
Fermilab Tevatron Alarms Processing System

Seung-chan Ahn
Fermi National Accelerator Laboratory

PO Box 500
Batavia, IL 60510, USA

Abstract

 A new distributed alarms processing software for the
Fermilab Tevatron is described. The software consists of 4
components, each with clearly defined roles. They are
ALARMS_DRIVER, ALARMS, ALARMS_DB and
ALARMS_DAEMON. ALARMS_DRIVER handles all
communications with the front-ends via Fermilab
developed ACNET protocol. Additional ALARMS
applications are being constructed using Java.

1 Overview of the system

 A new distributed ALARMS system for the Fermilab
Tevatron processes alarm messages from various devices
that collectively control the Tevatron operation. The
ALARMS system can be approximately divided into 4
components. Each of them performs one of the following
tasks: (1) interaction with devices, (2) database look-up for
device properties, (3) build alarm messages for consumers,
and (4) dispatch messages to interested parties.
Additionally, a Java program was written to display alarms.
The relationship among components is shown below.

 The distributive nature of ALARMS system is replicated
in each component with an extensive use of threads. The
exception is ALARMS_DB, which communicates only
with ALARMS. The utilization of threads helps write
cleaner and more readable code, but it also demands careful
design of the software to maintain data consistency among
different processes and threads within a process. In the
following each component of the ALARMS system is
described.

2 Alarms_driver

 ALARMS_DRIVER is the component that directly
communicates with front-end nodes via Fermilab

developed ACNET protocol. Only one copy of DRIVER
runs on a designated node. DRIVER initiates the whole
ALARMS system activities. DRIVER forks 2 subprocesses
and establishes proper pipe connections between itself and
subprocesses: ALARMS to process alarms, and
ALARMS_DB to access the device database. DRIVER
then watches for subprocesses. In rare instances of
ALARMS or ALARM_DB exits, DRIVER restarts them.
 At start-up time DRIVER waits for ALARMS to initiate
clearing all front-end nodes. When ALARMS is prepared
to process alarms data, it instructs DRIVER to request
front-ends to refresh local alarm data. DRIVER waits for
all front-end nodes to respond but does not wait until all
front-ends to respond. Responding front-ends are
immediately registered as valid nodes and subsequent
alarm data from them are passed to ALARMS. DRIVER
makes a few more attempts to wake up the front-ends
before it gives up. However, front-ends could report to
DRIVER at a later time.

3 Alarms

 ALARMS process builds alarm messages based on the
device alarm data and the corresponding database
information. ALARMS then multicasts the message using
UDP protocol for DAEMON and for itself. To facilitate
the proper initialization of DAEMON processes ALARMS
exchanges messages with DAEMON using TCP/IP
protocol.
 ALARMS process assigns a sequential number for each
alarm for data consistency with other components of
ALARMS system. ALARMS logs all alarm data both in its
raw and processed formats. The redundancy of alarm data
is justified considering the low cost of storage devices.
 Several threads of ALARMS run concurrently. The alarm
receiver thread is set at the highest priority and other
threads including the logging thread at a normal priority.
ALARMS process logs alarms data at a fixed time interval
or fixed sequential number interval, whichever comes first.
 ALARMS process also maintains a global shared memory
backed up by a physical file. The shared memory contains
the most recent 20000 alarms that are readily available for
other processes.
 Utility programs were written to take advantage of the
shared memory and other log files. An example is to
produce the alarm history data for devices or a node for a
given time interval.

4 Alarms_db

 ALARMS_DB process makes database queries by calling
Fermilab controls library CLIB routines. CLIB caches

database information internally, hence subsequent database
inquiry on the same device is very fast.
 ALARMS_DRIVER notifies ALARMS_DB of any
change of the device database, at which point
ALARMS_DB clears the cache for affected devices.
ALARMS_DB maintains valid data at all times.

5 Alarms_daemon

 ALARMS_DAEMON interacts with ALARMS and
application programs. Much of the internal bookkeeping of
DAEMON is identical to that of ALARMS. Only
components exposed to external processes are different.
DAEMON runs on multiple nodes as a background
process.
 The startup of DAEMON is not synchronized with that of
ALARMS. DAEMON establishes the data consistency
with ALARMS in the following sequence. At startup
DAEMON requests ALARMS for active alarms. While
ALARMS is sending active alarms stored in a queue,
ALARMS may have received more alarms from the front-
ends. Upon receiving the first multicast message
DAEMON realizes that some alarms are missing or
possibly invalid because missing messages might have
cleared them. DAEMON makes another request for more
messages to fill up the message gap.
 UDP being a connectionless protocol, some messages can
possibly be lost. DAEMON detects the occurrence of
missing message by checking the sequential number of
each alarm message. As DAEMON discovers missing

alarms it multicasts a request for catch-up of alarms. To
reduce the network traffic, up to 2 DAEMONs send UDP
multicast messages for an identical request. While they
may be in different status of message reception, they
attempt some cooperation.
 DAEMON runs a thread that waits for TCP/IP
connections. Upon receiving the connection DAEMON
starts a new thread for the application. Communication
with applications is entirely asynchronous.
 Applications talk with DAEMON to send commands to
front-ends. DAEMON checks validity of the requester and
command, and then multicast the message. ALARMS
process picks it up and passes it to DRIVER, which
assembles a correct ACNET message and notifies the front-
ends.

6 Status

 Presently all the ALARMS components other than
applications run as detached background processes under
VMS operating system. At the moment only
ALARMS_DAEMON is ported to Unix platforms Solaris
and FreeBSD. An effort to port the entire ALARMS
system to Unix is under way.
 An alarm display Java program was developed using
Visual J++ under NT. Another Java program is being
designed for graphical presentation of alarm history data
for a device or for a node. Java programs run as both applet
and application.

