) Initial calibration	Every 12 hours.	Ensure correct mass assignment. BFB % relative abundance criteria as specified in method. 1. Ave RRF for SPCCs must meet	Retune. <u>Do not proceed</u> with analysis until tune meets criteria.		
	 Each time the instrument is set up and when CCCs and SPCCs in the continuing calibration do not meet criteria. 1. Established initially at five concentration levels - low standard at or below reporting limit. 2. Heated purge for low-level soils. 	 Ave RKF for SPCCs must meet method criteria. %RSD for RRFs for each CCC ≤30%. Target non-CCC compounds and surrogate compounds will have %RSD≤15% or generate a calibration curve. The calibration curve must have a correlation coefficient (R) ≥0.99 or a coefficient of determination (R²) ≥0.99. All target compounds must have an RRF≥0.05, except for the ketones which must have an RRF≥0.01. 	 %RSD>15% require quantitation using a calibration curve. If a target compound does not meet the acceptance criteria (%RSD≤15%, R≥0.99, and R² ≥0.99), a new initial calibration must be performed. If SPCC criteria are not met, a new initial calibration must be performed. 		

Quality Control Item	Frequency	Acceptance Criteria	Corrective Action
Continuing Calibration Verification	Every 12 hours. Must be at or near the mid-point calibration range for all target compounds, CCCs, SPCCs, and surrogates. Heated purges for low-level soils.	 RRF for SPCCs must meet method criteria. %D for each CCC, for target non-CCC compounds, and surrogates ≤20%. All target compounds must have an RRF ≥0.05, except for the ketones which must have an RRF ≥0.01. Retention time (RT) for any internal standard within 30 sec of the RT in the mid-point standard of the initial calibration. Area response of any internal standard within -50% to +100% of area in the mid-point standard of the initial calibration. 	Correct system, if necessary, and recalibrate. Criteria must be met before sample analysis may begin.
Internal standards	Added to all blanks, standards, samples, and QC samples.	 Peak area within -50% to +100% of area in associated continuing calibration standard. Retention time (RT) within 30 sec of RT for associated continuing calibration standard. 	 Inspect instrument for malfunctions; correct identified malfunctions, then reanalyze samples. If no instrument malfunction is identified, proceed as follows: Reanalyze sample. If reanalysis is out, report both sets of data and note in SDG Narrative. If in, report only second set. If the sample was chosen for the MS/MSD analysis and the MS and/or MSD internal standards are outside limits, then no reanalysis is required.

	ganic Compounds - SW-846 Method 82		
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action
Method Blank	1. After each continuing calibration	1. Common laboratory contaminants	Reanalyze to determine if instrument
	standard (before sample analysis) for	(acetone, methylene chloride, and	contamination was the cause. If the method
	low-level analyses.	2-butanone) <5×reporting limit. All	blank is compliant upon reanalysis, then
	2. After the initial calibration if samples	other target compounds <reporting< td=""><td>reanalyze all samples, unless samples contain</td></reporting<>	reanalyze all samples, unless samples contain
	are to be analyzed immediately	limit.	>10× amount found in blank or there are no
	following the calibration for low-level	2. Must meet internal standard criteria.	positive results. If the method blank is still
	analyses.	3. Must meet surrogate criteria.	noncompliant, reprepare a method blank and all
	3. One per extraction batch of ≤ 20		samples (unless samples contain >10× amount
	samples per matrix per day for medium-		found in blank or there are no positive results).
	level analyses.		If samples are past the holding time or if blank
			is still out after reanalysis, report both sets of
			data and notify QAM.
Laboratory Control	One per batch of ≤ 20 samples per matrix	Limits on Tables A-19, A-20, and A-22.	1. Reanalyze LCS. If the LCS is compliant
Sample (LCS)	per concentration level per day. Must		upon reanalysis, then reanalyze all associated
	undergo all sample preparative		samples (see exception). If still non-
	procedures. Must contain all target		compliant, then follow 2 or 3 below.
	compounds at concentrations at or near		2. If the samples are within the holding time,
	the mid-point of the calibration range.		then reprepare and reanalyze the LCS and all
			associated samples (see exception).
			3. If samples are past the holding time or if
			LCS is still non-compliant after reanalysis,
			report both sets of data and notify QAM.
			Exception: If LCS recovery is high and there
			are no positive results (<detection in="" limit)="" td="" the<=""></detection>
			associated samples, then address in SDG
			Narrative and no further action needed.

Table A-5 Volatile Org	Fable A-5 Volatile Organic Compounds - SW-846 Method 8260B Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	One per batch of ≤20 samples per matrix per concentration level per day. Must undergo all sample preparative procedures. Must be spiked with all target compounds at concentrations at or near the mid-point of the calibration range.	Limits on Tables A-19, A-20, and A-22.	 If recoveries for the spiked compounds are not within limits, check for documentable errors (<i>e.g.</i>, calculations and spike preparation). Check unspiked sample results and surrogate recoveries for indications of matrix effects. If no errors are found and the associated LCS are within limits, then sample matrix effects are the most likely cause. Note in SDG Narrative. 	

Table A-5 Volatile Org	able A-5 Volatile Organic Compounds - SW-846 Method 8260B Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Surrogate Compounds	 Calibrated and quantitated as target compounds. Added to all standards, blanks, samples, and QC samples. 	Limits on Table A-23.	 If recovery is not within limits: 1. Check to be sure that there are no errors in calculations, surrogate solutions, and internal standards. Also, check instrument performance. 2. If no problem is found, reprepare and reanalyze the sample. 3. If the reanalysis is within limits and holding times, then report only the reanalysis. 4. If the reanalysis is within limits, but out of holding time, then report both sets of data and note in SDG Narrative 5. If the reanalysis is still out of limits, then report both sets of data and note in SDG Narrative 6. If the sample was chosen for the MS/MSD analysis, and the MS and/or MSD surrogate recoveries are outside limits, then no reanalysis is required. 	

Table A-5 Volatile Organic Compounds - SW-846 Method 8260B Quality Control Requirements - Continued				
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Qualitative/Quantitative Issues	 If instrument level of any compound in a sample exceeds the instrument level of that compound in the highest level standard, the sample must be diluted to approximately mid-level of the calibration range and reanalyzed. If the concentration of the target analyte that exceeded the calibration range is present in the high level sample and in the sample analyzed immediately after at a level ≤5× reporting limit, then that second sample must be reanalyzed to determine if carryover occurred. 	 The instrument level of all compounds must be within the calibration range for all samples. The sample analyzed immediately after a high-level sample must display concentrations of the high-level target compounds greater than 5× reporting limit. 	 Dilute the sample to bring the level of the highest concentration of target compounds within the calibration range. A sample, which was analyzed immediately after a high-level sample, displaying concentrations of target compounds ≤5× the reporting limit must be reanalyzed. If the results do not agree within the reporting limit, report only the second analysis. 	

Table A-6 Semivolatile	Fable A-6 Semivolatile Organic Compounds — SW-846 Method 8270C Quality Control Requirements				
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action		
Tune Check (50ng DFTPP)	Every 12 hours.	Ensure correct mass assignment. DFTPP % relative abundance criteria as specified in method.	Retune. <u>Do not</u> proceed with analysis until tune meets criteria.		
Initial calibration	Each time the instrument is set up and when CCCs and SPCCs in the calibration do not meet criteria. Established initially at five concentration levels - low standard at or below reporting limit.	 Ave RRF for each SPCC ≥0.050. %RSD for RRFs for each CCC ≤30%. %RSD for RRFs for all non-CCC target and surrogate compounds ≤15% or generate a calibration curve. The calibration curve must have a correlation coefficient (R)≥0.99 or a coefficient of determination (R²) ≥0.99. All target compounds must have an RRF≥0.05. 	 %RSD>15% require quantitation using a calibration curve. If a target compound does not meet the acceptance criteria (%RSD≤15%, R≥0.99, and R² ≥0.99), a new initial calibration must be performed. If SPCC criteria are not met, a new initial calibration must be performed. 		
Continuing Calibration Verification	Every 12 hours. Must be at or near the mid-point calibration range for all target compounds, SPCCs, CCCs, and surrogates.	 RRF for each SPCC ≥ 0.050. %D for RRFs of each CCC ≤ 20%; for non-CCC target compounds and surrogates ≤20%. All target compounds must have RRFs≥0.05. Retention time (RT) for any internal standard within 30 sec of the RT in the mid-point standard of the initial calibration. Area response of any internal standard within -50% to +100% of area in the mid-point standard of the initial calibration. 	Correct system, if necessary, and recalibrate. Criteria must be met before sample analysis may begin.		

Table A-6 Semivolatile	able A-6 Semivolatile Organic Compounds — SW-846 Method 8270C Quality Control Requirements - Continued				
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action		
Internal standards	Added to all blanks, standards, QC samples, and samples.	 Peak area within -50% to +100% of area in associated continuing calibration standard. Retention time (RT) within 30 sec of RT for associated continuing calibration standard. 	 Inspect instrument for malfunctions; correct identified malfunctions, then reanalyze samples. If no instrument malfunction is identified, proceed as follows: Reanalyze sample. If reanalysis is out, report both sets of data. If in, report only second set. If the sample was chosen for the MS/MSD analysis and the MS and/or MSD internal standards are outside limits, then no reanalysis is required. 		
Method Blank	One per extraction batch of 20 or fewer samples per matrix per day. Must undergo all sample preparative procedures.	 Target phthalate esters <5×reporting limit. All other target compounds <reporting li="" limit.<=""> Must meet internal standard criteria. Must meet surrogate criteria. </reporting>	Reanalyze to determine if instrument contamination was the cause. If the method blank is compliant upon reanalysis, then reanalyze all samples (unless samples contain >10× amount found in blank or there are no positive results). If the method blank is still noncompliant, reextract and reanalyze all samples, unless samples contain >10× amount found in blank or there are no positive results. If samples are past the holding time or if blank is still out after reanalysis, report both sets of data and notify QAM.		

Table A-6 Semivolatile	Sable A-6 Semivolatile Organic Compounds — SW-846 Method 8270C Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Laboratory Control Sample (LCS)	One per extraction batch of 20 or fewer samples per matrix per day. Must undergo all sample preparative procedures. Must contain all target compounds at concentrations at the mid- point of the calibration range.	Limits on Tables A-19, A-20, and A-22.	 Reanalyze LCS. If the LCS is compliant upon reanalysis, then reanalyze all associated samples (see exception). If still non- compliant, then follow 2 or 3 below. If the samples are within the holding time, then reextract and reanalyze the LCS and all associated samples (see exception). If samples are past the holding time or if LCS is still non-compliant after reanalysis, report both sets of data and notify QAM. Exception: If LCS recovery is high and there are no positive results (<detection in="" limit)="" the<br="">associated samples, then address in SDG Narrative and no further action needed.</detection> 	
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	One per extraction batch of 20 or fewer samples per matrix per day. Must undergo all sample preparative procedures. Must be spiked with all target compounds at concentrations at or near the mid-point of the calibration range.	Limits on Tables A-19, A-20, and A-22.	 If recoveries for the spiked compounds are not within limits, check for documentable errors (<i>e.g.</i>, calculations and spike preparation). Check unspiked sample results and surrogate recoveries for indications of matrix effects. If no errors are found and the associated LCS are within limits, then sample matrix effects are the most likely cause. Note in SDG Narrative. 	

Table A-6 Semivolatile	able A-6 Semivolatile Organic Compounds — SW-846 Method 8270C Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Surrogate Compounds	 Calibrated and quantitated as target compounds. Added to all standards, blanks, samples, and QC samples. 	Limits on Table A-23.	 If any one recovery acceptance criteria are not within limits: 1. Check to be sure that there are no errors in calculations, surrogate solutions, and internal standards. Also, check instrument performance. 2. If no problem is found, reextract and reanalyze the sample. 3. If the reanalysis is within limits and holding times, then report only the reanalysis. 4. If the reanalysis is within limits, but out of holding time, then report both sets of data. 5. If the reanalysis is still out of limits, then report both sets of data. 6. If the sample was chosen for the MS/MSD analysis, and the MS and/or MSD surrogate recoveries are outside limits, then no reanalysis is required. 	

Fable A-6 Semivolatile Organic Compounds — SW-846 Method 8270C Quality Control Requirements - Continued				
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Qualitative/Quantitative Issues	 If instrument level of any compound in a sample exceeds the instrument level of that compound in the highest level standard, the sample must be diluted to approximately mid-level of the calibration range and reanalyzed. If the concentration of the target analyte that exceeded the calibration range is present in the high level sample and in the sample analyzed immediately after at a level greater than the reporting limit but ≤5× reporting limit, then that second sample must be reanalyzed to determine if carryover occurred. 	 The instrument level of all compounds must be within the calibration range for all samples. The sample analyzed immediately after a high-level sample must display concentrations of the high-level target compounds less than the reporting limit or greater than 5× reporting limit. 	 Dilute the sample to bring the level of the highest concentration of target compounds within the calibration range. A sample, which was analyzed immediately after a high-level sample, displaying concentrations of target compounds between the reporting limit and 5× the reporting limit must be reanalyzed. If the results do not agree within the reporting limit, report only the second analysis. 	

Quality Control Item	Frequency	Method 200.7* Quality Control Requ Acceptance Criteria	Corrective Action
Initial Calibration and Calibration Verification	Once per 24 hours and each time the instrument is set up. Initial calibration consists, at a minimum, of a blank and one standard. Immediately after instrument calibration, an initial calibration verification (ICV) standard must be analyzed. An initial calibration blank (ICB) is analyzed immediately following the ICV.	Recovery of ICV is within 90-110%. Absolute value of ICB is < reporting limit.	 Reanalyze ICV. If ICV is still out, terminate analysis, correct problem, and recalibrate instrument. Sample results above the linear range of the instrument require dilution and reanalysis.
Continuing Calibration Verification and Continuing Calibration Blank (CCV/CCB)	At the beginning and end of each analysis run and once per 10 samples or every 2 hours, whichever is more frequent.	Recovery of CCV is within 90-110%. Absolute value of CCB is < reporting limit.	Reanalyze CCV or CCB. If CCV or CCB is still out, terminate analysis, correct problem, and recalibrate instrument. Reanalyze all analytical samples since the last compliant CCV/CCB.
Reporting Limit Standard	At the beginning and end of each analysis run, or a minimum of twice per 8-hour working shift, whichever is more frequent, but not before the CCV.	Recoveries must be within 50-150%.	Terminate analysis, correct problem.
ICP Interference Check Samples (ICSA and ICSAB)	At the beginning and end of each analysis run, or a minimum of twice per 8-hour working shift, whichever is more frequent, but not before the CCV.	Recoveries of ICSA and ICSAB are within 80-120% for the analytes included. Absolute value of the concentrations for analytes <u>not</u> included in ICSA and ICSAB must be less than 2× reporting limit.	If either of the criteria is not met, terminate the analysis, correct the problem, recalibrate the instrument, and reanalyze all project samples and QC samples since last compliant ICSA/ICSAB.

Table A-7 Metals by IC	Fable A-7 Metals by ICP - SW-846 Method 6010B/US EPA Method 200.7# Quality Control Requirements - Continued				
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action		
Preparation Blank	One per digestion batch of ≤ 20 samples per matrix per day. Must undergo all sample preparative procedures.	The absolute value of the concentration must be less than the reporting limit of the analyte. Not applicable if sample concentration is $>10\times$ blank level or if positive result is reported for the blank but the analyte is not detected in the sample.	Redigest and reanalyze all associated samples.		
Laboratory Control Sample (LCS)	One per batch of ≤ 20 samples per matrix per day.	Limits on Tables A-19, A-20, A-21, and A-22.	Redigest and reanalyze all associated samples.		
Pre-Digestion Matrix Spike	One per batch of ≤20 samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Tables A-19, A-20, A-21, and A-22. Not applicable if sample concentration is >4× spike added.	 Perform a post-digestion spike (except for Ag). Report in SDG Narrative. 		
Laboratory Duplicate	One per batch of ≤20 samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Tables A-19, A-20, A-21, and A-22.	Report in SDG Narrative.		
Coefficient of Variation: (Metals Only)	All multiple injections/integrations.	±20% CV.	If the concentration is >reporting limit, rerun once. Report the results for the analysis displaying the lower CV.		

#Trace ICP may be used, provided the requirements for interference check criteria are met.

Table A-8 Metals by I	Table A-8 Metals by ICP/MS - SW-846 Method 6020/US EPA Method 200.8 Quality Control Requirements				
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action		
Mass calibration and resolution checks	Daily before the first initial calibration of the day.	Mass calibration must result in differences less than 0.1 amu from the true value. Resolution must also be verified to be less than 0.9 amu full width at 10% peak height for SW-846 Method 6020 and less than 0.75 amu at 5% peak height for US EPA Method 200.8.	Mass calibration must be within acceptance criteria before instrument is calibrated and any samples are analyzed.		
Initial Calibration and Calibration Verification	Once per 24 hours and each time the instrument is set up. Initial calibration consists, at a minimum, of a blank and one standard. Immediately after instrument calibration, an initial calibration verification (ICV) standard must be analyzed. An initial calibration blank (ICB) is analyzed immediately following the ICV.	Recovery of ICV is within 90-110%. Absolute value of ICB is <reporting limit.<="" td=""><td> Reanalyze ICV. If ICV is still out, terminate analysis, correct problem, and recalibrate instrument. Sample results above the linear range of the instrument require dilution and reanalysis. </td></reporting>	 Reanalyze ICV. If ICV is still out, terminate analysis, correct problem, and recalibrate instrument. Sample results above the linear range of the instrument require dilution and reanalysis. 		

Table A-8 Metals by IC	Table A-8 Metals by ICP/MS - SW-846 Method 6020/US EPA Method 200.8 Quality Control Requirements - Continued				
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action		
Continuing Calibration Verification and Continuing Calibration Blank (CCV/CCB)	At the beginning and end of each analysis run and once per 10 samples or every 2 hours, whichever is more frequent.	Recovery of CCV is within 90- 110%. Absolute value of CCB is <reporting limit.<="" td=""><td>Reanalyze CCV or CCB. If CCV or CCB is still out, terminate analysis, correct problem, and recalibrate instrument. Reanalyze all analytical samples since the last compliant CCV/CCB.</td></reporting>	Reanalyze CCV or CCB. If CCV or CCB is still out, terminate analysis, correct problem, and recalibrate instrument. Reanalyze all analytical samples since the last compliant CCV/CCB.		
Internal Standards	Intensities of all internal standards must be monitored for every analysis.	The percent relative intensity (%RI) in a sample must be within 60-125% of the response in the associated calibration blank for US EPA Method 200.8 and within 30- 120% of the response in the initial calibration standard for SW-846 Method 6020.	Follow SW-846 Method 6020 Section 8.3 or US EPA Method 200.8 Section 9.4.5, as applicable.		
Reporting Limit Standard	At the beginning and end of each analysis run, or a minimum of twice per 8-hour working shift, whichever is more frequent, but not before the CCV.	Recoveries must be within 50- 150%.	Terminate the analysis, correct the problem.		
ICP Interference Check Samples (ICSA and ICSAB)	At the beginning and end of each analysis run, or a minimum of twice per 8-hour working shift, whichever is more frequent, but not before the CCV.	ICSA and ICSAB are within 80- 120% recovery for the analytes included. Absolute value of the concentrations for analytes <u>not</u> included in ICSA and ICSAB must be less than 2×reporting limit.	If either of the criteria is not met, terminate the analysis, correct the problem, recalibrate the instrument, and reanalyze all project samples and QC samples since last compliant ICSA/ICSAB.		

Table A-8 Metals by IC	Table A-8 Metals by ICP/MS - SW-846 Method 6020/US EPA Method 200.8 Quality Control Requirements - Continued				
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action		
Preparation Blank	One per digestion batch of ≤ 20 samples per matrix per day. Must undergo all sample preparative procedures.	The absolute value of the concentration must not exceed the reporting limit of the analyte. Not applicable if sample concentration is $>10\times$ blank level or if positive result is reported for the blank but the analyte is not detected in the sample.	Redigest and reanalyze all associated samples.		
Pre-Digestion Matrix Spike	One per batch of ≤20 samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Tables A-19, A-20, A-21, and A-22. Not applicable if sample concentration is >4× spike added.	 Perform a post-digestion spike (except for Ag). Report in SDG Narrative. 		
Laboratory Control Sample (LCS)	One per batch of ≤ 20 samples per matrix per day.	Limits on Tables A-19, A-20, A-21, and A-22.	Redigest and reanalyze all associated samples.		
Laboratory Duplicate	One per batch of ≤20 samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Tables A-19, A-20, A-21, and A-22.	Report in SDG Narrative.		

Table A-9 Mercury — S	Fable A-9 Mercury — SW-846 Methods 7470A and 7471A/US EPA Method 245.1 Quality Control Requirements			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Initial Calibration and Calibration Verification	Once per 24 hours or each time the instrument is set up. Initial calibration consists, at a minimum, of a blank and five standards (one standard must be at the Reporting Limit). An initial calibration verification (ICV) standard is analyzed immediately following the initial calibration. An initial calibration blank (ICB) is analyzed immediately following the ICV.	Correlation coefficient of ≥ 0.995 for the calibration curve. Recovery of ICV is within 80-120%. Absolute value of ICB is <reporting limit.<="" td=""><td> Reanalyze ICV. If ICV is still out, terminate analysis, correct problem, and recalibrate instrument. Dilute and reanalyze any samples with results above highest standard concentration. </td></reporting>	 Reanalyze ICV. If ICV is still out, terminate analysis, correct problem, and recalibrate instrument. Dilute and reanalyze any samples with results above highest standard concentration. 	
Continuing Calibration Verification and Continuing Calibration Blank (CCV/CCB)	At the beginning and end of each analysis run and once per 10 samples or every 2 hours, whichever is more frequent. The CCV is to be followed immediately by the CCB.	Recovery of CCV is within 80-120%. Absolute value of CCB is < reporting limit.	Reanalyze CCV or CCB. If CCV or CCB is still out, terminate analysis, correct problem, and recalibrate instrument. Reanalyze all analytical samples since the last compliant CCV/CCB.	
Reporting Limit Standard	At the beginning and end of each analysis run, or a minimum of twice per 8-hour working shift, whichever is more frequent, but not before the ICV.	Recoveries must be within 50-150%.	Terminate analysis, correct problem.	

Table A-9 Mercury — S	Table A-9 Mercury — SW-846 Methods 7470A and 7471A/US EPA Method 245.1 Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Preparation Blank	One per batch of ≤ 20 samples per matrix per day. Must undergo all sample preparative procedures.	Absolute value of the concentration must be less than the reporting limit of the analyte. Not applicable if sample concentration is $>10\times$ blank level or if a positive result is reported for the preparation blank and mercury was not detected in the project sample.	Redigest and reanalyze all associated samples.	
Laboratory Control Sample (LCS)	One per batch of ≤ 20 samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Tables A-19, A-20, A-21, and A-22.	Check calculations and spike preparation for documentable errors. If no errors are noted, redigest and reanalyze all associated samples.	
Pre-Digestion Matrix Spike	One per batch of ≤ 20 samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Tables A-19, A-20, A-21, and A-22. Not applicable if sample concentration is >4× spike added.	Report in SDG Narrative.	
Laboratory Duplicate	One per batch of ≤ 20 samples, not to exceed 20 samples of a given matrix per day. Must undergo all sample preparative procedures.	Limits on Tables A-19, A-20, A-21, and A-22.	Report in SDG Narrative.	

Table A-10 Inorganic Anior	Table A-10 Inorganic Anions — US EPA Method 300.0/SW-846 Method 9056 Quality Control Requirements				
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action		
Initial Calibration and Verification	Initial calibration is performed each time the instrument is setup (consisting of, at minimum, one blank and three standards) and verified on each working day. An initial calibration verification (ICV) standard is analyzed immediately after the initial calibration verification. Continuing calibration verifications (CCVs) are analyzed after every tenth sample and at the end of the run.	ICV and CCV within 90-110% true value.	If calibration verification fails criteria, reanalyze ICV/CCV. If criteria are still not met, correct the system, recalibrate the instrument, and reanalyze all samples back to the last acceptable ICV/CCV.		
Initial Calibration Blank (ICB)/Continuing Calibration Blank (CCB)	Immediately after each ICV/CCV.	Absolute value of the concentration < reporting limit.	Recalibrate. Re-prepare and reanalyze all samples after last acceptable CCB.		
Quality Control Sample (QCS)	Quarterly or as required to meet data-quality needs, must be second source.	90-110% of true value.	Reprepare and reanalyze all associated samples.		
Laboratory Reagent Blank (LRB)	One per batch of ≤20 samples. Must undergo all sample preparative procedures.	Absolute value of the concentration < reporting limit.	Reprepare and reanalyze all associated samples.		
Laboratory Fortified Blank (LFB)	One per batch of ≤ 20 samples per matrix per day.	Limits on Tables A-19 and A-21.	Reprepare and reanalyze all associated samples.		

Table A-10 Inorganic Anion	Table A-10 Inorganic Anions — US EPA Method 300.0/SW-846 Method 9056 Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Laboratory Fortified Sample Matrix (LFM)	One per every 10 samples. Must undergo all sample preparative procedures. Fortified concentration must be \geq background sample concentration and should not be < 4x RL.	Limits on Tables A-19 and A-21. Not applicable if sample concentration is >4× spike added.	Report in SDG Narrative.	
Duplicate Analysis	One per batch of ≤ 20 samples, per day, not to exceed 20 samples of a given matrix.	Limits on Tables A-19 and A-21.	Report in SDG Narrative.	
Sample Quantitation	Dilutions must be performed on samples with responses that exceed the calibration range of the instrument.	Appropriate dilutions are made to samples to bring the instrument levels of samples to near the mid- range of the instrument calibration.	If a sample displays a target analyte concentration greater than the calibration range, the sample must be diluted and reanalyzed. If the dilution is deemed excessive (the instrument level is less than the reporting limit after dilution), a more appropriate dilution factor will be used and the sample must be reanalyzed.	

Table A-11 Total Or	Table A-11 Total Organic Carbon – US EPA Method 415.1/Standard Method 5310B Quality Control Requirements			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Multi-Point Calibration Curve (a blank and 5 standards)	Daily prior to sample analysis	R≥0.995	 Recalibrate. Prepare new standards and recalibrate if still out. 	
Mid-Range Initial Calibration Verific ation (ICV)	Immediately after calibration curve. Must be second-source standard.	90 – 110% of true value	 Reanalyze. Re-prepare and reanalyze if still out. Troubleshoot and recalibrate if still out. 	
Continuing Calibration Verification (CCV)	Beginning of run, after every 10 samples, and end of run.	90-110% of true value	Recalibrate. Re-prepare and reanalyze all samples after last acceptable CCV.	
Initial Calibration Blank (ICB)/ Continuing Calibration Blank (CCB)	Immediately after each ICV/CCV.	Absolute value of the concentration < reporting limit.	Recalibrate. Re-prepare and reanalyze all samples after last acceptable CCB.	
Method Blank	One per ≤20 samples per matrix per day. Must undergo all sample preparative procedures.	Absolute value of the concentration < reporting limit.	Reprepare and reanalyze all associated samples.	
Laboratory Control Sample	One per batch of ≤20 samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Table A-19.	Reprepare and reanalyze all associated samples.	
Laboratory Duplicate	One per batch of ≤ 20 samples, per day, not to exceed 20 samples of a given matrix.	Limits on Table A-19.	Report in SDG Narrative.	

Table A-11 Total Or	Fable A-11 Total Organic Carbon – US EPA Method 415.1/Standard Method 5310B Quality Control Requirements - Continued				
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action		
Matrix Spike	One MS per 20 project samples per matrix, per day. Must be spike at a level at or near the mid-point of the calibration range. Must undergo all sample preparative procedures.	Limits on Table A-19. Not applicable if sample concentration is >4× spike added.	Report in SDG Narrative.		
Sample Quantitation	Dilutions must be performed on samples with responses that exceed the calibration range of the instrument.	Appropriate dilutions are made to samples to bring the instrument levels of samples to near the mid- range of the instrument calibration.	If a sample displays a target analyte concentration greater than the calibration range, the sample must be diluted and reanalyzed. If the dilution is deemed excessive (the instrument level is less than the reporting limit after dilution), a more appropriate dilution factor will be used and the sample must be reanalyzed.		

Table A-12 Total Ph	Table A-12 Total Phosphorus – US EPA Method 365.3 Quality Control Requirements			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Multi-Point	Daily prior to sample analysis	R≥0.995	1. Recalibrate.	
Calibration Curve (a			2. Prepare new standards and recalibrate if	
blank and 5 standards)			still out.	
Mid-Range Initial	Immediately after calibration curve.	90 - 110% of true value	3. Reanalyze. Re-prepare and reanalyze if	
Calibration	Must be second-source standard.		still out.	
Verification (ICV)			4. Troubleshoot and recalibrate if still out.	
Continuing Calibration	Beginning of run, after every 10	90-110% of true value	Recalibrate. Re-prepare and reanalyze all	
Verification (CCV)	samples, and end of run.		samples after last acceptable CCV.	
Initial Calibration	Immediately after each ICV/CCV.	Absolute value of the concentration	Recalibrate. Re-prepare and reanalyze all	
Blank (ICB)/			samples after last acceptable CCB.	
Continuing Calibration		< reporting limit.		
Blank (CCB)				
Method Blank	One per ≤20 samples per matrix per	Absolute value of the concentration <	Reanalyze all associated samples.	
	day. Must undergo all sample	reporting limit.		
	preparative procedures.			
Laboratory Control	One per batch of ≤ 20 samples per	Limits on Table A-19.	Reanalyze all associated samples.	
Sample	matrix per day. Must undergo all			
	sample preparative procedures.			
Laboratory Duplicate	One per batch of ≤ 20 samples, per	Limits on Table A-19.	Report in SDG Narrative.	
	day, not to exceed 20 samples of a			
	given matrix.			

Table A-12 Total Ph	Table A-12 Total Phosphorus – US EPA Method 365.3 Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Matrix Spike	One MS per 20 project samples per matrix, per day. Must be spike at a level at or near the mid-point of the	Limits on Table A-19. Not applicable if sample concentration	Report in SDG Narrative.	
	calibration range. Must undergo all sample preparative procedures.	is >4× spike added.		
Sample Quantitation	Dilutions must be performed on samples with responses that exceed the calibration range of the instrument.	Appropriate dilutions are made to samples to bring the instrument levels of samples to near the mid-range of the instrument calibration.	If a sample displays a target analyte concentration greater than the calibration range, the sample must be diluted and reanalyzed. If the dilution is deemed excessive (the instrument level is less than the reporting limit after dilution), a more appropriate dilution factor will be used and the sample must be reanalyzed.	

Table A-13 Alkalinit	Table A-13 Alkalinity – Standard Method 2320B Quality Control Requirements			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Two-Point Calibration	Daily prior to sample analysis	Buffers 4, 7, and 10 must be within \pm	1. Recalibrate.	
of pH Meter With		0.05 pH units of true value	2. Prepare new standards and recalibrate if	
Verification Using			still out.	
Buffers 4, 7, and 10				
Continuing Calibration	Beginning of run, after every 10	Buffer 7 must be within ± 0.05 pH units	Recalibrate. Re-prepare and reanalyze all	
Verification (CCV)	samples, and end of run.	of true value	samples after last acceptable CCV.	
Method Blank	One per batch of ≤ 20 samples per	< reporting limit.	Reanalyze all associated samples.	
	day. Must undergo all sample			
	preparative procedures.			
Laboratory Control	One per batch of ≤ 20 samples per	Limits on Table A-19.	Reanalyze all associated samples.	
Sample	1 1			
	day. Must undergo all sample			
	preparative procedures. Must be			
	prepared at a concentration at or			
	near the mid-point of the			
	calibration curve.			
Laboratory Duplicate	One per batch of ≤ 20 samples, per	Limits on Table A-19.	Report in SDG Narrative.	
	day,.		Report in SDG Ivanative.	

Table A-14 TDS/TS	Table A-14 TDS/TS – Standard Methods 2540C and 2540G/US EPA Methods 160.1 and 160.3 Quality Control Requirements			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Method Blank	One per batch of ≤ 20 samples, per	< reporting limit.	Reanalyze all associated samples.	
	day. Must undergo all sample			
	preparative procedures.			
Laboratory Control	One per batch of ≤20 samples per	Limits on Tables A-19 and A-20.	Reanalyze all associated samples.	
Sample	day. Must undergo all sample			
	preparative procedures.			
Laboratory Duplicate	One per batch of ≤ 20 samples, per	Limits on Tables A-19 and A-20.	Poport in SDG Norrotivo	
	day,.		Report in SDG Narrative.	

Table A-15 pH – Sta	Table A-15 pH – Standard Method 4500B/US EPA Method 150.1 Quality Control Requirements			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Two-Point Calibration	Daily prior to sample analysis	Buffers 4, 7, and 10 must be within \pm	1. Recalibrate.	
of pH Meter With		0.05 pH units of true value	2. Prepare new standards and recalibrate if	
Verification Using			still out.	
Buffers 4, 7, and 10				
Mid-Range Initial	Immediately after calibration curve.	90 - 110% of true value	1. Reanalyze. Re-digest and reanalyze if	
Calibration	Must be second-source standard.		still out.	
Verification (ICV)			2. Troubleshoot and recalibrate if still out.	
Continuing Calibration	Beginning of run, after every 10	Buffer 7 must be within ± 0.05 pH units	Recalibrate. Re-prepare and reanalyze all	
Verification (CCV)	samples, and end of run.	of true value	samples after last acceptable CCV.	
Laboratory Control	One per batch of ≤ 20 samples per	Limits on Table A-19.	Reanalyze all associated samples.	
Sample (if performed)				
	matrix per day. Must undergo all			
	sample preparative procedures.			
	Must be prepared at a			
	concentration at or near the mid-			
	point of the calibration curve.			
Laboratory Duplicate	One per batch of ≤ 20 samples, per	Limits on Table A-19.	Report in SDG Narrative.	
	day, not to exceed 20 samples of a			
	given matrix.			

Table A-16 Gas Flow P	Fable A-16 Gas Flow Proportional Counting System Quality Control Requirements			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Self-Absorption Curves	Annually. Same matrix and geometry as samples.	Not applicable.	Not applicable	
& Cross-Talk Curves	sumples.			
(for gross a and gross β)				
Efficiency Checks	Daily when detector is utilized.	Less than $\pm 2\sigma$ limits or within $\pm 2\sigma$ and	Less than $\pm 2\sigma$ limits–no action.	
		$\pm 3\sigma$ limits.	Between 2σ and 3σ –investigate, note warning.	
			Greater than 3σ -detector must not be used;	
			take corrective action.	
Background Checks	Daily when detector is utilized.	Less than $\pm 2\sigma$ limits or within $\pm 2\sigma$ and	Less than $\pm 2\sigma$ limits–no action.	
		$\pm 3\sigma$ limits.	Between 2σ and 3σ –investigate, note warning.	
			Greater than 3σ -detector must not be used;	
			take corrective action.	
Method Blank	One per batch of 20 or fewer samples per	All target analytes <reporting limit.<="" td=""><td>Recount once (along with all associated</td></reporting>	Recount once (along with all associated	
	matrix per day. Must undergo all sample		samples) to determine if instrument	
	preparative procedures. Do <u>not</u> subtract		contamination was the cause.	
	blank from field and QC samples.		If the method blank is still noncompliant,	
			reprepare and reanalyze a new method blank	
			and all associated samples.	
			Exception: If there are no positive results	
			(activity <mdc) associated="" in="" no<="" samples,="" td="" the=""></mdc)>	
			further action needed.	

Table A-16 Gas Flow P	Cable A-16 Gas Flow Proportional Counting System Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Laboratory Control Sample (LCS)	One per batch of 20 or fewer samples per matrix per day. Must undergo all sample	Limits on Tables A-19, A-20, and A-21.	Recount once (along with all associated samples) to determine if instrumental	
	preparative procedures.		conditions or analytical preparation was the cause. If the LCS is still noncompliant, reprepare and reanalyze a new LCS and all associated samples. Exception: If the LCS recovery is high and there are no positive results (activity <mdc) in<br="">the associated samples, then address in SDG Narrative; no further action needed.</mdc)>	
Matrix Spike (if applicable)	One per batch of 20 or fewer samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Tables A-19 and A-20.	If LCS is acceptable, then report in the SDG Narrative that there was probable matrix interference.	
Laboratory or Matrix Duplicate (if applicable)	One per batch of 20 or fewer samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Tables A-19, A-20, and A-21.	If LCS is acceptable, then report in the SDG Narrative that there was probable matrix interference.	

Table A-16 Gas Flow P	Table A-16 Gas Flow Proportional Counting System Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Chemical Yield (Carrier/Tracer Recovery, if applicable)	Added to all blanks, samples, and QC samples.	Limits on Table A-24.	If yield is not within limits: 1. Recount (or reweigh if yield is determined gravimetrically) once to determine if instrumental conditions or analytical preparation was the cause. 2. If yield still noncompliant, reprepare and reanalyze the sample.	
Quantitative Issues		Sample density on the planchet area should be no more than 5 mg/cm^2 for alpha and no more than 10 mg/cm^2 for beta.	Reprepare samples using a smaller aliquot.	

Table A-17 Alpha Spec	Table A-17 Alpha Spectroscopy Quality Control Requirements			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Energy Calibration	Monthly.	Less than $\pm 2\sigma$ limits or within $\pm 2\sigma$ and	Less than $\pm 2\sigma$ limits–no action.	
Check		$\pm 3\sigma$ limits.	Between 2σ and 3σ –investigate, note warning.	
CHECK			Greater than 3 σ -detector must not be used;	
			take corrective action.	
Efficiency Check	Monthly.	Less than $\pm 2\sigma$ limits or within $\pm 2\sigma$ and	Less than $\pm 2\sigma$ limits–no action.	
		$\pm 3\sigma$ limits.	Between 2σ and 3σ –investigate, note warning.	
			Greater than 3σ -detector must not be used;	
			take corrective action.	
Background Check	Weekly.	Less than $\pm 2\sigma$ limits or within $\pm 2\sigma$ and	Less than $\pm 2\sigma$ limits–no action.	
		$\pm 3\sigma$ limits.	Between 2σ and 3σ –investigate, note warning.	
			Greater than 3σ -detector must not be used;	
			take corrective action.	
Resolution Check	Monthly.	Less than $\pm 2\sigma$ limits or within $\pm 2\sigma$ and	Less than $\pm 2\sigma$ limits–no action.	
(FWHM)		$\pm 3\sigma$ limits.	Between 2σ and 3σ –investigate, note warning.	
			Greater than 3σ -detector must not be used;	
			take corrective action.	

Table A-17 Alpha Spec	able A-17 Alpha Spectroscopy Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Method Blank	One per batch of 20 or fewer samples per matrix per day. Must undergo all sample preparative procedures. Do <u>not</u> subtract blank from field and QC samples	Target analytes <reporting limit.<="" td=""><td>Recount once (along with all associated samples) to determine if instrument contamination was the cause. If the method blank is still noncompliant, reprepare and reanalyze a new method blank and all associated samples. Exception: If there are no positive results (activity <mdc) associated="" in="" no<br="" samples,="" the="">further action needed.</mdc)></td></reporting>	Recount once (along with all associated samples) to determine if instrument contamination was the cause. If the method blank is still noncompliant, reprepare and reanalyze a new method blank and all associated samples. Exception: If there are no positive results (activity <mdc) associated="" in="" no<br="" samples,="" the="">further action needed.</mdc)>	
Laboratory Control Sample (LCS)	One per batch of 20 or fewer samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Tables A-19, A-20, and A-21.	Recount once (along with all associated samples) to determine if instrumental conditions or analytical preparation was the cause. If the LCS is still noncompliant, reprepare and reanalyze a new LCS and all associated samples. Exception: If the LCS recovery is high and there are no positive results (activity <mdc) in<br="">the associated samples, then address in SDG Narrative; no further action needed.</mdc)>	

Table A-17 Alpha Spec	Table A-17 Alpha Spectroscopy Quality Control Requirements - Continued			
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action	
Matrix Spike (if applicable)	One per batch of 20 or fewer samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Tables A-19 and A-20.	If LCS is acceptable, then report in the SDG Narrative that there was probable matrix interference.	
Laboratory or Matrix Duplicate (if applicable)	One per batch of 20 or fewer samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Tables A-19, A-20, and A-21.	If LCS is acceptable, then report in the SDG Narrative that there was probable matrix interference.	
Chemical Yield (Tracer Recovery)	Added to all blanks, samples, and QC samples.	Limits on Table A-24.	If yield is not within limits:1. Recount once to determine if instrumental conditions or analytical preparation was the cause.2. If yield still noncompliant, reprepare and reanalyze the sample.	

Table A-18 Alpha Scint	Fable A-18 Alpha Scintillation Quality Control Requirements					
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action			
Instrument Performance	Daily when detector is utilized.	Less than $\pm 2\sigma$ limits or within $\pm 2\sigma$ and	Less than $\pm 2\sigma$ limits–no action.			
Check (gross count of a		$\pm 3\sigma$ limits.	Between 2σ and 3σ –investigate, note warning.			
known level)			Greater than 3σ -detector must not be used;			
			take corrective action.			
Background Check	Daily when instrument is utilized.	Less than $\pm 2\sigma$ limits or within $\pm 2\sigma$ and	Less than $\pm 2\sigma$ limits–no action.			
		$\pm 3\sigma$ limits.	Between 2σ and 3σ –investigate, note warning.			
			Greater than 3 σ -detector must not be used;			
			take corrective action.			
Method Blank	One per batch of 20 or fewer samples per	Target analytes <reporting limit.<="" td=""><td>Recount once (along with all associated</td></reporting>	Recount once (along with all associated			
	matrix per day. Must undergo all sample		samples) to determine if instrument			
	preparative procedures. Do <u>not</u> subtract		contamination was the cause.			
	blank from field and QC samples		If the method blank is still noncompliant,			
			reprepare and reanalyze a new method blank			
			and all associated samples.			
			Exception: If there are no positive results			
			(activity <mdc) associated="" in="" no<="" samples,="" td="" the=""></mdc)>			
			further action needed.			

Table A-18 Alpha Scint	Table A-18 Alpha Scintillation Quality Control Requirements - Continued					
Quality Control Item	Frequency	Acceptance Criteria	Corrective Action			
Laboratory Control Sample (LCS)	One per batch of 20 or fewer samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Tables A-19 and A-21.	Recount once (along with all associated samples) to determine if instrumental conditions or analytical preparation was the cause.If the LCS is still noncompliant, reprepare and reanalyze a new LCS and all associated samples.Exception: If the LCS recovery is high and there are no positive results (activity <mdc) in<br=""></mdc)> the associated samples, then address in SDG Narrative; no further action needed.			
Matrix Spike (if applicable)	One per batch of 20 or fewer samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Table A-19.	If LCS is acceptable, then report in the SDG Narrative that there was probable matrix interference.			
Laboratory or Matrix Duplicate (if applicable)	One per batch of 20 or fewer samples per matrix per day. Must undergo all sample preparative procedures.	Limits on Tables A-19 and A-21.	If LCS is acceptable, then report in the SDG Narrative that there was probable matrix interference.			
Chemical Yield (Carrier/Tracer Recovery, if applicable)	Added to all blanks, samples, and QC samples.	Limits on Table A-24.	If yield is not within limits:1. Recount once to determine if instrumental conditions or analytical preparation was the cause.2. If yield still noncompliant, reprepare and reanalyze the sample.			

Table A-19 Aqueous Samples A	nalytical Methods	and Laboratory A	ccuracy and Pre	cision Goals ^a
Parameter	Analytical Method	MS Accuracy, %	Precision, RPD or RER ^b	LCS Accuracy, %
Benzene	8260B	60 - 125	20	65 - 120
Bromobenzene	8260B	65 - 125	20	70 - 120
Bromochloromethane	8260B	60 - 135	25	65 - 130
Bromodichloromethane	8260B	65 - 135	20	65 - 135
Bromoform	8260B	50 - 135	25	50 - 130
n-Butylbenzene	8260B	65 - 135	20	70 - 125
sec-Butylbenzene	8260B	65 - 125	20	70 - 125
tert-Butylbenzene	8260B	65 - 130	20	70 - 125
Carbon tetrachloride	8260B	65 - 140	25	65 - 140
Chlorobenzene	8260B	70 - 125	20	70 - 125
Chloroethane	8260B	50 - 140	25	55 - 140
2-Chlorotoluene	8260B	65 - 135	20	70 - 125
4-Chlorotoluene	8260B	65 - 135	20	70 - 125
Chloroform	8260B	65 - 135	20	65 - 130
Chloromethane	8260B	35 - 140	25	40 - 140
1,2-Dibromo-3-chloropropane	8260B	40 - 150	30	45 - 135
Dibromochloromethane	8260B	60 - 140	25	65 - 140
1,2-Dibromoethane	8260B	65 - 130	25	70 - 125
Dibromomethane	8260B	65 - 130	25	70 - 125
1,2-Dichlorobenzene	8260B	70 - 125	20	70 - 120
1,3-Dichlorobenzene	8260B	70 - 125	20	70 - 125
1,4-Dichlorobenzene	8260B	70 - 125	20	70 - 125
Dichlorodifluoromethane	8260B	70 - 125	20	70 - 125
1,1-Dichloroethane	8260B	60 - 130	20	65 - 130
1,2-Dichloroethane	8260B	60 - 140	20	60 - 140
1,1-Dichloroethene	8260B	60 - 135	20	70 - 130
cis-1,2-Dichloroethene	8260B	60 - 130	20	65 - 125
trans-1,2-Dichloroethene	8260B	60 - 135	20	65 - 130
Dichlorofluoromethane	8260B	60 - 125	20	65 - 125
1,2-Dichloropropane	8260B	60 - 125	20	65 - 125
1,3-Dichloropropane	8260B	60 - 135	25	65 - 125
2,2-Dichloropropane	8260B	60 - 145	25	60 - 145
1,1-Dichloropropene	8260B	65 - 135	20	70 - 130
Ethylbenzene	8260B	65 - 130	20	70 - 125
Hexachlorobutadiene	8260B	60 - 135	20	60 - 135
Isopropylbenzene	8260B	65 - 130	20	70 - 125
<i>p</i> -Isopropyltoluene	8260B	65 - 130	20	70 - 125
Methylene chloride	8260B	55 - 130	20	60 - 130

Table A-19 Aqueous Samples Analytical Methods and Laboratory Accuracy and Precision Goals ^a				
Analytical Method	MS Accuracy, %	Precision, RPD or RER ^b	LCS Accuracy, %	
8260B	<u>.</u>	30	50 - 140	
8260B	65 - 130	20	70 - 125	
8260B	45 - 145	30	70 - 130	
8260B	45 - 145	30	70 - 130	
8260B	55 - 140	30	55 - 130	
8260B	60 - 130	20	65 - 125	
8260B	65 - 140	20	70 - 135	
8260B	65 - 125	20	70 - 125	
			60 - 130	
			65 - 135	
			65 - 135	
			65 - 125	
			70 - 125	
			55 - 130	
			70 - 125	
			70 - 125	
			50 - 130	
			70 - 125	
			70 - 125	
8260B	60 - 130	20	70 - 125	
8260B	60 - 130	20	70 - 125	
8015B	40 - 120	30	40 - 120	
8015B	40 - 120	30	40 - 120	
8015B	60 - 145	20	65 - 140	
8270C	45 - 120	25	45 - 120	
	60 - 120		60 - 120	
			55 - 120	
8270C			30 - 120	
8270C			40 - 120	
			50 - 120	
			45 - 120	
			45 - 120	
			55 - 120	
			45 - 120	
			50 - 120	
			45 - 120	
			60 - 120	
			60 - 120	
	Analytical Method 8260B 8260B	Analytical MethodMS Accuracy, %8260B45 - 1458260B65 - 1308260B45 - 1458260B45 - 1458260B60 - 1308260B65 - 1408260B65 - 1408260B65 - 1258260B65 - 1258260B60 - 1358260B60 - 1358260B60 - 1358260B60 - 1308260B60 - 1308260B60 - 1308260B60 - 1308260B60 - 1308260B65 - 1308260B65 - 1308260B60 - 1308270C45 - 1208270C55 - 1208270C50 - 1208270C45 - 1208270	Analytical Method MS Accuracy,% Precision, RPD or RER ^b 8260B 45 - 145 30 8260B 65 - 130 20 8260B 45 - 145 30 8260B 45 - 145 30 8260B 45 - 145 30 8260B 60 - 130 20 8260B 65 - 140 30 8260B 65 - 125 20 8260B 65 - 125 20 8260B 65 - 135 20 8260B 60 - 135 20 8260B 60 - 130 25 8260B 60 - 130 25 8260B 60 - 130 25 8260B 60 - 130 20 8260B 60 - 130 <td< td=""></td<>	

Table A-19 Aqueous Samples A	Analytical Methods	and Laboratory A	ccuracy and Pre	cision Goals ^a
Parameter	Analytical Method	MS Accuracy, %	Precision, RPD or RER ^b	LCS Accuracy, %
Acenaphthene	8270C	55 - 120	25	55 - 120
Acenaphthylene	8270C	55 - 120	25	55 - 120
Anthracene	8270C	55 - 120	25	55 - 120
Benzo(a)anthracene	8270C	60 - 120	20	60 - 120
Benzo(a)pyrene	8270C	55 - 125	25	55 - 120
Benzo(b)fluoranthene	8270C	50 - 120	25	50 - 120
Benzo(g,h,i)perylene	8270C	40 - 125	25	40 - 125
Benzo(k)fluoranthene	8270C	50 - 120	25	50 - 120
Benzoic acid	8270C	35 - 120	30	35 - 120
4-Bromophenyl phenyl ether	8270C	50 - 120	25	50 - 120
Butyl benzyl phthalate	8270C	55 - 125	25	55 - 125
2-Chloronaphthalene	8270C	55 - 120	20	55 - 120
4-Chloroaniline	8270C	50 - 120	25	50 - 120
Carbazole	8270C	55 - 125	20	55 - 125
Chrysene	8270C	60 - 120	20	60 - 120
bis(2-Chloroethoxy)methane	8270C	55 - 120	20	55 - 120
bis(2-Chloroethyl)ether	8270C	50 - 120	25	50 - 120
bis(2-Chloroisopropyl)ether	8270C	45 - 120	25	45 - 120
4-Chlorophenyl phenyl ether	8270C	55 - 120	25	55 - 120
2,4-Dinitrotoluene	8270C	60 - 120	25	60 - 120
2,6-Dinitrotoluene	8270C	60 - 120	20	60 - 120
3,3'-Dichlorobenzidine	8270C	45 - 130	25	45 - 130
Dibenzo(a,h)anthracene	8270C	45 - 130	25	45 - 130
Dibenzofuran	8270C	60 - 120	25	60 - 120
1,2-Dichlorobenzene	8270C	35 - 120	25	35 - 120
1,3-Dichlorobenzene	8270C	35 - 120	25	35 - 120
1,4-Dichlorobenzene	8270C	35 - 120	25	35 - 120
di- <i>n</i> -Butyl phthalate	8270C	55 - 125	20	55 - 125
di- <i>n</i> -Octyl phthalate	8270C	60 - 130	20	60 - 130
Diethyl phthalate	8270C	55 - 120	25	55 - 120
Dimethyl phthalate	8270C	30 - 120	20	30 - 120
bis(2-Ethylhexyl)phthalate	8270C	60 - 130	20	60 - 130
Fluoranthene	8270C	55 - 120	20	55 - 120
Fluorene	8270C	60 - 120	20	60 - 120
Hexachlorobenzene	8270C	45 - 125	20	50 - 120
Hexachlorobutadiene	8270C	40 - 120	25	40 - 120
Hexachlorocyclopentadiene	8270C	15 - 120	30	15 - 120
Hexachloroethane	8270C	35 - 120	25	35 - 120

Table A-19 Aqueous Samples Analytical Methods and Laboratory Accuracy and Precision Goals ^a				
Parameter	Analytical Method	MS Accuracy, %	Precision, RPD or RER ^b	LCS Accuracy, %
Indeno(1,2,3-cd)pyrene	8270C	40 - 130	25	40 - 130
Isophorone	8270C	50 - 120	20	50 - 120
2-Methylnaphthalene	8270C	50 - 120	20	50 - 120
2-Nitroaniline	8270C	60 - 120	25	60 - 120
3-Nitroaniline	8270C	55 - 120	25	55 - 120
4-Nitroaniline	8270C	50 - 125	25	50 - 125
Naphthalene	8270C	50 - 120	20	50 - 120
Nitrobenzene	8270C	50 - 120	25	50 - 120
N-Nitroso-di- <i>n</i> -propylamine	8270C	45 - 120	25	45 - 120
N-Nitrosodiphenylamine	8270C	55 - 120	20	55 - 120
Phenanthrene	8270C	55 - 120	20	55 - 120
Pyrene	8270C	50 - 120	20	50 - 120
1,2,4-Trichlorobenzene	8270C	45 - 120	20	45 - 120
alpha-BHC	8081A	45 - 120	30	45 - 120
beta-BHC	8081A	50 - 120	30	50 - 120
gamma-BHC (Lindane)	8081A	40 - 120	30	40 - 120
delta-BHC	8081A	50 - 120	30	50 - 120
Heptachlor	8081A	40 - 115	30	40 - 115
Aldrin	8081A	35 - 120	30	35 - 120
Heptachlor epoxide	8081A	50 - 120	30	50 - 120
Endosulfan I	8081A	50 - 120	30	50 - 120
Dieldrin	8081A	50 - 120	30	50 - 120
Endrin aldehyde	8081A	50 - 120	30	55 - 120
Endrin	8081A	55 - 120	30	55 - 120
Endosulfan II	8081A	55 - 120	30	55 - 120
4,4'- DDD	8081A	55 - 125	30	55 - 120
Endosulfan sulfate	8081A	55 - 120	30	60 - 120
4,4'-DDT	8081A	55 - 125	30	55 - 120
4,4'-DDE	8081A	50 - 120	30	50 - 120
Methoxychlor	8081A	55 - 125	30	55 - 120
Endrin ketone	8081A	55 - 120	30	55 - 120
alpha-Chlordane	8081A	50 - 115	30	50 - 115
gamma-Chlordane	8081A	50 - 115	30	50 - 115
Toxaphene	8081A 8081A	NA	NA SU	<u> </u>
Aroclor-1016	8082	45 - 115	30	45 - 115
Aroclor-1221	8082	43 - 113 NA	NA	43 - 115 NA
Aroclor-1232	8082	NA	NA	NA NA
Aroclor-1242	8082			
AIOCIOF-1242	8082	NA	NA	NA

Table A-19 Aqueous Samples An	Table A-19 Aqueous Samples Analytical Methods and Laboratory Accuracy and Precision Goals ^a				
Parameter	Analytical Method	MS Accuracy, %	Precision, RPD or RER ^b	LCS Accuracy, %	
Aroclor-1248	8082	NA	NA	NA	
Aroclor-1254	8082	NA	NA	NA	
Aroclor-1260	8082	55 - 115	25	55 - 115	
2,4,5-T	8151A	40 - 160	40	50 - 150	
2,4-D	8151A	60 - 140	40	60 - 140	
2,4-DB	8151A	40 - 160	40	59 - 143	
Dalapon	8151A	60 - 140	40	60 - 140	
Dichlorprop	8151A	60 - 140	40	60 - 140	
Dicamba	8151A	60 - 140	40	60 - 140	
Dinoseb	8151A	40 - 160	40	40 - 160	
МСРА	8151A	40 - 160	40	60 - 140	
MCPP	8151A	40 - 160	40	60 - 140	
Silvex	8151A	40 - 160	40	60 - 140	
Aluminum	6010B	75 - 125	20	80 - 120	
Aluminum	200.7	70 - 130	20	85 - 115	
Antimony	6020	75 - 125	20	80 - 120	
Antimony	200.8	70 - 130	20	85 - 115	
Arsenic	6020	75 - 125	20	80 - 120	
Arsenic	200.8	70 - 130	20	85 - 115	
Barium	6020	75 - 125	20	80 - 120	
Barium	200.8	70 - 130	20	85 - 115	
Beryllium	6020	75 - 125	20	80 - 120	
Beryllium	200.8	70 - 130	20	85 - 115	
Bismuth	6020	75 - 125	20	80 - 120	
Boron	6010B	75 - 125	20	80 - 120	
Boron	200.7	70 - 130	20	85 - 115	
Cadmium	6020	75 - 125	20	80 - 120	
Cadmium	200.8	70 - 130	20	85 - 115	
Calcium	6010B	75 - 125	20	80 - 120	
Calcium	200.7	70 - 130	20	85 - 115	
Chromium	6020	75 - 125	20	80 - 120	
Chromium	200.8	70 - 130	20	85 - 115	
Cobalt	6020	75 - 125	20	80 - 120	
Cobalt	200.8	70 - 130	20	85 - 115	
Copper	6020	75 - 125	20	80 - 120	
Copper	200.8	70 - 130	20	85 - 115	
Gallium	6020	75 - 125	20	80 - 120	
Iron	6010B	75 - 125	20	80 - 120	

Table A-19 Aqueous Samples Analytical Methods and Laboratory Accuracy and Precision Goals ^a				
Parameter	Analytical Method	MS Accuracy, %	Precision, RPD or RER ^b	LCS Accuracy, %
Iron	200.7	70 - 130	20	85 - 115
Lead	6020	75 - 125	20	80 - 120
Lead	200.8	70 - 130	20	85 - 115
Lithium	200.7	70 - 130	20	85 - 115
Magnesium	6010B	75 - 125	20	80 - 120
Magnesium	200.7	70 - 130	20	85 - 115
Manganese	6020	75 - 125	20	80 - 120
Manganese	200.8	70 - 130	20	85 - 115
Mercury	7470A	75 - 120	20	90 - 115
Mercury	245.1	70 - 130	20	85 - 115
Molybdenum	6020	75 - 125	20	80 - 120
Molybdenum	200.8	70 - 130	20	85 - 115
Nickel	6020	75 - 125	20	80 - 120
Nickel	200.8	70 - 130	20	85 - 115
Phosphorus	200.7	70 - 130	20	85 - 115
Potassium	6010B	75 - 125	20	80 - 120
Potassium	200.7	70 - 130	20	85 - 115
Scandium	6020	75 - 125	20	80 - 120
Selenium	6020	75 - 125	20	80 - 120
Selenium	200.8	70 - 130	20	85 - 115
Silicon	200.7	70 - 130	20	85 - 115
Silver	6020	75 - 125	20	80 - 120
Silver	200.8	70 - 130	20	85 - 115
Sodium	6010B	75 - 125	20	80 - 120
Sodium	200.7	70 - 130	20	85 - 115
Strontium	200.7	70 - 130	20	85 - 115
Thallium	6020	75 - 125	20	80 - 120
Thallium	200.7	70 - 130	20	85 - 115
Thallium	200.8	70 - 130	20	85 - 115
Thorium	200.8	70 - 130	20	85 - 115
Tin	200.7	70 - 130	20	85 - 115
Titanium	200.7	70 - 130	20	85 - 115
Uranium	200.8	70 - 130	20	85 - 115
Vanadium	6020	75 - 125	20	80 - 120
Vanadium	200.8	70 - 130	20	85 - 115
Zinc	6020	75 - 125	20	80 - 120
Zinc	200.8	70 - 130	20	85 - 115
Chloride	300.0	80 - 120	20	90 - 110

Table A-19 Aqueous Samples Analytical Methods and Laboratory Accuracy and Precision Goals ^a				
Parameter	Analytical Method	MS Accuracy, %	Precision, RPD or RER ^b	LCS Accuracy, %
Fluoride	300.0	80 - 120		90 - 110
Nitrate	300.0	80 - 120 80 - 120	20 20	90 - 110
Nitrite	300.0	80 - 120	20	$\frac{90-110}{90-110}$
Nitrate/Nitrite	300.0	80 - 120	20	90 - 110
Sulfate	300.0	80 - 120	20	90 - 110
Phosphate (ortho)	300.0	80 - 120	20	90 - 110
Phosphorus, total	365.3	65 - 130	15	80 - 120
Alkalinity, Total	2320B	NA	20	$\frac{80 - 120}{80 - 120}$
Alkalinity, Bicarbonate	2320B	NA NA	20	$\frac{80 - 120}{80 - 120}$
Alkalinity, Carbonate	2320B	NA NA	20	$\frac{80 - 120}{80 - 120}$
Alkalinity, Hydroxide	2320B	NA	20	$\frac{80 - 120}{80 - 120}$
pH	150.1	NA	5	$\frac{80 - 120}{80 - 120}$
pH pH	4500B	NA NA	5	$\frac{80 - 120}{80 - 120}$
TDS	160.1	NA NA	10	90 - 110
TDS	2540C	NA NA	10	90 - 110
TOC	415.1	80 - 120	20	90 - 110
TOC	5310B	80 - 120 80 - 120	20	90 - 110
TS	160.3	NA	10	90 - 110
15	100.5	INA		90 - 110
Gross a	900.0	70-130	RPD<20 or RER< 2	80-120
Gross B	900.0	70-130	RPD<20 or RER< 2	80-120
Radium-226	903.0	70-130	RPD<20 or RER< 2	80-120
Radium-228	904.0	70-130	RPD<20 or RER< 2	80-120
Thorium-228	907.0	70-130	RPD<20 or RER< 2	80-120
Thorium 230	907.0	70-130	RPD<20 or RER< 2	80-120
Thorium-232	907.0	70-130	RPD<20 or RER< 2	80-120
Uranium-234	907.0/908.0	70-130	RPD<20 or RER< 2	80-120
Uranium-235	907.0/908.0	70-130	RPD<20 or RER< 2	80-120
Uranium-238	907.0/908.0	70-130	RPD<20 or RER< 2	80-120
Total Uranium	907.0/908.0 (by calculation)	NA	NA	NA

Notes: NA	Not Applicable
a -	The limits presented for these QC analyses are laboratory-derived limits. These limits will periodically be updated; however, the updated limits are not expected to be significantly different than those herein. Laboratory corrective actions will be taken based on the current laboratory-derived limits.
b -	Precision limit for matrix spike/matrix spike duplicate, laboratory duplicate, or laboratory control sample/ laboratory control sample duplicate analyses.

	Analytical	MS	Precision, RPD	LCS
Parameter	Method	Accuracy, %	or RER ^b	Accuracy, %
Benzene	5035A-8260B	65 - 130	20	65 - 120
Bromobenzene	5035A-8260B	70 - 135	25	70 - 120
Bromochloromethane	5035A-8260B	65 - 140	25	65 - 130
Bromodichloromethane	5035A-8260B	65 - 140	20	65 - 135
Bromoform	5035A-8260B	50 - 140	30	50 - 135
Bromomethane	5035A-8260B	55 - 150	25	60 - 145
<i>n</i> -Butylbenzene	5035A-8260B	55 - 140	30	70 - 125
sec-Butylbenzene	5035A-8260B	65 - 130	25	70 - 125
tert-Butylbenzene	5035A-8260B	65 - 135	25	70 - 125
Carbon tetrachloride	5035A-8260B	65 - 140	25	65 - 140
Chlorobenzene	5035A-8260B	70 - 125	25	70 - 125
Chloroethane	5035A-8260B	55 - 145	25	55 - 140
2-Chlorotoluene	5035A-8260B	65 - 130	25	70 - 125
4-Chlorotoluene	5035A-8260B	70 - 130	25	70 - 125
Chloroform	5035A-8260B	65 - 130	20	65 - 130
Chloromethane	5035A-8260B	35 - 140	25	40 - 140
1,2-Dibromo-3-chloropropane	5035A-8260B	45 - 145	30	45 - 140
Dibromochloromethane	5035A-8260B	65 - 140	25	65 - 140
1,2-Dibromoethane	5035A-8260B	65 - 135	25	70 - 130
Dibromomethane	5035A-8260B	65 - 135	25	70 - 130
1,2-Dichlorobenzene	5035A-8260B	70 - 130	25	70 - 120
1,3-Dichlorobenzene	5035A-8260B	70 - 125	25	70 - 125
1,4-Dichlorobenzene	5035A-8260B	70 - 125	25	70 - 125
Dichlorodifluoromethane	5035A-8260B	65 - 130	25	65 - 130
1,1-Dichloroethane	5035A-8260B	65 - 130	25	65 - 130
1,2-Dichloroethane	5035A-8260B	60 - 145	25	60 - 140
1,1-Dichloroethene	5035A-8260B	65 - 135	25	70 - 130
cis-1,2-Dichloroethene	5035A-8260B	65 - 130	25	65 - 125
trans-1,2-Dichloroethene	5035A-8260B	65 - 135	25	65 - 130
Dichlorofluoromethane	5035A-8260B	65 - 135	25	65 - 130
1,2-Dichloropropane	5035A-8260B	65 - 125	20	65 - 125
1,3-Dichloropropane	5035A-8260B	65 - 135	25	65 - 125
2,2-Dichloropropane	5035A-8260B	60 - 145	25	60 - 145
1,1-Dichloropropene	5035A-8260B	65 - 135	20	70 - 130
Ethylbenzene	5035A-8260B	70 - 130	25	70 - 125
Hexachlorobutadiene	5035A-8260B	55 - 140	35	60 - 135
Isopropylbenzene	5035A-8260B	65 - 140	25	70 - 125
<i>p</i> -Isopropyltoluene	5035A-8260B	65 - 140	25	70 - 125

Table A-20 Soil/Sediment Samples Analytical Methods and Laboratory Accuracy and Precision Goals ^a					
D	Analytical Method	MS	Precision, RPD or RER ^b		
Parameter		Accuracy, %		Accuracy, %	
Methylene chloride	5035A-8260B	<u>60 - 140</u> 40 - 155	25	<u>60 - 130</u> 50 - 140	
Naphthalene	5035A-8260B		40		
<i>n</i> -Propylbenzene	5035A-8260B	65 - 140	25	70 - 125	
Styrene	5035A-8260B	70 - 140	25	70 - 130	
<i>tert</i> -butyl methyl ether	5035A-8260B	55 - 150	35	55 - 140	
1,1,2,2-Tetrachloroethane	5035A-8260B	45 - 155	30	55 - 140	
1,1,2,2-Tetrachloroethene	5035A-8260B	65 - 135	25	65 - 125	
1,1,1,2-Tetrachloroethane	5035A-8260B	70 - 140	20	70 - 135	
Toluene	5035A-8260B	70 - 125	20	70 - 125	
1,2,3-Trichlorobenzene	5035A-8260B	50 - 140	30	60 - 130	
1,2,4-Trichlorobenzene	5035A-8260B	55 - 135	30	65 - 135	
1,1,1-Trichloroethane	5035A-8260B	65 - 140	20	65 - 135	
1,1,2-Trichloroethane	5035A-8260B	65 - 135	30	65 - 130	
Trichloroethene	5035A-8260B	70 - 135	25	70 - 125	
Trichlorofluoromethane	5035A-8260B	70 - 135	25	70 - 125	
1,2,3-Trichloropropane	5035A-8260B	55 - 145	30	55 - 135	
1,2,4-Trimethylbenzene	5035A-8260B	65 - 135	25	70 - 125	
1,3,5-Trimethylbenzene	5035A-8260B	70 - 130	25	70 - 125	
Vinyl chloride	5035A-8260B	50 - 135	30	50 - 130	
Xylene (total)	5035A-8260B	70 - 125	25	70 - 125	
<i>o</i> -Xylene	5035A-8260B	70 - 125	25	70 - 125	
<i>m</i> -Xylene	5035A-8260B	70 - 125	25	70 - 125	
<i>p</i> -Xylene	5035A-8260B	70 - 125	25	70 - 125	
2-Chlorophenol	8270C	40 - 120	20	40 - 120	
4-Chloro-3-methylphenol	8270C	50 - 120	25	50 - 120	
2,4-Dichlorophenol	8270C	45 - 120	25	45 - 120	
2,4-Dimethylphenol	8270C	35 - 120	25	40 - 120	
2,4-Dintrophenol	8270C	10 - 120	25	15 - 120	
4,6-Dinitro- <i>o</i> -cresol	8270C	15 - 120	25	40 - 120	
2-Methylphenol	8270C	40 - 120	25	40 - 120	
3&4-Methylphenol	8270C	40 - 120	25	45 - 120	
2-Nitrophenol	8270C	40 - 120	25	45 - 120	
4-Nitrophenol	8270C	35 - 120	30	40 - 120	
Pentachlorophenol	8270C	30 - 125	25	40 - 125	
Phenol	8270C	35 - 120	25	35 - 120	
2,4,5-Trichlorophenol	8270C	50 - 120	20	50 - 120	
2,4,6-Trichlorophenol	8270C	40 - 120	25	50 - 120	
Acenaphthene	8270C	40 - 120	25	50 - 120	

Table A-20 Soil/Sediment Samples Analytical Methods and Laboratory Accuracy and Precision Goals ^a				
Parameter	Analytical Method	MS Accuracy, %	Precision, RPD or RER ^b	LCS Accuracy, %
Acenaphthylene	8270C	45 - 120	20	50 - 120
Anthracene	8270C	55 - 120	25	55 - 120
Benzo(a)anthracene	8270C	50 - 120	25	60 - 120
Benzo(a)pyrene	8270C	55 - 120	25	55 - 120
Benzo(b)fluoranthene	8270C	55 - 120	30	55 - 120
Benzo(g,h,i)perylene	8270C	30 - 120	30	35 - 120
Benzo(k)fluoranthene	8270C	50 - 120	30	50 - 120
Benzoic acid	8270C	15 - 120	30	20 - 120
4-Bromophenyl phenyl ether	8270C	45 - 120	20	45 - 120
Butyl benzyl phthalate	8270C	50 - 120	25	55 - 120
2-Chloronaphthalene	8270C	45 - 120	20	45 - 120
4-Chloroaniline	8270C	10 - 120	30	15 - 120
Carbazole	8270C	60 - 120	20	60 - 120
Chrysene	8270C	55 - 120	20	55 - 120
<i>bis</i> (2-Chloroethoxy)methane	8270C	40 - 120	25	45 - 120
<i>bis</i> (2-Chloroethyl)ether	8270C	35 - 110	25	35 - 120
<i>bis</i> (2-Chloroisopropyl)ether	8270C	40 - 120	25	40 - 120
4-Chlorophenyl phenyl ether	8270C	50 - 120	25	55 - 120
2,4-Dintitrotoluene	8270C	50 - 120	25	55 - 120
2,6-Dinitrotoluene	8270C	50 - 120	20	55 - 120
3,3'-Dichlorobenzidine	8270C	15 - 120	20	20 - 120
Dibenzo(a,h)anthracene	8270C	25 - 120	30	35 - 120
Dibenzofuran	8270C 8270C	55 - 120	25	55 - 120
	8270C 8270C	35 - 120	25	35 - 120
1,2-Dichlorobenzene 1,3-Dichlorobenzene	8270C 8270C	35 - 120	25	35 - 120 35 - 120
·	8270C 8270C	35 - 120	25	35 - 120
1,4-Dichlorobenzene	8270C 8270C	50 - 120	25	55 - 120
<i>di-n</i> -Butyl phthalate	8270C 8270C	45 - 120		55 - 120
<i>di-n-</i> Octyl phthalate			25	
Diethyl phthalate	8270C	50 - 120	25	50 - 120
Dimethyl phthalate	8270C	45 - 120	25	55 - 120
<i>bis</i> (2-Ethylhexyl)phthalate	8270C	50 - 120	25	55 - 120
Fluoranthene	8270C	45 - 120	30	55 - 120
Fluorene	8270C	50 - 120	25	55 - 120
Hexachlorobenzene	8270C	40 - 120	25	50 - 120
Hexachlorobutadiene	8270C	40 - 110	25	40 - 120
Hexachlorocyclopentadiene	8270C	20 - 120	30	35 - 120
Hexachloroethane	8270C	35 - 120	30	35 - 120
Indeno(1,2,3-cd)pyrene	8270C	20 - 155	30	25 - 150

Table A-20 Soil/Sediment Samples Analytical Methods and Laboratory Accuracy and Precision Goals ^a				
Parameter	Analytical Method	MS Accuracy, %	Precision, RPD or RER ^b	LCS Accuracy, %
Isophorone	8270C	40 - 120	20	40 - 120
2-Methylnaphthalene	8270C	45 - 120	20	45 - 120
2-Nitroaniline	8270C	50 - 120	25	50 - 120
3-Nitroaniline	8270C	30 - 120	25	35 - 120
4-Nitroaniline	8270C	40 - 120	30	45 - 120
Naphthalene	8270C	40 - 120	25	45 - 120
Nitrobenzene	8270C	40 - 120	25	40 - 120
<i>N</i> -Nitroso- <i>di</i> - <i>n</i> -propylamine	8270C	35 - 120	25	40 - 120
<i>N</i> -Nitrosodiphenylamine	8270C	50 - 120	25	50 - 120
Phenanthrene	8270C	50 - 120	25	50 - 120
Pyrene	8270C	50 - 125	30	50 - 120
1,2,4-Trichlorobenzene	8270C	40 - 120	25	40 - 120
Diesel (C12-C23)-TPH	8015B	30 - 125	30	40 - 120
Motor Oil (C23-C40)-TPH	8015B	30 - 125	30	40 - 120
Gasoline (C4-C12)-TPH	5035A-8015B	55 - 145	35	65 - 135
alpha-BHC	8081A	35 - 145	30	55 - 120
beta-BHC	8081A	40 - 120	30	55 - 120
gamma-BHC (Lindane)	8081A	35 - 120	30	50 - 120
<i>delta</i> -BHC	8081A	40 - 120	30	60 - 120
Heptachlor	8081A	35 - 115	30	55 - 115
Aldrin	8081A	35 - 115	30	45 - 120
Heptachlor epoxide	8081A	40 - 120	30	55 - 120
Endosulfan I	8081A	40 - 120	30	60 - 120
Dieldrin	8081A	40 - 120	30	60 - 120
Endrin aldehyde	8081A	25 - 120	30	55 - 120
Endrin	8081A	45 - 120	30	60 - 120
Endosulfan II	8081A	45 - 120	30	60 - 120
	8081A	40 - 125	30	60 - 120
4,4'- DDD				
Endosulfan sulfate	8081A	40 - 120	30	65 - 120
4,4'-DDT	8081A	40 - 125	30	60 - 120
4,4′-DDE	8081A	40 - 125	30	60 - 120
Methoxychlor	8081A	35 - 130	30	60 - 120
Endrin ketone	8081A	35 - 125	30	65 - 120
alpha-Chlordane	8081A	50 - 115	30	50 - 115
gamma-Chlordane	8081A	50 - 115	30	50 - 115
Toxaphene	8081A	NA	NA	NA
Aroclor-1016	8082	45 - 120	30	60 - 115
Aroclor-1221	8082	NA	NA	NA

Table A-20 Soil/Sediment Samples Analytical Methods and Laboratory Accuracy and Precision Goals ^a					
Analytical Method	MS	Precision, RPD	LCS Accuracy, %		
	•		NA		
			NA NA		
			NA		
			NA		
			60 - 115		
			40 - 121		
			40 - 121 45 - 112		
			32 - 145		
			27 - 103 36 - 107		
			43 - 117		
			22 - 130		
			36 - 118		
			44 - 115		
			44 - 106		
			80 - 120		
			80 - 120		
			80 - 120		
			80 - 120		
			80 - 120		
			80 - 120		
			80 - 120		
			80 - 120		
			80 - 120		
			80 - 120		
6020		20	80 - 120		
6010B	75 - 125	20	80 - 120		
6020	75 - 125	20	80 - 120		
6010B	75 - 125	20	80 - 120		
6020	75 - 125	20	80 - 120		
7471A	65 - 135	20	85 - 120		
6020	75 - 125	20	80 - 120		
6020	75 - 125	20	80 - 120		
6010B	75 - 125	20	80 - 120		
6020	75 - 125	20	80 - 120		
6010B	75 - 125	20	80 - 120		
	75 - 125	20	80 - 120		
6010B	75 - 125	20	80 - 120		
	Analytical Method 8082 8151A 6010B 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020	Analytical Method MS Accuracy,% 8082 NA 8082 AS 8151A 27 - 146 8151A 22 - 125 8151A 20 - 148 8151A 20 - 148 8151A 20 - 148 8151A 20 - 148 8151A 32 - 125 8151A 39 - 102 8151A 39 - 103 8151A 39 - 103 8151A 39 - 103 8151A 30 - 104 6010B 75 - 125 6020 75 - 125 6020 75 - 125 6020 75 - 125 6020 75 - 125 6020 75 - 125 6020 75 - 125 6020 75 - 125 6020 75 - 125 6020 75 - 125	Analytical Method MS Accuracy,% Precision, RPD or RER ^b 8082 NA NA 8082 45 - 120 30 8151A 27 - 146 35 8151A 20 - 148 35 8151A 20 - 148 35 8151A 39 - 102 40 8151A 39 - 103 35 8151A 32 - 115 40 8151A 32 - 115 20 6020 75 - 125 20 6020 75 - 125 20 6020 75 - 125 20 6020 75 - 125 20 6020 75 - 125 20 6020		

Table A-20 Soil/Sediment Samples Analytical Methods and Laboratory Accuracy and Precision Goals ^a				
Parameter	Analytical Method	MS Accuracy, %	Precision, RPD or RER ^b	LCS Accuracy, %
Thallium	6020	75 - 125	20	80 - 120
Thorium	6020	75 - 125	20	80 - 120
Uranium	6020	75 - 125	20	80 - 120
Vanadium	6020	75 - 125	20	80 - 120
Zinc	6020	75 - 125	20	80 - 120
Gross a	9310	NA	RPD<30 or RER< 2	75-125
Gross ß	9310	NA	RPD<30 or RER< 2	75-125
Radium-226	HASL 300 (Section 4.5.2.3)	70-130	RPD<30 or RER< 2	75-125
Radium-228	HASL 300 (Section 4.5.2.3)	70-130	RPD<30 or RER< 2	75-125
Thorium-228	Th-01 Modified	70-130	RPD<30 or RER< 2	75-125
Thorium-230	Th-01 Modified	70-130	RPD<30 or RER< 2	75-125
Thorium 232	Th-01 Modified	70-130	RPD<30 or RER< 2	75-125
Uranium-234	U-02 Modified	70-130	RPD<30 or RER< 2	75-125
Uranium-235	U-02 Modified	70-130	RPD<30 or RER< 2	75-125
Uranium-238	U-02 Modified	70-130	RPD<30 or RER< 2	75-125
TS	160.3	NA	10	NA
TS	2540G	NA	10	NA

Notes: NA

Not Applicable

a - The limits presented for these QC analyses are laboratory-derived limits. These limits will periodically be updated; however, the updated limits are not expected to be significantly different than those herein. Laboratory corrective actions will be taken based on the current laboratory-derived limits.

b - Precision limit for matrix spike/matrix spike duplicate, laboratory duplicate, or laboratory control sample/ laboratory control sample duplicate analyses.

Douomoton	Analytical Mathed	MS	Precision, RPD or RER ^b	LCS	
Parameter	Analytical Method	Accuracy, %		Accuracy, %	
Aluminum Aluminum	6010B IO3.3	NA NA	20 20	75-125 75-125	
	6020	NA NA	20	75-125	
Arsenic	IO3.3		-		
Arsenic		NA	20	75-125	
Barium	6020	NA	20	75-125	
Beryllium	6020	NA	20	75-125	
Cadmium	6020	NA	20	75-125	
Cadmium	IO3.3	NA	20	75-125	
Calcium	6010B	NA	20	75-125	
Chromium	6020	NA	20	75-125	
Chromium	IO3.3	NA	20	75-125	
Cobalt	6020	NA	20	75-125	
Cobalt	IO3.3	NA	20	75-125	
Copper	6020	NA	20	75-125	
Copper	IO3.3	NA	20	75-125	
Iron	6010B	NA	20	75-125	
Lead	6020	NA	20	75-125	
Magnesium	6010B	NA	20	75-125	
Manganese	6020	NA	20	75-125	
Manganese	IO3.3	NA	20	75-125	
Mercury	7471A	NA	20	75-125	
Molybdenum	6020	NA	20	75-125	
Nickel	6020	NA	20	75-125	
Nickel	IO3.3	NA	20	75-125	
Selenium	6020	NA	20	75-125	
Silver	6020	NA	20	75-125	
Sodium	6010B	NA	20	75-125	
Vanadium	6020	NA	20	75-125	
Zinc	6020	NA	20	75-125	
Sulfate	9056	NA	15	85-115	
Gross a	900.0	NA	RPD<30	75-125	
01035 a	200.0		or RER< 3	15-125	
Gross ß	900.0	NA	RPD<30	75-125	
			or RER< 3		
Radium-226	903.1	NA	RPD<30	75-125	
			or RER< 3		
Radium-228	904.0	NA	RPD<30	75-125	
Radium, Total	IO3.3	NA	or RER< 3 NA	75-125	

Table A-21 Air Samples Analytical Methods and Laboratory Accuracy and Precision Goals ^a				
Parameter	Analytical Method	MS Accuracy, %	Precision, RPD or RER ^b	LCS Accuracy, %
Thorium-228	IsoTh	NA	RPD<30 or RER< 3	75-125
Thorium-230	IsoTh	NA	RPD<30 or RER< 3	75-125
Thorium-232	IsoTh	NA	RPD<30 or RER< 3	75-125
Thorium, Total	IO3.3	NA	NA	75-125
Uranium-234	908.0 Modified	NA	RPD<30 or RER< 3	75-125
Uranium-235	908.0 Modified	NA	RPD<30 or RER< 3	75-125
Uranium-238	908.0 Modified	NA	RPD<30 or RER< 3	75-125
TSP	40 CFR Appendix B	NA	NA	NA
PM-10	40 CFR Appendix J	NA	NA	NA

Notes: NA

Not Applicable

a - The limits presented for these QC analyses are laboratory-derived limits. These limits will periodically be updated; however, the updated limits are not expected to be significantly different than those herein. Laboratory corrective actions will be taken based on the current laboratory-derived limits.

b - Precision limit for laboratory duplicate or laboratory control sample/ laboratory control sample duplicate analyses.

	Table A-22 TCLP Samples Analytical Methods and Laboratory Accuracy and Precision Goals ^a MS Precision, LCS					
Parameter	Analytical Method	Accuracy, %	RPD ^b	Accuracy, %		
Vinyl chloride	1311 8260B	40 - 135	30	50 - 130		
1,1-Dichloroethene	1311 8260B	60 - 135	20	70 - 130		
Chloroform	1311 8260B	65 - 135	20	65 - 130		
1,2-Dichloroethane	1311 8260B	60 - 140	20	60 - 140		
2-Butanone	1311 8260B	30 - 140	40	40 - 135		
Carbon tetrachloride	1311 8260B	65 - 140	25	65 - 140		
Trichloroethene	1311 8260B	60 - 125	20	70 - 125		
Benzene	1311 8260B	60 - 125	20	65 - 120		
Tetrachloroethene	1311 8260B	60 - 130	20	65 - 125		
Chlorobenzene	1311 8260B	70 - 125	20	70 - 125		
1,4-Dichlorobenzene	1311 8260B	70 - 125	20	70 - 125		
2,4-Dinitrotoluene	1311 8270C	60 - 120	25	60 - 120		
Hexachlorobenzene	1311 8270C	45 - 125	20	50 - 120		
Hexachlorobutadiene	1311 8270C	40 - 120	25	40 - 120		
Hexachloroethane	1311 8270C	35 - 120	25	35 - 120		
2-Methylphenol	1311 8270C	NA	NA	NA		
3&4-Methylphenol	1311 8270C	NA	NA	NA		
Nitrobenzene	1311 8270C	50 - 120	25	50 - 120		
Pentachlorophenol	1311 8270C	45 - 130	25	50 - 120		
Pyridine	1311 8270C	30 - 120	30	30 - 120		
2,4,5-Trichlorophenol	1311 8270C	60 - 120	20	60 - 120		
2,4,6-Trichlorophenol	1311 8270C	60 - 120	20	60 - 120		
2,4-D	1311 8151A	30 - 150	50	30 - 150		
2,4,5-TP	1311 8151A	30 - 150	50	30 - 150		
gamma-BHC (Lindane)	1311 8081A	40 - 120	30	40 - 120		
Chlordane	1311 8081A	NA	NA	NA		
Endrin	1311 8081A	55 - 120	30	55 - 120		
Heptachlor	1311 8081A	40 - 115	30	40 - 115		
Heptachlor epoxide	1311 8081A	50 - 120	30	50 - 120		
Methoxychlor	1311 8081A	55 - 125	30	55 - 120		
Toxaphene	1311 8081A	NA	NA	NA		
Arsenic	1311 6010B	75 - 125	20	80 - 120		
Barium	1311 6010B	75 - 125	20	80 - 120		
Cadmium	1311 6010B	75 - 125	20	80 - 120		
Chromium	1311 6010B	75 - 125	20	80 - 120		
Lead	1311 6010B	75 - 125	20	80 - 120		
Silver	1311 6010B	75 - 125	20	80 - 120		
Mercury	1311 7470A	65 - 135	20	85 - 120		
Selenium	1311 6010B	75 - 125	20	80 - 120		

Notes: NA	Not Applicable
a -	The limits presented for these QC analyses are laboratory-derived limits. These limits will periodically be updated; however, the updated limits are not expected to be significantly different than those herein. Laboratory corrective actions will be taken based on the current laboratory-derived limits.
b -	Precision limit for matrix spike/matrix spike duplicate, laboratory duplicate, or laboratory control sample/ laboratory control sample duplicate analyses.

Table A-23 Anal	Table A-23 Analytical Methods and Laboratory Surrogate Recovery Goals				
Matrix	Method	Surrogate Compound ^a	Recovery Limits (%) ^b		
Aqueous	8260B	4-Bromofluorobenzene	80 - 120		
Aqueous	8260B	Dibromofluoromethane	80 - 120		
Aqueous	8260B	Toluene-D8	80 - 120		
TCLP	1311 8260B	4-Bromofluorobenzene	80 - 120		
TCLP	1311 8260B	Dibromofluoromethane	80 - 120		
TCLP	1311 8260B	Toluene-D8	80 - 120		
Aqueous	8270C	2,4,6-Tribromophenol	45 - 120		
Aqueous	8270C	2-Fluorobiphenyl	45 - 120		
Aqueous	8270C	2-Fluorophenol	30 - 120		
Aqueous	8270C	Nitrobenzene-d5	45 - 120		
Aqueous	8270C	Phenol-d6	35 - 120		
Aqueous	8270C	Terphenyl-d14	45 - 120		
TCLP	1311 8270C	2,4,6-Tribromophenol	50 - 125		
TCLP	1311 8270C	2-Fluorobiphenyl	45 - 120		
TCLP	1311 8270C	2-Fluorophenol	35 - 120		
TCLP	1311 8270C	Nitrobenzene-d5	45 - 120		
TCLP	1311 8270C	Phenol-d6	45 - 120		
TCLP	1311 8270C	Terphenyl-d14	45 - 135		
Aqueous	8015B-Diesel/Motor Oil	n-Octacosane	40 - 125		
Aqueous	8015B-Gasoline	4-Bromofluorobenzene	65 - 140		
Aqueous	8151A	2,4-DCAA	40 - 160		
TCLP	1311 8151A	2,4-DCAA	20 - 150		
Aqueous	8081A	Decachlorobiphenyl	45 - 120		
Aqueous	8081A	Tetrachloro-m-xylene	35 - 115		
TCLP	1311 8081A	Decachlorobiphenyl	45 - 120		
TCLP	1311 8081A	Tetrachloro-m-xylene	35 - 115		
Aqueous	8082	Decachlorobiphenyl	45 - 120		
Aqueous	8082	Tetrachloro-m-xylene	35 - 115		
Soil	8260B	4-Bromoflu orobenzene	80 - 120		
Soil	8260B	Dibromofluoromethane	80 - 125		
Soil	8260B	Toluene-D8	80 - 120		
Soil	8270C	2,4,6-Tribromophenol	35 - 125		
Soil	8270C	2-Fluorobiphenyl	35 - 120		
Soil	8270C	2-Fluorophenol	25 - 120		
Soil	8270C	Nitrobenzene-d5	30 - 120		
Soil	8270C	Phenol-d6	35 - 120		
Soil	8270C	Terphenyl-d14	40 - 135		
Soil	8015B-Diesel/Motor Oil	n-Octacosane	40 - 125		

Table A-23 Analytical Methods and Laboratory Surrogate Recovery Goals - Continued				
Matrix	Method	Surrogate Compound ^a	Recovery Limits (%) ^b	
Soil	5035A-8015B	4-Bromofluorobenzene	70 - 135	
Soil	8081A	Decachlorobiphenyl	45 - 120	
Soil	8081A	Tetrachloro-m-xylene	35 - 115	
Soil	8082	Decachlorobiphenyl	45 - 120	
Soil	8082	Tetrachloro-m-xylene	35 - 115	
Soil	8151	2,4-DCAA	30 - 140	

Notes:

a - The specific surrogate compounds utilized for an analytical method may change due to method updates or other factors.

b - The limits presented for these QC analyses are laboratory-derived limits. These limits will periodically be updated; however, the updated limits are not expected to be significantly different than those herein. Laboratory corrective actions will be taken based on the current laboratory-derived limits.

Table A-24 Analytical Methods and Laboratory Chemical Yield Goals				
Matrix	Method	Carrier/Tracer ^a	Yield Limits (%) ^b	
Aqueous	903.0	Ba-133/Y	40-115	
Aqueous	904.0	Ba-133/Y	40-115	
Aqueous	Th/907.0	Th-234	25-115	
Aqueous	U/907.0	U-232	25-115	
Soil	Ra-226/HASL 300	NA	NA	
Soil	Ra-228/HASL 300	NA	NA	
Soil	Th-01 Modified	Th-229	25-115	
Soil	U-02 Modified	U-232	25-115	
Air	IsoTh	Th-229	20 - 115%	
Air	903.1	Ba-133/Y	20 - 115%	
Air	904.0	Ba-133/Y	20 - 115%	
Air	908	U-232	20 - 115%	

Notes:

NA Not Applicable

b - The limits presented for these QC analyses are laboratory-derived limits. These limits will periodically be updated; however, the updated limits are not expected to be significantly different than those herein. Laboratory corrective actions will be taken based on the current laboratory-derived limits.

a - The specific tracers/carriers utilized for an analytical method may change due to method updates or other factors.