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ABSTRACT

Lee, Robert H. Ph.D., Purdue University, May, 2002. Simulation and Study of the CMS Endcap Muon Alignment Scheme. Major Professor: Dr. Laszlo Gutay.
     The successful operation of the CMS Endcap Muon detector will entail meeting several significant technical challenges.  Among these challenges will be the ability to accurately estimate the performance of the Endcap Muon detector and to anticipate or correct any potential problems during the design stage.  This thesis presents the simulation and study of the Endcap Muon Alignment Scheme, a component of the Endcap Muon Detector designed to determine and track the location of Cathode Strip Chambers.

     Information about the performance of the CMS Endcap Alignment System was gathered through an extensive testing of a prototype system and then used to create a simulation to predict the behavior of the system as designed.  The results of these simulations indicate that the design of the EMU Alignment System is viable and can successfully reconstruct chamber locations along designated alignment lines throughout the CMS Endcap.  A detailed error analysis and subsequent examination of the principle sources of uncertainty across multiple simulations show that the tolerances on components and their calibration are well understood and will ensure the successful reconstruction of CSC chamber positions within approximately 200μm in CMS RФ and 500μm in CMS Z.  In addition, physics studies of single muon events were performed with the general CMS Reconstruction Software (ORCA 5_3_1) to understand CSC misalignment effects on muon track reconstruction and predict how the Alignment System will impact the final determination of muon pt and trigger rates in the Endcap Muon System.     

1 INTRODUCTION

Modern high energy physics is driven by the enormous accelerators and detectors which allow physicists to probe interactions at very large energies.  The Large Hadron Collider (LHC) at CERN is presently under construction and will ultimately offer a glimpse of physics at an energy level more than seven times of what is presently accessible.  To observe interactions at the LHC, the Compact Muon Solenoid (CMS) detector is being constructed.  It is hoped that data taken at CMS will contribute toward further understanding physics within the Standard Model [1.1] and/or discovering new physics beyond it.

The design and construction of CMS is technically complex and challenging. Each subsystem in the detector will require a substantial effort to develop hardware and software solutions for the challenges encountered.  This thesis is focused on the development of only a small portion of this project, the Alignment Scheme of the CMS Endcap Muon (EMU) Subsystem.  More specifically, this thesis examines the components which comprise the EMU Alignment System and makes an estimation of the System’s performance and impact on CMS physics. 
1.1 The Higgs Boson

   The Standard Model has enjoyed much success in predicting the interactions of particles.  Electroweak theory [1.2] in the Standard Model has shown that weak and electromagnetic interactions arise from a common SU(2) x U(1) symmetry, however the Standard Model does not account for why particles which mediate the weak force have mass while other force carriers are massless. Experimental evidence shows that while the photon may be massless, the W( and Z0 mediators are massive.  Moreover, the Standard Model fails to predict any of the quark or lepton masses.  An important part of completing the Standard Model will be to explain what hides the symmetry between weak and electromagnetic interactions and thus how particle masses may be generated.

   The simplest prediction as to the origin of the mass within the Standard Model postulates that particles interact with a field (called the ‘Higgs Field’) to acquire mass.  The degree to which these particles interact with this field would determine their mass.  An important requirement of a theory utilizing such a field would be the preservation of the electroweak SU(2) x U(1) symmetry.  Spontaneous symmetry breaking, in which the lowest energy states of the field have less symmetry than it Lagrangian, offers a way to give the W( and Z0 bosons mass while keeping this symmetry invariant.  The manner in which spontaneous symmetry breaking is employed with the concept of local gauge invariance in the generation of the Higgs field is called the Higgs Mechanism.   

     A direct consequence of the Higgs Mechanism and in keeping with the mediation of other field-particle interactions, a neutral Higgs boson is postulated.  The experimental confirmation of such a particle would validate the presence of a Higgs field.  As a consequence, a large effort has been made to find this particle with existing particle accelerators.  To date, no experiments have confirmed the existence of the Higgs with a high degree of statistical certainty.  Presumably, if a Standard Model Higgs particle exists at all, it is simply too heavy to produce enough of with existing accelerators.  Other theories have also been proposed to extend the present Standard Model.  Several of these theories postulate multiple Higgs particles (the Minimal Super Symmetric Model [1.3], for example) while others predict no Higgs particles at all (Technicolor [1.4]).  In any case, what remains important is the Standard Model can in principle accommodate a Higgs particle which would indicate the presence of a mechanism to explain the aforementioned problems within the Standard Model.
     LEP 2000 data indicates that the lower boundary of the Higgs mass is 114.1 GeV/c2 at a 95% confidence level [1.5].  Though LEP 2000 announced several potential Higgs candidates at the end of its final run near 115 GeV/c2, the results were not conclusive.  The Aleph and Delphi experiments at LEP initially reported five Higgs 4-jet candidate events at a mass of around 114 GeV against an expected background of 0.3 events.  By the end of 2001, following a brief extension on LEP operation and an updated analysis of all available LEP data, the LEP L3 detector reported a Higgs candidate from a two jet and missing energy (neutrinos) event, the OPEL detector reported, with very low confidence, two 4 jet candidates, the Aleph detector maintained confidence in their initial results, while the Delphi detector lowered the significance on both of their initial 4 jet candidates with further recalibration of their detector.  The lower bound on the Higgs mass was also revised to 114.1 GeV (at the 95% confidence level). [1.5]
      Since the Higgs particle is expected to provide the mechanism for the generation of the quark and vector boson masses, the Higgs mass can be calculated directly from the top quark and W boson masses.  However, the accuracy to which the Higgs mass can be determined from these parameters is very sensitive to the certainty with which these masses are known.  Figure 1.1 shows the range of possible Higgs masses allowed if such a calculation is done with the present experimental measurements (and uncertainties) of the top and W masses in the context of the Standard Model.
    The experimental evidence presented in Figure 1.1 indicates the most likely mass of the Higgs will be (at a 1( confidence level) less than 500 GeV/c2.  The upper bound for the Higgs mass consistent with the agreement of all the experimental data in Figure 1.1 is 250 GeV/c2. 
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Figure 1.1:  Range of possible Higgs masses calculated from experimental determinations of top quark mass and W boson mass in the context of the Standard Model.  The shaded areas on the plot represent the measurement and associated errors that have been determined from direct top and W measurements at Fermilab CDF and D0 detectors, direct W measurements at LEP2000, and indirect measurements of top and W masses from LEP, SLC, and Fermilab neutrino experiments[1.6].
1.2 LHC and role of the CMS Detector
     The CERN Large Hadron Collider (LHC) is being constructed to probe previously unobtainable energy regions and will be used in the search for the Higgs Boson.  In addition to expanding the available range of energies to continue this search, the LHC is being designed to provide a high number of events to study.  The LHC will principally operate at two luminosities (1033 cm-2sec-1 and 1034 cm-2sec-1) and is expected to collide protons with at a 14TeV center of mass energy.

    The Compact Muon Solenoid (CMS) detector is a general purpose detector to be constructed at one of the LHC interaction points and will be used in the search for the Higgs boson, study of t- and b-quark decays, and the search for physics beyond the Standard Model.  The fundamental design of this detector was premised on the implementation of a very good muon system motivated in part by the H ( ZZ ( 2(- 2(+ Higgs Boson decay channel.  To facilitate the identification of particle type and charge of muons and other charged particles, the detector features a superconducting solenoid capable of fields exceeding 4 Tesla.  Aside from the muon system, all components of the detector are placed inside the solenoid.  This arrangement is expected to be particularly advantageous in the search for H ( (( decays.  The endcaps of the detector consist of alternating layers of muon chambers and iron discs to return the large B field generated by the solenoid.

     The principle components of the CMS detector include the Inner Tracker, Electromagnetic Calorimeter (ECAL), Hadronic Calorimeter (HCAL), and Muon System.  Figure 1.2 shows the spatial arrangement of these components.
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Figure 1.2:  A 3D View of the Principle CMS Detector Subsystems [1.7].
1.2.1 Inner Tracking and Calorimetry in CMS 


  The Inner Tracker is being designed to measure the pt of charged tracks in the region |(| < 2.6 (( regions of CMS are shown in Figure 6).  The Inner Tracker will employ solid state and microstrip gas detectors for efficient b-tagging and lepton charge determination up to pt = 2 TeV.  The Electromagnetic Calorimeter lies immediately outside the Inner Tracker, also covering  |(| < 2.6, and utilizes lead tungstate crystals to measure EM energy.  The ECAL is optimized to search for H ( (( decays at high luminosity (10-34 cm-2sec-1) and will be able to make direct measurements of the photons direction in the  |(| < 1 region.  The Hadronic Calorimeter is constructed around the ECAL and will make complementary energy measurements of particles.  To perform these tasks, this calorimeter must have good hermeticity, energy resolution, and segmentation as well as sufficient depth for the containment of hadron showers.  The Hadronic Calorimeter consists of 18 identical wedges and is segmented in a manner that closely matches the arrangement of the barrel muon chambers and ECAL segmentation.  The characteristic parameters describing the ECAL and HCAL are summarized in Table 1.1 and Table 1.2.

Table 1.1:  Key parameters of the CMS Electromagnetic Calorimeter.  Resolution is given as a function of incident photon energy while [image: image5.wmf]Å

 denotes the terms add in quadrature [adapted from 1.3].
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Table 1.2:  Key parameters of the CMS Hadronic Calorimeter.  Resolution is given as a function of incident single particle energy while [image: image8.wmf]Å

 denotes the terms add in quadrature [adapted from 1.3].
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1.2.2 Muon System

  As previously discussed, the CMS detector is equipped with a Muon System that will provide excellent muon identification, momentum measurement, and triggering. Muon identification will be achieved with large area muon chambers placed behind a large absorber.   At least 16 interaction lengths ((I) of material is present across |(| < 2.4.  The muon system is subdivided into two distinct subsystems: the Barrel Muon and Endcap Muon.  
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Figure 1.3:  Cross Section of one quadrant of the CMS detector detailing placement Barrel Muon chambers (labeled MS1-4, in red) and the Endcap Muon chambers (labeled MF1-4, in red). [1.7]

The expected resolution of the CMS Muon system is summarized below, in Table 1.3.  Resolutions in the Barrel and Endcap regions are comparable to each other.
Table 1.3: Desired Performance [Tracker + Muon] of CMS Muon System [1.8].
	pt
	Expected Resolution

	
	

	10 GeV
	.5 – 1 GeV

	100 GeV
	1.5 – 5 GeV

	1 TeV
	50 – 200 GeV


1.2.2.1 Barrel Muon 

The barrel muon system is comprised of two stations on the inside and outside of the iron return yoke (MS 1 and 4, Figure 6) and two stations located in slots within the iron (MS 2 and 3, Figure 6).   The stations are segmented into five equal pieces parallel to the beam pipe and comprised of 60 drift chambers on the interior of the detector and 70 drift chambers on the outer layer.  Each drift chamber is comprised of twelve planes of drift tubes organized into four-plane ‘Super Layers’.  The planes comprising each Super Layer have parallel wires allowing each chamber to have two Super Layers to measure particle tracks in the ( plane and a third to monitor tracks along the Z plane.  Moreover, each chamber plane in the Super Layers are staggered by half a drift cell length making it possible to determine the coordinate and orientation of impinging tracks without external timing by correlating the drift times in each plane.  The maximum drift time for any drift cell in the chambers is 400ns, allowing the chambers to be used in first level triggering.
1.2.2.2 Endcap Muon 

The Endcap Muon System is comprised of 4 discs of Cathode Strip Chambers (CSC) separated by the Return Field (RF) Iron discs (Figure 7, below).  The RF iron acts as the principle mechanical support for the CSCs, absorber for incident particle showers, and a return for the large magnetic flux leaving the central solenoid.  The CSCs on each disc are placed into two rings with 18 or 36 chambers in each ring. Chambers in the system form slight overlaps so that there is near 100% coverage for any incident muon track.
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Figure 1.4:  The orientation and spacing of the Endcap Muon CSC chambers.  The RF iron, upon which the chambers are mounted, is not shown. [1.8]
     The CSC chambers employed in the Endcap are multiwire proportional drift chambers with 50 (m intrinsic resolution and fast readout.  Similar to the Barrel drift chambers, the CSCs are comprised of 6 planes, with each plane recording a two dimensional position of incident particles.  
1.2.3 Expected Behavior of SM Higgs at the LHC 
Production of the Higgs at the LHC is expected to be dominated by gluon-gluon fusion and WW (ZZ) fusion (Figure 1.5, below).  
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Figure 1.5: Feynman Diagrams for the two dominate production channels – gluon-gluon fusion (left) and WW (ZZ) fusion (right).  


The production cross sections as a function of Higgs mass are shown in below in Figure 1.6.  As the figure indicates, the production cross sections increase rapidly with the decrease in Higgs mass.  Although other processes are expected to contribute to Higgs production in the LHC, the cross sections of these processes are significantly lower than WW (ZZ) fusion.
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Figure 1.6:  Cross Section of two dominate production channels as a Function of the Higgs Mass (mH) [1.9].

Since the Higgs particle coupling is proportional to mass, branching ratios are expected to be dominated by dominated by heavier particles.  For a Higgs mass less than 90 GeV, the H ( b bbar branching ratio is extremely large, as the b quark is the heaviest possible particle accessible for a Higgs decay.  As Figure 1.7 indicates, decays in to quarks or leptons less massive than the b quark will be very small (decay into gluons involves a quark loop).    

     For Higgs masses which lie between 90 and 600 GeV/c2, decays into vector bosons become increasingly dominate.  The H ( (( decay emerges at approximately 90 GeV and, although extremely small, is potentially very important since the b bbar signal, as well as other quark and gluon decay signals, must be reconstructed from final decay products or intermediary particles and will involve large backgrounds (see Section 1.2.4.).  Also of particular interest is the mass range 150 GeV/c2 < mH < 200 GeV/c2 where the threshold of ZZ (though one Z must be below mass shell) and WW (where the WW may be on mass shell) production is met.  This mass range corresponds to the dip in the ZZ branching ratio and slight elevation in the WW branching ratio on Figure 1.7.  For a mH ≈ 2 mz, the so called ‘Golden Decay Channel’ for H ( ZZ ( 4 leptons exists.  The H ( ZZ ( 4 leptons ((( or e(  ) decay, though infrequent (Z((( or e( branching ratio is only ( 3%), will likely prove to be a critical channel to monitor as the signal-to-background ratio is very favorable (See Section 1.2.4).   The emergence of a ttbar decay channel becomes available for Higgs masses approaching 2mt.  
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Figure 1.7:  Plot of the expected dominate branching ratios for SM Higgs particle as a function of possible Higgs masses (mH).  The red band indicates the most likely mass region for mH based on the experimental evidence from LEP2000 and Figure 1 (114.1 - 250 GeV/c2) data [1.10].
     As previously discussed, there are several indications that the mass of the Higgs will be light.  However, for a heavier Higgs (>800 GeV/c2), domination of H ( ZZ and H ( WW decays are still expected with a persistence of a somewhat smaller branching ratio for H ( t tbar.  The theoretical upper limit on the mass of the Higgs is expected to be on the order of 1 TeV, beyond which the Standard Model no longer provides an adequate explanation of observed phenomena (this is explained further in the following section).
1.2.4 Discovery Potential for Standard Model Higgs at CMS 

The ‘discovery’ of a Higgs particle will occur after a sufficient number of Higgs decay channels are reconstructed over the remaining background (a Statistical Significance > 5, see Figure 1.8).  The branching ratios of the various Higgs decays (Figure 1.7, red band) give some indication of likely discovery channels at CMS, but large backgrounds preclude the study of several of these channels.  A short summary of the viability of each potential discovery channel is given in Section 1.2.4.1-5.

Simulation studies of the expected physics at the CMS detector [1.3,1.4,1.7] have indicated that  the H ( ZZ ( 4 leptons and H ( W+W- ( 2 leptons 2 neutrinos channels offer potential Higgs discovery at the 5 ( level with 105 pb-1 of data (initial 3 year operation at LLHC ≈ 1033 cm-2s-1 will give (104pb-1/year).  As Figure 1.8 indicates, the H ( ZZ ( 4 lepton and H ( W+W- ( 2 lepton 2 neutrino channels offer discovery potential across the full range of possible Higgs masses consistent with all available experimental data (see Figure 1.1).

Of the potential discovery channels, only the decays H ( ZZ ( 4 leptons and H ( γγ are likely to be determined by direct mass reconstruction.  The H ( W+W- ( 2 lepton 2 neutrino channel must rely on the determination of missing Et in the calorimeter rather than direct reconstruction of masses.  
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Figure 1.8:  Estimated discovery potential for SM Higgs particle as a function of possible Higgs masses (mH) with 5pb-1.  The red band indicates the most likely mass region for mH based on the experimental evidence from LEP2000 and Figure 1 (114.1 - 250 GeV/c2) data [1.7, adapted].  S > 5 indicates sufficient statistical certainty to claim discovery.  The plots use the CTEQ2 and the EHLQ structure functions and were done in PYTHIA v5.7.
1.2.4.1 H ( b bbar (Z, W± ( b bbar)


The H ( b bbar decay can in principle be determined by direct mass reconstruction; however very large background and the difficulty of reconstructing jet 4-vectors at the LHC has thus far precluded any Higgs discovery signatures in simulated analyses of this channel [1.12].  The same is true for the decay of any particle into q qbar immediately after the initial pp collision and is expected to preclude the study of other channels utilizing Z ( b bbar and W± ( b bbar decays.  This effectively limits the study of H ( W+W- and H ( ZZ to the H ( W+W- ( 2 lepton 2 neutrino and H ( ZZ ( 4 lepton channels as Z and W decays generally go to hadrons (branching ratio of  (70%).
1.2.4.2 H ( γγ


The H ( γγ decay channel was once thought to provide the best chance for Higgs discovery in CMS.  Despite the difficulties of discriminating potential signals in this channel in a pp collider (hadronization, large πo production, etc.), a substantial financial and technical effort was made on the part of the CMS collaboration to optimize the performance of the Electromagnetic Calorimeter (ECAL) for H ( γγ decays across a Higgs mass range of 90 GeV to 150 GeV [1.7].  

     Prior to the measurement of the top quark mass in mid-1994, many physicists expected a ‘light’ top quark of < 160 GeV [1.13] (compared to the Particle Data Group Dec. 2001 accepted value of 174.3 ± 5.1 GeV).  Consequently, many theoretical predictions of the SM Higgs upper mass bound during the initial ECAL design stage ((1992-1994) tended to be quite low – with claims of stringent mass limits of mH < 100 GeV to less stringent predictions of < 200 GeV  [1.14]. LEP searches had by this time set the lower Higgs mass bound at only > 63.5 GeV (at 95% CL).

     Theoretical arguments providing an upper bounds on the Higgs mass typically characterize the Higgs model as an effective field theory which only remains valid up to some energy Λ (where Λ > mH).  In general, larger values of Λ imply smaller values of mH; a Λ ( 1018 GeV (the Planck scale, at which new physics must enter) imply a value of mH < 200 GeV [1.15].  

     Arguments placing further restrictions on this boundary, as well as arguments favoring a light Higgs (< 140 GeV), often cite the desire for a Higgs field vacuum expectation value that is fixed by the known strength of weak interactions, but a Λ value that is set well below the Planck scale.  For example, with a mH(115 GeV (the LEP limit), a value of Λ ( 100 TeV is implied [1.16].  This argument is made since the vacuum expectation value of the Higgs field depends upon Λ and hinges upon the demand that the stability of the vacuum may only be maintained if the coupling of the quartic self coupling term (the (2 term in the potential) does not become negative while running from the weak scale up to the scale Λ.  If an additional condition is on the Higgs particle is made, that the self coupling term is small, the theory can be shown to restrict mH < 140 GeV – precisely the range for which the CMS ECAL is optimized.  The restriction is ‘justified’ by the desire to find a Higgs particle compatible with the previous two restrictions (low Λ, vacuum stability) and consistent within the framework of perturbation theory [1.17].  However, this last restriction also requires some fine tuning of parameters within the Standard Model that critics (and there are many [1.18][1.19][1.20][1.21]) point out is unnatural and has no analog elsewhere in the Standard Model theory.  Moreover, several recent articles have also suggested that these restrictions do not necessarily confine mH to < 130 GeV [1.22][1.23] and that a large value of Λ (( Planck Scale) accommodates values of mH which can only be found within a narrow range of 130 and 200 GeV [1.23].
     Regardless of the theoretical arguments favoring the light Higgs for which the CMS ECAL is optimized, it is expected that the FNAL Tevatron will push the lower mass boundary of mH to (125 GeV [1.24] by 2006, the year operation of the LHC is anticipated to commence.  As Figure 1.8 indicates, S(H ( γγ) ≈ S(H ( ZZ ( 4 lepton) for a 125 GeV Higgs mass.  This suggests that if the SM Higgs particle exists and has a mass > 125 GeV, discovery is much more likely to occur outside the H ( γγ channel.
1.2.4.3 H ( W+W- ( 2 lepton 2 neutrino Events in CMS 

A Standard Model Higgs particle with a mass > 125 GeV has a branching ratio favoring W+W- (Figure 1.7).  The large WW branching ratio will make the monitoring of W± decays crucial to Higgs discovery.  As Figure 1.8 indicates, the H ( W+W- channel in which both W bosons decay into a lepton and neutrino offers the greatest discovery potential for a Higgs mass of 155-180 GeV.  Studies of channels utilizing decays of either W into a non lepton-neutrino pair are restricted by large backgrounds.
1.2.4.4 H ( ZZ ( 4 lepton Events in CMS

The H ( ZZ channel in which both Z bosons decay into four leptons covers the largest Higgs mass range for the most promising CMS discovery channels.  ZZ ( 4 lepton decay would also provide the cleanest and most unambiguous signal for Higgs discovery.  

     Studies of H ( ZZ channels utilizing non-leptonic decays of either Z are restricted by large backgrounds (See Section 1.2.4.1).    

1.3 Endcap Muon Position Monitoring System (EMPMS) 


The manner in which the mounting of the CSC chambers on the YE Iron discs will be preformed should ensure local location accuracy for every chamber of at least 2mm using dowel pin holes machined into the discs.  The dowel pin holes have been measured by photogrammetry during a trial assembly of each disc and determined to an accuracy of approximately 200-1000(m depending on the location of the hole. Although the chamber locations can be defined in this manner in the field free case and prior to installation, the location of the chambers will certainly change as the individual discs are installed into the final detector assembly and, more significantly, under the extremely high magnetic forces ( > 10000 tones) generated by the solenoid.  


The estimated positioning accuracy with which the individual YE Iron disc assemblies can be placed into the closed detector is estimated to be ±3mm prior to the activation of the solenoid.  The deformation of the RF iron by magnetic forces once the solenoid is activated is expected to induce variations in the position and orientation of the CSCs by ≥ 5mm.  Due to the non symmetric distribution of the iron support structures which hold the discs in place, these distortions will almost certainly be non-uniform.  CSC chambers in the Endcap are located on three or four point kinematics mounts that will move with local YE iron distortions and end up in different positions and/or orientations.  The determination of CSC positions across the CMS RΦ coordinate is the most critical parameter to establish and track, as they will directly impact the determination of muon pt. 

   The shifting of CSC chamber locations after installation and activation of the magnetic field is not unique to the Endcap Muon System.  The Barrel Muon System will also require a mechanical alignment system.  Additionally, both the Barrel and Endcap Alignment Systems must be referenced to the Central Tracker and Global CMS Coordinate System by a third mechanical alignment scheme, the Link Alignment System.  The Link alignment system establishes a set of twelve laser lines that are accessible to both the Tracker and Muon alignment systems.  These laser lines (“Primary Link lines”) follow the phi segmentation of the Muon system and define twelve half planes in the CMS phi coordinate (six in each endcap, every 60 degrees).  Two primary points on each MAB are used to reference a corresponding phi half plane.  Due to the separation of the ME (1/2 and ME(1/3 CSC rings along the CMS Z coordinate, the ME(1/2 CSC chambers will require an additional Link laser line (a “Secondary Link line”, running parallel to the Primary line) provided by the addition of a small rhomboid prism in the Primary Link laser line.

1.3.1 The Need for an Endcap Muon Position Monitoring System

Since the final installation of the discs will place the CSC chambers on the interior of the detector, it will be impossible to make any accurate photogrametric survey of the chamber locations after final installation.  However, the initial operation of the CMS detector will still require high definition of CSC chamber positions relative to the Central Tracker enable trigger on and define the tracks of incident particles.  For this reason, it will be necessary to redefine and track the location and orientation of the CSCs with a mechanical position monitoring (“alignment”) system that is able to determine the location of CSCs with the solenoid magnetic field at its maximum.

1.3.1.1 Level 1 Trigger Requirements in the CMS Endcap 
     The number of muons from H ( ZZ ( 4 lepton events which can be expected to fall within the Muon Endcap System is largely dependent upon the mass of the Higgs particle.  In general, higher pt muons can be expected to enter the Barrel region over the Endcap region.  Thus it can be expected that muons from H ( ZZ ( 4 lepton events which arise from a high mass Higgs particle are likely to go toward the Endcap.  A topology of H ( ZZ ( 4 muons events are shown in Figure 1.9.  The histograms indicate that the number of muons from these events that can potentially be measured by CMS gradually increases as the Higgs mass approaches 500 GeV.  This is do in part to the fact that the additional pt imparted to the final state muons by virtue of arising (ultimately) from heavier Higgs particle pushes the particles toward lower regions in |η|.  The net effect is to make the number of muons found in the Endcap System approximately equal to the number of muons found in the Barrel System.

The histograms in Figure 1.9 where generated with CMSIM 120 (PYTHIA v6.157b) Monte Carlo simulation of H ( ZZ ( 4 µ by gluon-gluon fusion and WW (ZZ) Production at √s = 14TeV across all possible phi and eta ranges with initial and final state radiation included.  Muons with pt falling below the minimal CMS L1 Trigger Levels were rejected (20 GeV for single muons, 4 GeV for two muons).  The binning of events was determined by the muon(s) |η| location as it encounter the first layer of muon chambers (see Figure 1.3 for η division of the detector).   
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Figure 1.9:   Distribution of muons in the CMS Barrel and Endcap Muon Systems from H ( ZZ ( 4µ events.  Each histogram contains 1000 events generated with a Monte Carlo simulation and denote the location in the CMS Muon System where each muon is likely to be found: the Barrel Region, Endcap Region, or outside the active area of the detector.

In addition to H ( ZZ ( 4 lepton events in CMS, Z and W physics events will also of interest.  Muon decays of these bosons (Z0 ( 2µ, W± ( µ + νµ) will require Level 1 triggering.  For Z0 decays, only 1 muon is needed to trigger on the decay.  A topology of Z0 and W± decay events likely to be found in the CMS detector generated via Monte Carlo simulation is shown below in Figure 1.10.
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Figure 1.10:  Distribution of muons in the CMS Barrel and Endcap Muon Systems for (A) W± ( µ + νµ and (B) Z0 ( 2µ.  Figures (A) and (B) each contain 8200 events generated with a Monte Carlo simulation and denote the location in the CMS Muon System where each muon is likely to be found: the Barrel Region, Endcap Region, or outside the active area of the detector.  


The histograms in Figure 1.10 where generated with CMSIM 120 (PYTHIA v6.157b) Monte Carlo simulation of W± ( µ + νµ and Z0 ( 2µ direct production at √s = 14TeV across all possible phi and eta ranges with initial and final state radiation included.  Muons with pt falling below the minimal CMS L1 Trigger Levels were rejected (20 GeV for single muons, 4 GeV for two muons).  The binning of events was determined by the muon(s) eta location as it encounter the first layer of muon chambers (see Figure 1.3 for η division of detector).   As the histograms indicate, far more Z0 and W± decays to muons will involve the Endcap region of the CMS detector.  For the W± ( µ + νµ decays, it is evident that finding these events will require Level 1 triggering in the Endcap since there is only one muon to trigger on and roughly twice as many muons are likely to be found in the Endcap Muon System than in the Barrel Muon System.  To trigger on Z0 decays, only one muon in the decay will be needed to initiate the trigger.  The Figure 1.10B shows that the majority of Z0 ( 2µ events lay exclusively in the Endcap Muon System region and will require a Level 1 Endcap trigger to trigger on those events.


Trigger simulation studies indicate that the CMS Endcap trigger will “require phi precision ~ 1 mm (~0.1 CSC strip)” and, as typical Local Charge Track resolution (single chamber, average strip width) is 0.14*CSC strip width (≈1.3mm), the “CSC Track-Finder absolutely must include alignment corrections” [1.25].  If the positions of the CSC chambers are not defined within 1.3mm in Phi, a significant bias in the trigger will occur and impede the selection of H ( ZZ ( 4 lepton, Z0 ( 2µ, and W± ( µ + νµ events.

1.3.1.2 Endcap Track Reconstruction Requirements


The standalone resolution of the CSC chambers is (150 µm [1.26], whereas multiple scattering effects for a 100 GeV muon (for which the muon system is optimized) are on the order of 200µm.  Since multiple scattering precludes the definitive positioning of the particle immediately prior to its measurement, the relative positioning between any two chambers does not need to exceed  283µm (=√2 * 200µm).  However, the determination of particle trajectories and momenta can be further constrained by attempting to match track segments in the CSC chambers to the CMS Tracking system.  For optimal performance when matching muon tracks between the muon system and the rest of the CMS detector, the position of all CSC chambers should be (individually) determined relative to the Tracker coordinate system.  In this case, multiple scattering restricts the necessary positioning knowledge of CSC chambers approximately 200µm (a detailed estimate is made in Chapter 4).  However, the resolution of the Inner Tracking System for the final determination of muon pt is expected to dominate that of the Muon System, potentially minimizing the impact of CSC chamber misalignment for all but the highest pt muons.  These effects are addressed in detail in Chapter 5.
1.3.1.3 Design Requirements for the Endcap Alignment System


The design requirements of the Endcap Muon System indicate that the Endcap Alignment System must:

I. Establish the Initial Positions and Orientations of all Chambers and System Components

II. Track Chamber Positions (R,(, and Z)

III. Provide Phi Reference Planes in each Endcap Disc
IV. Transfer Tracker System Coordinate Information from Barrel Muon and LINK Alignment Systems


The accuracy with which chamber locations must be established and tracked is driven by the physics goals of the CMS experiment and operational requirements of the CMS trigger.  The knowledge of chamber locations required for successful trigger operation is ~1-2mm relative to the tracker, however the accuracy required to make the requisite momentum measurements on 100 GeV muons (for which the Muon System is optimized) imposes much more stringent requirements in the CMS R( plane.  As discussed previously (Section IIA), the multiple scattering of muons through the large amount of tracker material and iron present in the CMS detector imposes a limit of approximately 200 (m on the determination of any given muon track with the Standalone Muon System.  Since the projected accuracy of the CSC chambers in all layers except ME (1/1 is 150-200 (m, the most stringent requirement which might be imposed on the determination of chamber locations of CSCs in CMS R( is approximately 200 (m.  These requirements are examined in detail in Chapter 5.
1.3.2 Design of the Endcap Alignment System


What follows is a semi-technical description of the EMU Alignment Scheme.  A more detailed discussion of system components and tolerances can be found in Appendix A and Chapter 3.  


The approach taken to meet the design criteria has been to develop two dimensional transparent sensors for monitoring chambers along a laser line and to employ simple proximity sensors and calibrated rods for monitoring the spacing between discs and chambers.   

    The Digital CCD Optical Position Sensor (DCOPS) is composed of 4 single array CCDs arranged in a window frame and a control circuit fitted with an on board ADC and DSP chip.  When the beam of a cross hair laser falls incident on the DCOPS, each CCD is then used to reconstruct the distribution of charge on its pixel array which corresponds to the distribution of photons in the corresponding leg of the laser.  In this manner, the centroid of each leg of the crosshair laser can be determined relative to some point on the CCD window frame.  If a crosshair laser falls incident on a string of DCOPS sensors, knowing the absolute spatial location of any two sensors (called reference sensors) in the line will allow for the determination of the incident laser line.  Once the laser has been defined, the transverse locations of any remaining sensors placed in the laser line can be determined.  Figure 1.11 shows how two known sensors can be used to determine the location of an unknown third.   Since each DCOPS sensor utilizes four CCDs in a single measurement, there is a built in degree of redundancy as well as an intrinsic ability to resolve the angular orientations of unknown sensors.
[image: image18.jpg]



Figure 1.11: The Digital CCD Optical Position Sensor (DCOPS) concept.  The position and orientation of the two Reference DCOPS are known and allow for the definition of the unknown laser line.  Once the direction and orientation of the laser line is known, the position and orientation of the unknown DCOPS on the CSC can be determined in the directions perpendicular to the laser line.

A significant improvement to the DCOPS design was accomplished by attaching prisms to the face of the CCDs and then tilting the CCDs toward the center of the window.  With this design, an additional degree of redundancy is incorporated into the system since the DCOPS sensors will now accommodate two independent measurements made from opposing crosshair lasers.  A production model of this ‘bi-directional’ DCOPS sensor is shown in Figure 1.12.
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Figure 1.12:  The Bi-Directional DCOPS Sensor.  The face of the CCDs point toward the inside of the box and have red prisms attached.  The crosshair laser line enters the box from the ±Z axis.
1.3.2.1 Straight Line Monitoring and CSC Tracking in ME ±234
   To track the location and orientation of CSC chambers in a given layer, DCOPS sensors will be attached to each end of the CSC chambers to form Straight Line Monitoring (SLM) lines which transverse the diameter of each Endcap disc.  The location of DCOPS sensors placed on the CSC chambers, and therefore the location of the CSC chambers, can be determined by knowing the exact location of two additional reference sensors, located off the CSC chambers at the endpoints of the SLM line.  Figure 1.13 shows how three SLM lines will be used to define the location of CSC chambers on the ME ±2, ±3, and ±4 Endcap discs (reference sensors are not drawn in). 
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Figure 1.13:  View of CSC chamber arrangement and location of Straight Line Monitor (SLM) laser lines used in tracking chamber positions.  This view of the Endcap corresponds to a ‘head on’ view of Figure 1.14.  DCOPS sensors are shown at each end of the CSC chambers (drawn on only one SLM line).

The location of the DCOPS SLM reference sensors must be inferred from a separate laser line running parallel to the beam pipe (Z-axis) of the CMS detector – the Axial Transfer Line, shown in Figure 1.14.  The Transfer Laser Line is defined by two DCOPS sensors mounted on separate rigid mechanical structures called MABs (Module for the Alignment of the Barrel Muon) which are located on the outer parameter of the inner detector at the intersection of the Endcap Muon and Barrel Muon Systems.   
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Figure 1.14:  Diagram of Endcap Alignment System showing Transfer laser lines and Straight Line Monitor (SLM) laser lines used in tracking CSC positions.
     Since the location of the MAB units are referenced to the Tracker coordinate system by the LINK system, the location of the DCOPS sensors mounted on the MABs are known.  By using these DCOPS sensors as references on the Transfer Line, the location of other DCOPS sensors located along the Transfer laser line can be determined.  The location of the reference DCOPS sensors in the SLM line are determined by a rigidly connecting them to the DCOPS sensors located on the Transfer line with a special Transfer Plate (Figure 1.14, Figure A.8).  Once the positions of the connecting Transfer line sensors are determined, the reference sensors on the SLM line become known and the remaining sensors in the SLM line can be determined.  Since the DCOPS sensors only measure directions perpendicular to the laser lines, a host of proximity sensors and inclinometers are employed to determine the spacing between the DCOPS sensors and their angular orientations.
1.3.2.2 Straight Line Monitoring and CSC Tracking in ME ±1


As Figure 1.3 indicates, the additional iron on YE ±1 means that the arrangement of SLM lines used on ME ±2, ±3, and ±4 will not work in ME ±1 since there is a large separation between adjacent ME ±1 rings in Z.  More importantly, the additional iron located behind the ME ±1/1 rings obstructs any line of sight measurements (as in ME ±2, ±3, and ±4) across the ME ±1 Endcap.  

By using two LINK sensors and the Secondary Link Line generated by the LINK Alignment Group when evaluating the location and orientation of the MAB units, it is possible to define the location of ME 1/2 chambers (along the Secondary Link Line).  An illustration of the ME±1 disc and CSC chambers is shown in Figure 1.15.  Once the location of the ME ±1/2 chambers are known, the addition of a DCOPS sensor on the outer end of each ME ±1/2 chamber offers an inner reference point for a shortened crosshair SLM Line to define the location of DCOPS sensors mounted on the ME ±1/3.  The outer endpoints of these shortened SLM lines are defined by the inclusion of Transfer Plates on the outer edge of the ME ±1 iron in a manner identical to the ME ±2, ±3, and ±4 SLM lines. 

     The displacement between the ME ±1/3 and ±1/2 chambers along the CMS Z axis is handled with an extension of the mounting bracket which secures the ME ±1/3 DCOPS sensors to the CSC chambers.  Figure 1.16 illustrates the arrangement of the ME ±1/3 and ±1/2 chambers and the sensors along the SLM and Secondary Link lines.  The outer reference sensor for the ME ±1/3 SLM lines are supplied with a transfer plate in exactly the same manner as in ME ±2, ±3, and ±4 SLM lines.
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Figure 1.15:  ME (1 Chamber Arrangement and Placement of SLM and Secondary Link Laser Lines.  Overlap of MAB Structures is shown, though they do not touch ME(1.  ME 1/1 chambers are not shown.  Note SLM lines do not cross the disc, but terminate at the edge of the ME(1/2 rings. [1.27]
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Figure 1.16:  Detail of ME (1 SLM and Secondary Link Laser Lines.  The drawing shows a ME1/3 DCOPS Sensor SLM line (three sensors along the red laser line) and the ME1/2 CSCs Secondary Link Line (the green laser line intersecting a blue Link sensor).  The DCOPS attached to the out edge of the ME1/2 Chamber serves as the final reference sensor in the ME 1/3 SLM line.

     The scope of the EMU alignment system does not include the ME ±1/1 ring of CSC chambers (the innermost ring) and can rely on the alignment of the ME1/2 ring with the aid of a secondary laser line generated near the CMS Z axis from the LINK Alignment System.  Since the Secondary Link Laser Line is cylindrical, the measurements of the ME ±1/2 chambers have a degree of freedom about the laser line which is not present in the other SLM lines.  The initial design of the EMU Alignment scheme anticipated that a complementing set of measurements between the LINK sensors and the DCOPS sensor installed on the on outer the edge of these chambers would provide a sufficient constraint on rotations about the Secondary Link Line since the two laser lines are offset.  It has been determined by a simulation of the system (see Chapter 3) that the inclusion of an inclinometer, similar to those on the transfer plates, will be required.  

1.3.2.3 Locations of Off-SLM CSC Chambers 


The EMU alignment scheme allows only for the direct determination of chambers along the SLM laser lines.  CSC chambers located off of these SLM lines will have to be determined by some other means – likely by an extrapolation of the YE iron shape (as determined by the SLM lines) and a model (or measurements) of the magnetic field in the Endcap.  It may also be possible to determine the location of off-SLM chambers by particle track reconstruction across the overlapping regions of chambers.  In this case, chambers lying along the SLM lines (i.e. chambers with known positions and orientations) serve as reference chambers from which the location of neighboring chambers are found first.  Remaining chambers could then be successively determined by using neighboring chamber locations (once found) as reference points for overlapping tracks.  Neither of these methods (nor any other method) has been thoroughly investigated.
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