
Internet Data Acquisition

Matt Matoushek
Invocon, Inc.

mmatoushek@invocon.com

Abstract

This paper shall present the results thus far of

Invocon’s Small Business Innovation Research (SBIR)
Phase II project for NASA Stennis Space Center
entitled the Wireless Ethernet-based Data Acquisition
System (WEBDAS), as well as describe two flight
system developments underway for the International
Space Station based on this technology; EWIS and
HDMAX. Our recent efforts have focused on the
concept of enhancing wireless data acquisition by
making collected data available to a user or feedback
system through standardized IT resources over the
Internet, Internet Data Acquisition (IDA). The goals of
IDA are three fold; Hardware Modularity, Software
Modularity, and Pervasiveness of Data. The design of
IDA has created a three prong attack for developing a
quick to market data integration solution; Core
Application and Services, Web Application, and a
Sound Documentation Methodology.

1. IDA Born from WEBDAS

The SBIR Phase II program WEBDAS, Wireless
Ethernet-based Data Acquisition System, commenced
in January of 2003. The WEBDAS goals of Hardware
Modularity, Software Modularity and Pervasiveness of
data were to be met through the network topology
shown in Figure 1. WEBDAS network.

Existing Invocon micro sensor systems such as
MicroWIS-XG (http://www.invocon.com/MicroWIS-
XG_tech_overview.html) and MITEWIS
(http://www.invocon.com/MITE_WIS.html) were the
instrument of choice due to the facilities maintenance
requirements levied by the WEBDAS project of small
size, low power, and programmable acquisition rates.
Within the WEBDAS network the sensor units
(complete with transducer, front end data capture
electronics, data processor and radio) communicate
with the Network Interface Unit (NIU).

Figure 1. WEBDAS network

The NIU is responsible for gathering the data

measured by the sensors, correlating the data to a
known time base if necessary, and storing the data until
such time that a transmission of the data to the Daemon
is appropriate. Upon transmission of the data, the NIU
must make a new, or utilize an existing, Internet

klittle
Note
#73

connection to the WEBDAS Daemon. In Figure 1.
WEBDAS network, this connection is made through the
cloud of the Internet / Intranet. This depicts that the
NIU’s view of the world is limited only by physical
access to the Internet, that is anywhere Ethernet,
Wireless, Cellular or Space Telemetry permits, data
can be propagated.

The Daemon is responsible for assimilating the data
collected from all NIUs, and subsequently, all sensors
into a relational database for easy access to an end user
or customer. The Daemon, as well as the remaining
server components of the WEBDAS network, are
depicted as separate machines in Figure 1. WEBDAS
network to show the flexibility and scalability of the
servers’ architectures, while in fact, the server
components are software entities. For a given
problem, these entities (Daemon, Database and Web
App) could coincide on the same hardware. The Web
App is indicative of the users’ gateway into the data
collection, viewing and reporting, as well as
acquisition mode commanding, of the remote sensor
networks.

The WEBDAS network can be viewed as a multi-
channel remote data collector, with varying levels of
multiplexing, and decoding of data throughout the
necessary communication links. The handling of the
data flow along these links, and the desire to create a
robust, re-usable architecture, one that can operate on
“middle-man” hardware such as the NIU, and servers
such as the Daemon has led to the design and
development of Internet Data Acquisition as a cross
platform, multi-threaded, scalable C++ architecture.

2. IDA Core design

At the heart of the IDA design is the Application
Core library, or Appcore. The Appcore, a static C++
library provides a base implementation of the
following services:

• Thread handling
• Safe inter-thread communication and memory
access

• Communication link abstraction
o TCP clients and servers (listeners)
o UDP clients and servers (listeners)
o UART / serial port access

• Packeting and handling
o Communication link packet reception

and transmission
o Byte stream packet determination

• DLL Management
• Logging, time functions and exception
handling

Figure 2. IDA communication link components

The Application Core (Appcore) can be seen

situated between the IDA Application for the NIU and
the Daemon of Figure 2. IDA communication link
components, highlighted in the darker tint of a
common component. The IDA Application (IDAApp)
provides the most common run-time instantiation of
the Appcore. The IDAApp improves the core
functionality with the loading of global initialization
parameters, as well as dynamically loading
communication link threads and general service
threads, as specified in the XML configuration file.

The actual connection type (socket, serial port, etc)
is not depicted in Figure 2. IDA communication link
components, for the protocols set out in the Packet
Libraries, are capable of utilizing the Appcore’s
abstraction of communication links. Therefore, the
Packet Libraries are capable of operating over any
media and can adapt to changing networking and
wireless topologies. The communication links and
threads are specified through DLL (dynamic link
library), or shared object, interfaces that are provided
by the Appcore and are well documented throughout
the IDA system.

3. WEBDAS NIU as an IDAApp

Providing the WEBDAS NIU as a base example of
an IDA Application, there are two communication
links loaded for use by the NIU. The first is to
communicate with the receiver hardware over a serial
port, and the second to handle the communication with

Figure 3. IDA configuration file example

the Daemon, connecting as a TCP client. A trimmed
down example configuration file is shown in Figure 3.
IDA configuration file example.

<?xml version="1.0" ?>
<config>

<lib_path>.</lib_path>
<state_controller lib_name="libtl_sc_ims_niu.so">
 <init_param name="niu_id" value="1" />
 <init_param name="daemon_id" value="2000" />
 <serial_link comm_thread_op="receiver"
 port_name="/dev/ttyS1">
 <psl lib_name="libpsl_microrf.so">
 <lower_support embedded="false">
 <phl lib_name="libphl_ims_mitewis.so"/>
 </lower_support>
 </psl>
 </serial_link>
 <tcp_client_link comm_thread_op="daemon"
 port_num="8888"
 server_name="IP">
 <psl lib_name="libpsl_gp.so">
 <lower_support embedded="false">
 <phl lib_name="libphl_ims_daemon.so" />
 </lower_support>
 </psl>
 </tcp_client_link>

 </state_controller>
 <service_thread lib_name="libtl_ims_storage.so">
 <init_param name="data_dir" value="/data/"/>
 </service_thread>
</config>

The serial_link tag element of Figure 3. IDA
configuration file example, specifies the physical device
to utilize, /dev/ttyS1, as well as the software interfaces
to load, libpsl_microrf and libphl_ims_mitewis. The
particular implementations of these libraries is left for
a different exercise, however libphl_ims_mitewis
corresponds to the MITEWIS Packet Library of Figure
2. IDA communication link components. A PSL is a
packet support library, while a PHL is a packet
handling library. The PSLs generally provide the
closest interface with the Appcore, pulling the bytes off
of the stream, while the PHL is the most pluggable
element to the system, defining protocol specific
timeouts, retries, and usage. WEBDAS has the
potential to extend to a next generation sensor, for
example, MicroWIS-XG, with the simple upload of a
new DLL complete with support for MicroWIS-XG
packet handling to the NIU.

The tcp_client_link tag element of Figure 3. IDA
configuration file example, specifies the abstract device
to create a TCP Socket over, through the port_num and
server_name parameters. To simulate a telnet
connection to a local server, the parameters might read

23 and localhost (127.0.0.1), respectively. The
IDAApp and Appcore take care of establishing the
client connection, and providing an API for the packet
handling library, in this case, libphl_ims_daemon, to
send and receive packets over this link. As with the
serial_link in the WEBDAS NIU example, the
tcp_client_link has a psl name libpsl_gp which pulls
the appropriate packets off of the TCP byte stream. It
should be noted that the packeting of the IDA
communication links is full duplex, supporting
transmission and reception of packets that various
protocols can adapt to their needs. The communication
links will continually check for new bytes on the link,
as well as check for new bytes to be transmitted and act
accordingly.

The two communication links are linked together
through the application specific brain of each IDA
instantiation. This central operating loop, or main
controller, manifests itself as a State Controller, and is
specified through the state_controller tag element of
the configuration file. State Controllers implement the
Appcore’s state controller interface, and can be
designed to be as complicated as an advanced Internet
router, shuffling data between a plethora of disparate
communication links, as simple as a pass through for
sensor data, or as a buffer, deciding how long to store
sensor data locally before transmitting. The buffer
design could be most beneficial when dealing with a
high power link on a low power device, such as a
cellular interface, where time on the wire equates with
significant battery loss. The State Controller is the
IDA way of pulling everything together.

If a State Controller needs a proverbial break, there
is one last resort for good design within a typical IDA
Application. Along side of the state controller entry
within the configuration file is the potential to add any
number of generic service thread libraries. These
threads act as specialized candidates for performing
time or media intensive tasks, as well as yet another
avenue for code re-utilization throughout differing
projects. The most common application for a service
thread has been storage; that is, file I/O and file content
management. The NIU utilizes its storage thread to
store data away, buffering until a user defined forward
period is breached and data cleared for transmission.

4. WEBDAS Daemon as an IDAApp

The WEBDAS Daemon architecture can be closely
compared to that of the NIU, both utilizing IDA. The
Daemon has a State Controller that manipulates the
inputs and outputs of its links to the outside world.
The Daemon only needs one communication link, a
TCP Server, configurable via a tcp_server tag element
within an IDA configuration file. The software

Figure 4. Daemon database service thread

protocol libraries for the Daemon precisely mirror
those of the NIU, as NIUs are the client to the
WEBDAS Daemon.

Where the Daemon dramatically differs from the
NIU is two fold. First, in its storage service thread,
shown in Figure 4. Daemon database service thread
the Deamon gains the capability to query a relational
database.

 <service_thread lib_name="libtl_ims_db.dll">
 <init_param name="database" value="ida_data"/>
 <init_param name="host" value="IP address"/>
 <init_param name="username" value="ida_user"/>
 <init_param name="password" value="ida_pass"/>
 </service_thread>

Secondly, to the scrutinous reader, the Daemon’s

database thread library has been specified with a “.dll”
extension as opposed to the “.so” extension used for all
libraries within the NIU. DLLs are the Windows
operating system’s shared libraries, while SOs are the
Linux operating system’s method of dynamically
linking code. The Deamon, and the NIU, constructed
as IDA applications, are capable of being compiled for
either Linux or Windows, as well as cross-compiled for
embedded architectures and processors such as ARM
and PowerPC. IDA requires only an operating system
and standard C++ libraries for operation within an
embedded environment, though extensions such as
database libraries may only exist for a particular
platform or require more horsepower than an
embedded architecture can deliver. Thus, all dramatic
effect aside, the present configuration example, and
WEBDAS deliverable design, is to utilize embedded
Linux for the NIU and Windows for a Daemon,
quantifying IDA’s re-usability, scalability and cross-
platform capability.

5. IDA Core documentation

The IDA Core elements and application framework,

as described herein, make for a quick turn development
bed, while providing robust features for the advanced
application. These features cannot be utilized properly
by future developers, nor extended through third party
development, without proper specifications, guidelines,
as well as limitations.

IDA Core Documentation, as well as protocol
specifications, sensor control and usages and thread
library specifications have enhanced IDA as a whole,
and provided a proven methodology for ramping up
new developers into a complex architecture. This is of

un-calculable value to future developers, as well as the
IDA design.

6. Web application

The design in Figure 1. WEBDAS network, coupled

with the continued discussion of WEBDAS NIU and
Daemon components as IDA applications, has left the
Web Application server component (Web App) to the
reader’s imagination. Taking a cue from the extended
design and development of the IDA Core C++
framework, and the critical documentation
methodology, the IDA web application has been
designed as a modular, pluggable framework as well.

Figure 5. IDA web application

The core IDA web application, portrayed in Figure

5. IDA web application, offers services to an IDA web
developer consisting of the following:

• User configuration and management
• Database abstraction and connection
• Extensible module framework
• Communication link abstraction

o TCP Client
• Packeting and handling
• Logging, time functions and exception
handling

Considering these base functionalities of the IDA
web application, and the operational differences
working within a web site framework, as opposed to a
traditional application, WEBDAS required a need
provide one further level of abstraction. This
abstraction level allows for pluggable sensor types
without the need for re-inventing the data transport
mechanism. Thus, the WEBDAS web application is
implemented as a specific instance of the IMS
(Invocon Micro System) IDA Module.

The IMS, and the associated IMS database, have
been designed to handle generic core concepts of data
acquisition (data format, command format, calibration
and conversion equation information), and provides a
plug-in interface for sensor specific implementation of
these concepts.

7. IDA in summary

Internet Data Acquisition (IDA) consists of core

application and services, a unique web application, and
a sound documentation methodology. These key
elements, coupled with Invocon’s unique market
position, capable of providing space qualified
electronics equipment, efficiently, within a quality
environment, makes IDA a powerful tool for the IT
and data acquisition communities commercially as well
as for flight.

8. Flight developments

Flight developments have benefited from the power

of IDA and utilized the core elements in developing the
EWIS NCU, the HDMAX CCB, and the BioNet CO2
HAB.

8.1. External Wireless Instrumentation System
(EWIS)

EWIS is an accelerometer network for micro-
gravity data acquisition on the external outboard solar
array trusses of the International Space Station. The
Network Control Unit (NCU) of the EWIS network
performs the same function as the NIU of the
WEBDAS network of Figure 1. WEBDAS network,
accumulating data from the Remote Sensor Units
(RSUs) and propagating to the ISS network. The
RSUs of the EWIS network communicate with the
NCU using a 900 Mhz radio. The IDAApp of the
NCU utilizes a custom IDA communication link to
establish a connection with the radio driver. The NCU
also utilizes an IDA serial communication link to
communicate with the power supply and a number of
service threads to handle data storage and command
retrieval to and from an on-board ISS server.

8.2. HDMAX - Ultra High Definition Video
Recorder for ISS

The HDMAX payload, an Ultra High Definition

(Quad HD) Video Recorder, deployed as an ExPRESS
Rack payload has been built on top of IDA. The
Communication Control Board (CCB) of the HDMAX
payload is a PC/104 Intel ARM based board that

utilizes IDA to control the third party components
utilizing the mechanisms as prescribed in the matrix of
Table 1. HDMAX links. Each link utilizes a custom
protocol, supplied by the particular component
vendors, that have been implemented as modular IDA
packet libraries.

Table 1. HDMAX links

Component Communication
Link Type

Florida Atlantic University
(FAU) HDMAX Camera

TCP Client

S.TWO Corporation Digital
Data Recorder

UDP Client

Invocon, Inc. Audio Daughter
Board

UART / Serial Port

Invocon, Inc. HDMAX
Station GUI

TCP Server

ExPedite the PRocessing of
Experiments to the Space
Station (ExPRESS) Rack

TCP Server

Subsequently, the Station GUI and the Ground GUI

were developed on top of the IDA framework.

8.3. BioNet CO2 HAB

IDA conceptually provides middle-ware
architectural elements to Invocon sensor controllers.
During BioServe SBIR Phase I, to showcase the
flexibility of IDA, an IDA application that collected
data from CO2 Sensors
(http://www.invocon.com/MicroWIS-
CO2_tech_overview.html) was incorporated as a
Hardware Abstractor (HAB) to Colorado University’s
BioNet
(http://www.colorado.edu/engineering/BioServe/index.
html) middle-ware.

9. Future space application

Potential near-term space applications of the

described Information Technology developments
include vehicle health monitoring of the Shuttle and
CEV, structural and environmental monitoring in and
around the International Space Station (ISS), and crew
medical monitoring. As part of NASA’s Exploration
initiatives, such networks could easily be deployed on
the Moon and Mars, to provide imagery collection,
crew communication, remote sensing nodes for
scientific applications, robotic command and control,
and environmental and safety monitoring of crew
habitats. By enabling NIUs and Sensors to provide
data through standardized IT resources, the data

acquisition and IT communities can utilize existing
infrastructures to enhance the acquisition and
processing of remote data. Their data becomes readily
available to anyone, anywhere, even space.

