

Self-Configuring Network Monitor Project: an Infrastructure for Passive Network Monitoring

Pls: Deb Agarwal and Brian Tierney

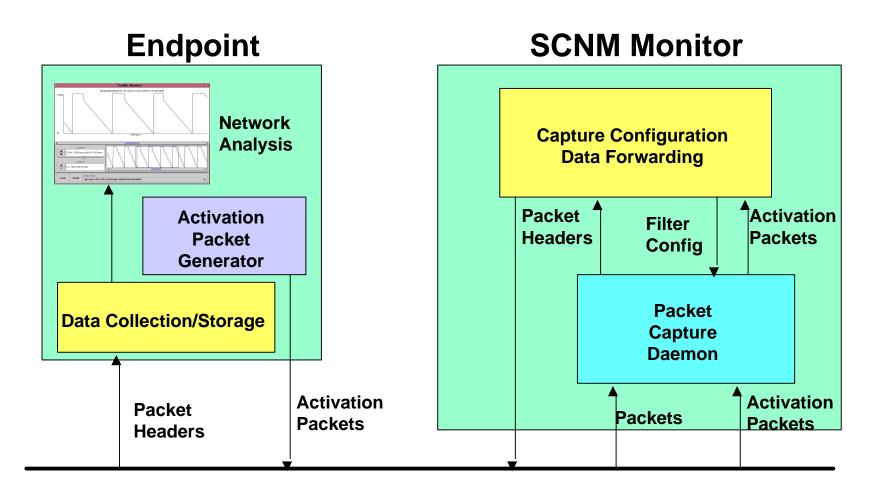

Distributed Systems Department Lawrence Berkeley National Laboratory

Purpose

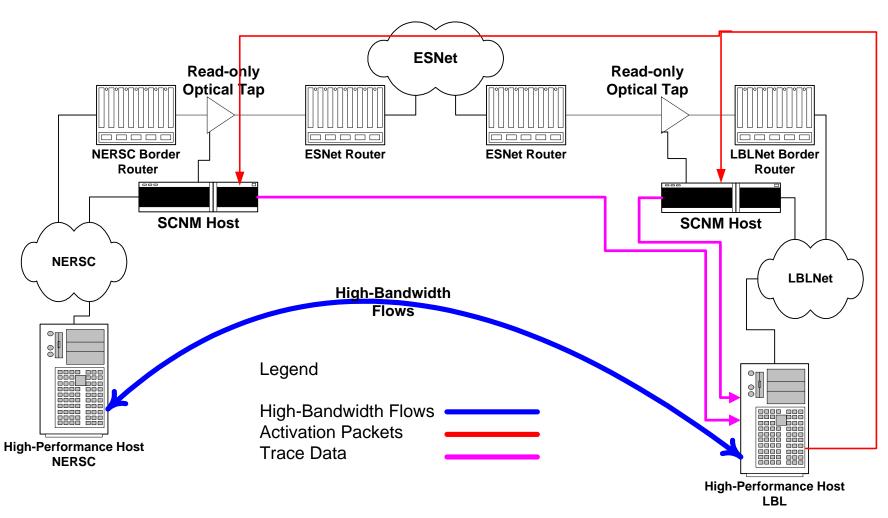
- Provide the ability to:
 - characterize application data streams as they cross the network
 - assess the impact of application tuning on the network
- Aid in debugging and tuning of distributed applications
- Minimize impact of monitoring on the network infrastructure

Monitor Host

- Installed at critical points in the network (i.e.: next to key routers)
- Passively captures packet headers of monitored traffic
 - Daemon based on libpcap (NIMI and Bro)
- Configured and activated by application end-points
 - Without network administrator involvement
 - Secure from unauthorized access
- Provides application traffic information from the interior of the network


Activation and Configuration

- Activation packets are sent by application endpoints to all monitors along the data path using UDP and a well known port
- Activation packets specify which traffic to monitor
- The monitor configures itself to monitor the traffic
- Activation packets resent periodically to refresh monitor state
- Monitor times out if no activation packets are received


System Design

Typical Usage

Security

- Monitor host system installed and maintained by network administrators
- User mode:
 - Activation packet must be traveling between source and destination of monitored traffic to configure a monitor
 - Packet headers only sent to the source or destination
- Network Admin mode:
 - to activate monitoring from a host that is not one of the endpoints requires signed and authorized activation packet
- Logs all traffic monitoring requests

Deployment

- Install at critical points in the network
 - DMZ's
 - Critical end site routers
- Installed by network administrators
- Initial installations
 - SC 2001
 - NERSC DMZ
 - LBNL DMZ
 - ORNL

Project Milestones

• Year 1

- Design and implement base monitor activation protocol
- Design and implement base monitoring capability (tcpdump)
- Deploy to a limited number of sites

• Year 2

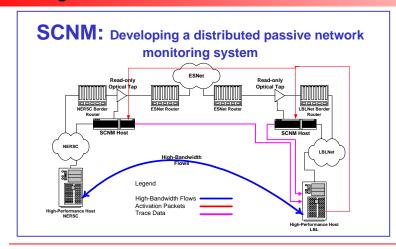
- Expand activation mechanisms: security and options
- Deploy to additional sites
- Improvements to the Berkeley Packet Filter
- Integration of archiving mechanisms

• Year 3

Expansion of monitor and activation capabilities

For More Information

- Contact
 - Deb Agarwal (DAAgarwal@lbl.gov)
 - Brian Tierney (BLTierney@lbl.gov)



Self-Configuring Network Monitor (SCNM)

Pls: Deb Agarwal and Brian Tierney, LBNL

High-Performance Network Research- SciDAC/Base

Impact and Connections

? IMPACT:

- ? Build a monitoring infrastructure that will aid in debugging of distributed application communication and support both active and passive monitoring
- ? Allow the analysis of network streams from the interior of the network

? CONNECTIONS:

? Net 100, DOE Science Grid, Astrophysics, Bandwidth Estimation, PPDG, EU DataGrid, INCITE, DataTag

? URL:

? http://www-itg.lbl.gov/Net-Mon/Self-Config.html

Novel Ideas

- A secure monitoring infrastructure that applications can use to monitor their own data streams as they cross the network
- Passive introduce traffic only in the form of monitoring data and requests for monitoring

Tasks Involved

- Develop a monitor activation mechanism
- Develop monitor software and hardware
- Develop data collection and display capabilities
- Deploy monitors
- Work with applications

Milestones/Dates/Status

Monitor Daemon Y	Year	
- Design base passive monitor daemon	1	
- Activation mechanism integration	1	
- Improvements to network drivers	1	
- Improvements and enhancements to capture mechanism	2 & 3	
? Activation Mechanisms		
- Design basic activation mechanism	1	
- Develop and deploy full activation capabilities	2 & 3	
Results Handling Infrastructure		
- TCP dump viewing capabilities	1	
 Develop improved data viewing capabilities 	2 & 3	
Deployment of Monitors		
- Deployment to initial ESnet sites (gig-E)	1 – 3	
- Work with applications	2 & 3	
- Additional ESnet sites	2 & 3	

MICS Program Manager: Thomas Ndousse