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Abstract — A large class of problems in multiagent systems can
be solved by distributed constraint optimization (DCOP). Several
algorithms have been created to solve these problems, however, no
extensive evaluation of current DCOP algorithms on live networks
exists in the literature. This paper uses DCOPolis—a framework
for comparing and deployingDCOP software in heterogeneous
environments—to contribute an analysis of two state-of-the-art DCOP
algorithms solving a number of different problem types. Then, we
use this empirical validation to evaluate the use of both cycle-based
runtime and concurrent constraint checks.

I. I NTRODUCTION

With the proliferation of small, inexpensive computers able
to communicate wirelessly, the importance of distributed al-
gorithms will likely grow in the coming years. This makes
investigation of performance metrics and evaluation proce-
dures for these types of systems particularly important. Due
to the number of factors that influence the performance of a
distributed system it is difficult to predict how a system will
perform.

As an example, this paper examines metrics used to compare
Distributed Constraint OPtimization (DCOP) algorithms. We
empirically assesses cycle-based runtime, the primary (theo-
retical) performance metric in common use, in a number of
different live network settings including MANETs.

In the remainder of this paper we first give background
on DCOPs and several types of problems we investigate.
We then describe a DCOP testbed that we have created to
compare algorithms on live networks. We report on a series
of experiments run on this testbed using the Adopt [8] and
DPOP [11] algorithms. In doing so, we evaluate CBR as a
predictor of actual runtime. Finally, we present an analysis of
our results that suggests the coefficients to the CBR equation
are actually a function of the algorithm and problem domain,
which invalidates CBR (and its special-caseccc) as a general
metric for comparing DCOP algorithms, but suggest that it
may be useful as a metric for predicting asymptotic runtime
or even for comparison if the coefficients are know.

II. D ISTRIBUTED CONSTRAINT OPTIMIZATION

A large class of multiagent coordination and distributed
resource allocation problems can be modeled as DCOP prob-
lems. DCOP has generated a lot of interest in the constraint

programming community and a number of algorithms have
been developed to solve DCOP problems [8], [6], [11], how-
ever, existing metrics for comparing these algorithms do not
adequately capture the many intricacies inherent in solving
DCOPs on live networks.

This is complicated by the fact that DCOP algorithms are
currently implemented in simulation; there is no record in the
literature of any significant evaluation of DCOP algorithms
on live networks. Furthermore, cycle-based runtime (CBR)
metric, for example, has coefficients that are meant to represent
network constants, however, no reasonable values for these
coefficients are yet known, and the correct values of these
coefficients may dictate the ranking of DCOP algorithms. This
paper explores when it is useful and when it is not useful to
use these metrics.

A. Definitions

A “ DCOP” is a problem in which a group of agents must
distributedly choose values for a set of variables such that
the cost of a set of constraints over the variables is either
minimized or maximized.

Formally, a DCOP may be represented as a tuple
〈A, V,D, f, α, σ〉, where:

A is a set of agents;
V is a set of variables,{v1, v2, . . . , v|V |};
D is a set of domains,{D1, D2, . . . , D|V |}, where each

D ∈ D is a finite set containing the values to which its
associated variable my be assigned;

f is a function

f :
⋃

S∈P(V )

∏

vi∈S

({vi} × Di) → N ∪ {∞}

(where “P(V )” denotes the power set ofV ) that maps
every possible variable assignment to a cost. This
function can also be thought of as defining constraints
between variables;

α is a functionα : V → A mapping variables to their
associated agent.α(vi) 7→ aj implies that it is agent
aj ’s responsibility to assign the value of variablevi.
Note that it is not necessarily true thatα is either an
injection or surjection; and

238



σ is an operator that aggregates all of the individual
f costs for all possible variable assignments. This is
usually accomplished through summation:

σ(f) 7→
∑

s∈
S

S∈P(V )

Q

vi∈S
({vi}×Di)

f(s).

The objective of a DCOP is to have each agent assign
values to its associated variables in order to either minimize
or maximizeσ(f).

A “ Context” is a variable assignment for a DCOP. This can
be thought of as a function mapping variables in the DCOP
to their current values:

t : V → (D ∈ D) ∪ {∅}.

Note that a context is essentially a partial solution and need
not contain values foreveryvariable in the problem; therefore,
t(vi) 7→ ∅ implies that the agentα(vi) has not yet assigned a
value to variablevi. Given this representation, the “domain”
(i.e., the set of input values) of the functionf can be thought
of as the set of all possible contexts for the DCOP. Therefore,
in the remainder of this paper we may use the notion of a
context (i.e., the t function) as an input to thef function.

B. Examples of DCOP Problems

1) Graph Coloring: Given a graphG = 〈N,E〉 and a set
of colors C, assign each vertex,n ∈ N , a color, c ∈ C,
such that the number of adjacent vertices with the same color
is minimized. Graph coloring is a commonly-cited problem
used for evaluating DCOP algorithms [8], [6].
DCOP Encoding: For each vertexni ∈ N , create a variable
in the DCOPvi ∈ V with domain Di = C. For each pair
of adjacent vertices〈ni, nj〉 ∈ E, create a constraint of cost
1 if both of the associated variables are assigned the same
color: (∀c ∈ C : f(〈vi, c〉, 〈vj , c〉) 7→ 1). A and α cannot be
generically defined for graph coloring; they will depend on the
application. Most publicly-available benchmark problem sets
create one agent per variable [9].

2) Distributed Multiple Knapsack Problem (DMKP):Given
a set of items of varying volume and a set of knapsacks of
varying capacity, assign each item to a knapsack such that the
amount of overflow is minimized. LetI be the set of items,
K be the set of knapsacks,s : I → N be a function mapping
items to their volume, andc : K → N be a function mapping
knapsacks to their capacities.
DCOP Encoding: for eachi ∈ I create one variablevi ∈ V

with associated domainDi = K. Then for all possible context
t:

f(t) 7→
∑

k∈K

{

0 r(t, k) ≤ c(k),

r(t, k) − c(k) otherwise,

wherer(t, k) is a function such that

r(t, k) =
∑

vi∈t−1(k)

s(i).

C. Evaluation

Cycle-based runtime (CBR) [3], a popular and simple metric
used by researchers to evaluate DCOP algorithms, is evaluated
in this section. The focus was chosen to be on CBR (over
other metrics such as non-concurrent constraint checks [7])
since CBR and its special-caseccc are the metrics most often
employed in evaluating DCOP algorithms in the literature [8],
[11], [6].

III. E XPERIMENTAL SETUP

A. Software

The reference implementations for the Adopt and DPOP
algorithms (coded by their respective authors) were designed
to be run in simulation; although extending the code to be run
on a live network was not hard, configuring it for automated
batch processing of experiments in such a setting was non-
trivial. Therefore, the implementations of these algorithms as
provided in the DCOPolis1 package were used.

DCOPolis was chosen as the testbed for our experiments
because it was originally designed as framework for comparing
and deploying distributed decision processes in heterogeneous
environments. At the time the experiments were performed,
DCOPolis had three DCOP algorithms implemented: Adopt,
DPOP and a naı̈ve algorithm called Distributed Hill Climbing.
Only Adopt and DPOP were used for our experiments.

DCOPolis differentiates itself from existing frameworks and
simulators (like FRODO [10] and those used in testing Adopt
and OptAPO) in two fundamental ways:

1) DCOPolis was designed to allow for both simulation
of DCOPs on a single computer and full deployment
of DCOP solvers on many types of live networks,
including traditional wired networks and ad-hoc wireless
networks; and

2) DCOPolis is able to instantiate a DCOPs and start the so-
lution process completely distributedly. This means that
there is no need for configuration files, nor is there any
need for a central agent/server that initializes/instantiates
the rest of the group.

All of the code is freely available under the GNU public
license.

B. Pseudotree Generation

A similarity between Adopt and DPOP is that they both
assume the existence of a tree ordering over all of the variables
in the problem. The pseudotree has an invariant that for
each pair of variables〈vi, vj〉 that are neighboring in the
constraint graph it must be the case thatvi is either an ancestor
or descendent ofvj in the pseudotree. The pseudotree also
contains a backedge between all pairs of neighbors in the
constraint graph that do not have a parent/child relationship in
the pseudotree. For eachv ∈ V , α(v) must know the relative
tree position (i.e., ancestor, descendent, or parent) of each
constraint graph neighbor ofv. The authors of both Adopt
and DPOP assume that the agents would simply elect one

1http://dcopolis.sourceforge.net/
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agent to create this ordering which is then broadcast to the rest
of the group. Since the runtime of both algorithms is highly
dependent on the structure of the pseudotree, we ensured that
for each problem instance in our experiments the algorithms
were given identical pseudotrees.

C. Computing Devices

Five HP-TC1100 tablet PCs with 1Ghz Intel Pentium M
processors and 512M of RAM were connected via Ethernet
to a Netgear FS108 switch. No machines were connected to
the switch other than the ones taking part in the experiment
and the switch was not connected to the Internet or any other
network. All the machines were running Ubuntu 6.06 Linux
with a 2.6.15-27-686 kernel.

D. Problem Datasets

1) Multiagent Task Scheduling:Experiments on the data
multiagent task scheduling CTÆMS dataset referenced in [21]
was attempted, however, DPOP was unable to solve any of
these problems. This was likely due to the problems’ large
number of variables and domain sizes. This is analyzed in
§V-A.

2) Graph Coloring: The USC Teamcore project has a vari-
ety of sample problem data files in their DCOP repository [9]
which were used in our analysis. The graph coloring problems
were from the “Graph coloring dataset” and range from 8 to
30 variables. In these experiments, a subset of the problems
containing 12 and 14 variables was used.

3) Distributed Multiple Knapsack Problem:DCOPolis has
a utility for creating random DMKP data files. Twenty-five
problem sets were created, consisting of five of each of
the following: many small bins (ten), many small objects
(twelve); few small bins (three), many large objects; few large
bins, many small objects; few small bins, wide variety (high
standard deviation) of objects and a wide variety of bins, many
small objects. These data files are available from the authors’
website.

E. Cycle-based Metrics

In the first publication introducing Distributed Constraint
Satisfaction, [23], Yokoo,et al. evaluate algorithms by count-
ing the number of cycles needed to determine a solution.
The cost of communications is not taken into account, which
the authors note and explain by stating that they do not
have a standard way to compare communication costs and
computational costs.

Cycle-based runtime (CBR) was introduced in [3] as a
metric that takes into account the number of constraint checks
performed in each cycle as well as the communications latency
between cycles. CBR is computed as

CBR(m) = L × m + ccc(m) × t,

wheret andL are constants respectively relating to compute
time and communications time,m is the number of cycles,
and

ccc(m) =
m

∑

k=0

max
a∈A

cc(a, k),

wherecc(a, k) is the number of constraint checks performed
by agenta in cycle k.

Given the fact that a single host on the network can
support multiple agents (and assuming that each host has a
single processor), CBR must take into account the number of
machines used in the solution of the DCOP. Therefore, we
propose a slight modification to CBR that accounts for the
distribution of agents on the hosts:

ccc(m) =
m

∑

k=0

max
h∈H

∑

a∈Ah

cc(a, k),

whereH is the set of all hosts andAh is the set of agents
on hosth. In other words, all agents that are running on the
same host must compete for time from the single CPU, so
these agents are in effect running synchronously during each
cycle. Therefore, for all agents that are sharing a host we
need to sum over the number of constraint checks during each
cycle instead of taking the maximum. Given an experiment
wheremaxh∈H |Ah| = 1 (which implies|H| ≥ |A|), the two
equations are equivalent. For the remainder of the paper we
shall use this augmented definition of CBR.

IV. RESULTS AND ANALYSIS

The results of the graph coloring and the DMKP exper-
iments can be seen in Figure 1 and 2 respectively. In both
graphs, Adopt and DPOP both show a linear correlation
between runtime and CBR. In Figure 3, the results of running
graph coloring problems with large domains and fifty sparsely
connected vertices is shown. DPOP was unable to solve many
of these problems due to the algorithm running out of memory
while trying to construct the massive hypercubes for this
problem domain. There are DPOP variants[16], [18] that may
scale better, but they are not yet implemented in DCOPolis.

Pearson’s linear correlation coefficient was calculated for
the runtime and the CBR metric. For each of the datasets
except one we were able with 99% certainty to reject the null
hypothesis that the distributions were not linearly correlated in
favor of the alternate hypothesis that CBR and actual runtime
are linearly correlated. Pearson’s coefficient has a student’s t

distribution, which is what we used to test these hypotheses.
Our smallest test statistic value was4.05. The one test for
which we failed to reject the null hypothesis was for the DPOP
data in Figure 2. It is clear from looking at the graph, however,
that the large cluster of DPOP data supports the claim that
CBR is a valid metric for predicting actual runtime.

L andt were calculated empirically for each of the domains
and algorithms. The average time spent sending and receiving
data during each cycle was calculated and used asL. The
average runtime per cycle—not counting time required for
communication—was used ast. As shown in Table I, these
coefficients were quite different between algorithms and prob-
lem domains.

V. CONCLUSIONS ANDFUTURE WORK

We have shown that CBR is an excellent predictor of
asymptotic runtime. We have also shown that theL and t

coefficients in the CBR metric are not in fact constant, even
240



 1

 10

 100

 1000

 10000

 10000  100000  1e+06  1e+07  1e+08  1e+09  1e+10

R
un

tim
e 

(s
ec

on
ds

)

Cycle-Based Runtime

Adopt

DPOP

Fig. 1. Actual runtime versus cycle-based runtime for a subsetof the USC
Teamcore graph coloring problem set. Both Adopt and DPOP exhibit a linear
correlation. Both axes are scaled logarithmically in order to reduce clustering
around the origin.

 1

 10

 100

 1000

 10000

 1000  10000  100000  1e+06  1e+07  1e+08  1e+09

R
un

tim
e 

(s
ec

on
ds

)

Cycle-Based Runtime

Adopt

DPOP

Fig. 2. Actual runtime versus cycle-based runtime for a randomly-generated
set of DMK problems. Both the number of knapsacks and number of items
were varied. Both Adopt and DPOP exhibit a linear correlation. Both axes
are scaled logarithmically in order to reduce clustering around the origin.
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Fig. 3. Actual runtime versus cycle-based runtime for a randomly-generated
set of eight-color graph coloring problems with fifty vertices. There are only
three DPOP data points; the other seven failed due to a lack ofmemory.
Both Adopt and DPOP exhibit a linear correlation. Both axes are scaled
logarithmically in order to reduce clustering around the origin.

PROBLEM DOMAIN ALGORITHM L t

Graph Coloring
Adopt 75.91 60.74
DPOP 46.4 1985.69

DMKP
Adopt 54.01 68.62
DPOP 215.78 4299.18

TABLE I

EMPIRICALLY-DETERMINED VALUES FOR THECBR COEFFICIENTS.

when the network environment is constant. These coefficients
are best represented as a function of the algorithm and the
problem domain, and it is currently unclear how these can
be predicted through traditional simulation. CBR therefore
falls short as a metric for comparing algorithms, unless the
coefficients for each algorithm are knowna priori. We have
provided a list of these coefficients for a number of different
problems. In the future we hope to expand this list and
also investigate new metrics such as non-concurrent constraint
checks [7].

The runtime of these algorithms is highly dependent on the
variable ordering given by the pseudotree. Our next experi-
ments will be to measuring the impact of alternate techniques
for generating these trees, such as [2].

DCOPolis supports the use of the Sefirs2 simulation kernel
and MATES network simulator [22], which essentially creates
a virtual machine that runs in simulated time. We hope to
use our live network data to calibrate these simulations to
allows for a comparison of DCOP algorithms empirically
in simulation, without the need for theoretical comparison
metrics like CBR or access to a cluster of computers or testbed
like the one created for this paper.

A. A note on comparisons

It is not the authors’ intent to directly compare the algo-
rithmic performance of Adopt and DPOP in this paper. The
reference implementations for these algorithms (coded by their
respective authors) were designed to be run in simulation;
although extending the code to be run on a live network
was not hard, configuring it for automated batch processing
of experiments in such a setting was non-trivial. Therefore,
the implementations of these algorithms as provided in the
DCOPolis package were used. These implementations were
created by authors other than the original algorithm designers,
based solely upon the algorithms described in the respective
papers. Furthermore, there are other techniques and variations
of both Adopt [4], [20], [1] and DPOP [19], [18], [5], [17],
[14], [13], [12], [15] that may have performed differently given
our experimental datasets.

Although the data in this paper seem to suggest DCOPolis’
implementation of DPOP outperforms ADOPT in terms of
runtime, they are insufficient to objectively declare DPOP
a better algorithm. The favorable runtimes of DPOP may
be due to our selection of small problems; larger problems
(e.g., coloring problems with large domains and CTÆMS

problems) cannot be run with DCOPolis’ implementation of
DPOP because the hypercubes DPOP generates require far

2http://sefirs.sourceforge.net/
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too much memory. DPOP’s worst-case memory usage scales
exponentially with respect to the average domain size [11],
while Adopt scales polynomially [8]. For example, Figure 3
shows a graph of experiments that used randomly generated
graph coloring problems of fifty sparsely connected vertices
using eight colors. Of the ten experiments, only three com-
pleted for the DPOP algorithm; the other eight failed due to
the inability to allocate enough memory. All of the Adopt
problems finished.
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