
A Survey of Constraints in A

Proc. 1996 IEEE Intl. Conf. on Robotics and Automation, pp. 1525-1532

utomated Assembly Planning�

Rondall E. Jones Randall H. Wilson

Intelligent Systems and Robotics Center

Sandia National Laboratories

Albuquerque, NM 87185-0951

Abstract

This paper is a survey of constraints used in auto-
mated assembly planning, where \constraints" are in-
terpreted broadly to include requirements, preferences,
and suggestions to the planner. We list a large num-
ber of constraints that have appeared in the assembly
planning literature and categorize them along several
dimensions. These dimensions include strategic vs. tac-
tical constraints; requirements vs. criteria to optimize
vs. suggestions; and constraints encoding manufactur-
ing requirements vs. those imposed by the automated
planning process itself. We also consider the informa-
tion needed to assess each constraint, particularly as
it a�ects the e�ciency of planning with the constraint.
Finally, we present our planned framework for incor-
porating many of the surveyed constraints into an in-
teractive version of the Archimedes assembly planner.

1 Introduction

Useful assembly plans must satisfy a large number
and variety of constraints. Representing these con-
straints and �nding assembly plans that satisfy them
are the primary capabilities required to create auto-
mated assembly planners. Many di�erent constraints
have appeared in the literature on automated assem-
bly planning or been implemented in experimental sys-
tems. However, the constraints often occur stated in
di�erent ways and in a variety of forms and contexts.

This paper surveys the assembly planning litera-
ture to identify, synthesize, and organize common con-
straints on assembly plans. We focus on what con-
straints appear in the literature, rather than how they
have been implemented. Implicit in our survey is the
assumption that if a constraint has appeared in the
literature then it is either useful or implementable|
either of which makes it interesting when consider-
ing an assembly planning implementation. We group

�This work was supported by Sandia National Laboratories

under DOE contract DE-AC04-94AL85000.

related constraints and categorize them along several
dimensions, such as the origin of the constraint and
whether it is absolute or a criterion to optimize. We
also consider the information needed to assess each
constraint, as it a�ects the e�ciency of planning with
the constraint. Finally, we describe our planned frame-
work for incorporating many of the surveyed con-
straints into an interactive assembly planning system.

We should comment on our use of the term \con-
straints". While there will be no confusion with call-
ing requirements and prohibitions \constraints", some
may think the term is inappropriate when applied to
optimizations or suggestions (see Section 6.2). But
from the viewpoint of an automated planning tool all
of these are user-given directives which constrain the
�nal choice of plan. Thus, for the lack of a better term
we will refer to all the requirements, prohibitions, re-
quested optimizations, and user suggestions as \con-
straints".

Our approach has the following additional motiva-
tions and assumptions:

Inclusion: We include all constraints mentioned
in the assembly planning literature with which we are
familiar. In addition, we have included constraints
that have arisen in discussions with industrial assembly
personnel, or with which we have experience from our
own work, or which arose during the survey as seeming
natural and potentially useful. However, no claim is
made that any of these latter constraints is new or
novel.

Exclusion: On the other hand, this is not an at-
tempt to catalog all possible constraints. For example,
subassemblies and clusters are two similar but di�er-
ent concepts. Although an engineer might require or
prohibit use of a particular subassembly, only requir-
ing use of a cluster makes sense. Thus, the logically
possible constraint of prohibiting use of a cluster does
not seem useful, and is not included.

In the literature, constraints are often discussed to-



gether with features of the computer programs which
implement them. Such software features may super-
�cially seem like constraints, when they are actually
just \housekeeping" functions. For example, a feature
to Delete a State represents a constraint [1]. The
related software feature of Undelete a State just
clears a previously selected constraint, and thus would
not be included here. This stands in contrast to a soft-
ware feature to Recommend a State, whose intent
is to guide the planning algorithm to a solution, and
would be included here.

Grouping: Often very similar ideas can be expressed
quite di�erently. For example, prohibiting multiple si-
multaneous subassemblies (as in [1]) is the same as
requiring linearity [14] (see de�nitions below), so we
arbitrarily include only the latter. Similarly, a con-
straint to minimize parallelism in a plan is very close
to the concept of maximizing linearity, so we include
only the latter. No doubt we have oversimpli�ed in
some cases, and each decision we have made to com-
bine constraints into classes may arguably be incorrect,
given su�cient interest in the details of variants in the
class. We have tried to produce a manageable size list,
trading o� loss of detail with clarity of presentation.

Combining constraints: Requirement (and prohibi-
tion) constraints can be combined using logical con-
junctions, disjunctions, and negations. Optimization
criteria may be combined using a scalar function. How-
ever, we do not delineate which constraints may be
combined with which others. Instead, we have at-
tempted to identify the basic constraints that might
be the terms in such composite constraints. Of course,
combinations of constraints must be considered care-
fully when implementing an assembly planning system.

2 Overview

The remainder of this paper is organized as follows:
In Section 3 we introduce categorizations which at-
tempt to capture important qualities of assembly con-
straints. Some categorizations (namely obligation and
information required) turn out to be quite useful for
planning implementation of constraints, while others
are not directly useful, though they may be interest-
ing.

In Section 4 we de�ne terms and abbreviations we
use in the later sections.

Section 5 is the core of the paper, in which we give
a short systematic name to each constraint and briey
de�ne it, with references to previous research that used
the constraint.

In Section 6 we organize the constraints using vari-
ous categorizations. We discuss examples and subcat-
egorizations for the bene�t of the reader's understand-

ing of the various ways of viewing the constraints.
Finally, in Section 7 we present an approach to im-

plementing constraints that we plan to use in an inter-
active extension to the Archimedes 2 assembly plan-
ner [9]. This approach crystallized during the process
of organizing these constraints.

3 Categorizations

In surveying a large number of constraints and at-
tempting to organize them, several categorizations of
assembly planning constraints become apparent. We
present them here briey; they will be used and dis-
cussed further in Section 6.

3.1 Origin

First, it is natural to consider the source of the con-
straint. We use just two categories:

Assembly issues per se: The largest category of con-
straints is those arising directly from a physical con-
straint on assembly, such as �xturing constraints, ma-
nipulability constraints, or issues of assembly line lay-
out. Closely related are constraints arising from a need
to optimize one of the three basic aspects of an assem-
bly project: assembly cost, assembly time, or assembly
performance/reliability.

Planning process issues: A number of constraints
arise from the assembly planning process itself, such
as simplifying assumptions or human guidance of a
search.

3.2 Obligation

A second, and more useful, categorization is the de-
gree of obligation of the constraint. Some constraints
are absolute, either requiring or prohibiting certain fea-
tures of assembly plans. (These are abbreviated as
REQ and PRH, respectively, in the constraint names
below, and are referred to as a group as requirements.)
Others are preferences, which we further subdivide
into optimizations and suggestions. Optimization con-
straints select assembly plans which, at least concep-
tually, either maximize or minimize a scalar function
(abbreviated MAX and MIN). Suggestions (abbrevi-
ated SUG below) appear often in the literature, but
their meaning is a little less clear. The planner is free
to obey a suggestion or not, depending on other con-
straints. In some systems suggestions are used to help
guide the planner to a better plan or a quicker result.
In others they seem to be an informal type of optimiza-
tion criterion, so that plans that obey suggestions tend
to be selected. Finally, suggestions are sometimes used
to override an algorithm's normal treatment of a par-
ticular situation, as with a exible part that appears
unassemblable due to rigidity assumptions [9].



3.3 Scope

Regardless of the level of obligation a constraint car-
ries, its scope of relevance to the plan or the planning
program may be strategic or tactical. Strategic con-
straints are applicable during the whole assembly plan-
ning process, or to all or most of the assembly actions.
Tactical constraints address a physically local situation
or apply to a relatively small portion of the assembly
planning process.

3.4 Information Required

An important factor when implementing constraints
in a program is what information is needed to evalu-
ate whether a given constraint is met. As we will dis-
cuss, almost all constraints fall into one of two classes:
those that require an entire plan or set of plans to as-
sess compliance, and those that require only very local
information such as single assembly states or actions.

4 Terms and Abbreviations

The following terms and their abbreviations are
used in the later sections of this paper. Most of these
are commonly used in the literature. For references,
see the next section.

� AND/OR graph: a commonly used representation
of a set of assembly sequences, listing subassem-
blies and actions that create larger subassemblies
from smaller ones.

� assembly: a set of parts, in given geometric rela-
tion to one another

� assembly action: (abbreviated as ACTION) any
single action of bringing together parts or sub-
assemblies, or of moving parts or subassemblies.
It is a more general term than \insertion".

� awkwardness: a usually subjective judgement of
the relative di�culty of a task.

� cluster: a group of parts to be assembled in un-
interrupted sequence, but for which the sequence
is not speci�ed. For example, all the bolts hold-
ing a lid to an assembly might be de�ned to be a
cluster.

� connected: a subassembly is connected if its graph
of parts and liaisons is connected.

� �xture: (abbreviated as FIXT) a device to hold a
part, assembly, or subassembly.

� insertion: the adding of a single part or subassem-
bly to an evolving assembly.

� liaison: the geometric relationship between two
parts which are touching or e�ectively touching,
whether physically attached or not.

� linear: a property of an assembly plan in which all
parts are added to the assembly one at a time.

� monotone: a property of an assembly plan in
which each part is inserted immediately into its
�nal position relative to the remainder of the as-
sembly. Thus, an n-part assembly is executed in
exactly n� 1 insertions.

� stable, or stability: (abbreviated STAB) resistant
to unwanted change due to e�ects of gravity, mo-
tion, etc.

� state: the parts of an assembly, in a certain re-
lation to one another, constituting a stage in the
assembly plan.

� state transition diagram: (abbreviated STD) a
commonly used representation of a set of assem-
bly sequences, listing states and the feasible tran-
sitions between them.

� subassembly: (abbreviated SUBASSY) a subset of
parts of an assembly; this over-used term may
mean either (1) a connected set which is treated
much as if it were a part, or (2) a stage in an
evolving assembly.

5 Constraint List

The constraints we have identi�ed are named and
briey de�ned in this section, in alphabetical order of
the short name. Due to limited space, we reference at
most one or two representative papers in which con-
straints appear.

MAX-LINEAR: Maximize some measure of the de-
gree of linearity in the plan [13].

MAX-PARALLEL: Maximize some measure of the
degree of parallelism in the plan [7, 13]. This is
closely related to maximizing exibility at each
stage of assembly.

MAX-STAB: Maximize some measure of the stabil-
ity of states in a plan [11].

MIN-AWKWARD-ACTION: Minimize the awk-
wardness of an assembly action or sequence of as-
sembly actions [1].

MIN-AWKWARD-GRIP: Minimize the awkward-
ness of gripping a part or a set of parts.

MIN-COST: Minimize the overall cost of the plan.
The cost measurement used may vary widely, from
human estimates of the cost of each assembly step
to algorithmic estimates of the cost of certain fac-
tors in each action.

MIN-COST-FIXT: Minimize the overall cost of �x-
turing parts and subassemblies.

MIN-DIREC: Minimize the \directionality" of the
assembly plan [14]. Directionality might measure
the number of insertion directions required by the
plan, the range of directions, or the number of
direction changes.



MIN-FIXT-COMPLEX: Minimize �xture com-
plexity [2, 14, 16]: this is one of several possi-
ble ways to approximate minimization of �xturing
cost.

MIN-REFIXT: Minimize the number of re�xturings
of the evolving assembly [1].

MIN-REORIENT: Minimize the number of assem-
bly reorientations in the plan [1, 9]. MIN-COST-
FIXT, MIN-REFIXT, MIN-DIREC, and MIN-
REORIENT are closely related.

MIN-SIMUL-LIAISON: Minimize the use of si-
multaneous liaison creation [1]. This is related
to awkwardness constraints, but is more speci�c.
This constraint would be used in contexts in which
more liaisons being established in a single assem-
bly action make the action more di�cult. (Note
that in some contexts multiple liaison creation
helps rather than hinders.)

MIN-TIME: Minimize the time required to execute
an assembly plan.

MIN-TOOLCHANGE: Minimize the number of
tool changes in an assembly plan [9].

PRH-ACTION: Prohibit a particular action, such
as a particular simultaneous liaison creation or
state transition [4, 1].

PRH-COLLISION: Require that each part not be
penetrated by any other part during motions.
This a fundamental constraint.

PRH-STATE: Remove a state from consideration.
This is used frequently in STD methods [1].

PRH-SUBASSY: Prohibit use of a certain sub-
assembly (or possibly any subassembly containing
certain part combinations). For example, one may
need to avoid a hard-to-�xture arrangement [4]
containing a set of key parts.

PRH-SUBSEQ: Prohibit a particular subsequence
of actions.

REQ-ACCESS-TEST: Require that su�cient
space be available to perform a test.

REQ-ACCESS-TOOL: Require that su�cient
space be available for a tool (manual tool, robotic
gripper, welder, laser, etc.) to be applied [12].

REQ-ACTION: Require that a particular assembly
action be used in the plan, due to its desirability.
This is a minimal case of REQ-SUBSEQ.

REQ-CLUSTER: Require that a set of parts be
added to the assembly without interruption by
other parts [3].

REQ-CONNECT: Require that every subassembly
in the plan be connected. This common constraint
is implicit in cut-set methods such as [1, 8].

REQ-FASTENER: Require that certain parts be
treated as fasteners for other parts [12].

REQ-LINEAR: Require that parts be inserted one
at a time [1, 14]. This is a common constraint.

REQ-LINEAR-SUBSET: Same as REQ-LINEAR,
but applying only to a subset of operations or a
cluster of parts. This constraint would also cover
the minimal case of requiring that a part be in-
serted into �nal position individually.

REQ-MONOTONE: Require that the plan be
monotone [14]. Very common; [5] is one system
that does not impose this constraint.

REQ-ORDER-FIRST: Require that the assembly
plan start with a given part, such as a \chas-
sis" [10], or a set of parts.

REQ-ORDER-LIAISON: Require some ordering
between two or more liaison creations; typically
stated in a boolean form such as 1 � (2&3), or as
a set of such boolean statements involving many
liaisons. This is a very common type of constraint,
analyzed in [15].

REQ-ORDER-PART: Require an ordering be-
tween particular part insertions.

REQ-ORDER-SPECIAL: Require a part, liaison,
or other ordering not classi�able as one of the
above three. For example, [7] mentions the case
of certain liaisons that must not be created until
some measured result of another subassembly has
been obtained.

REQ-PART-SPECIAL: Any special-purpose part
constraint, such as those dealing with liquids,
springs, snap-�t parts, etc.

REQ-PATHS-AXIAL: Require that each assembly
action be along one of the six coordinate direc-
tions of a given coordinate system, or a selected
subset of these six directions. For example, inser-
tion might be allowed from any axial direction ex-
cept vertically from below. Common special cases
are uniaxial constraints (allowing motions in ei-
ther direction along one axis) and unidirectional
constraints [10].

REQ-PATHS-STR: Require that each assembly ac-
tion be in a straight line, or a straight line with a
screwing motion [13].

REQ-STAB-ACTION: Require that a part or parts
be stably �xtured during some assembly action
such as a movement or a machining operation.

REQ-STAB-STATE: Require that a part or sub-
assembly be stably �xtured versus gravity [4].

REQ-STATE: Require that a given state be in the
plan [1].



REQ-SUBASSY: Require that a particular sub-
assembly be used in the plan [1, 4].

REQ-SUBSEQ: Require that a particular assembly
subsequence be used somewhere in the plan. This
might be invoked because the sequence is partic-
ularly e�cient or reliable.

REQ-TWO-HANDED: Require that each assem-
bly action involve two subassemblies [14]. This
constraint is a very common assumption.

SUG-ACTION: Suggest that a particular assembly
action or actions be included in the plan.

SUG-CLUSTER: Suggest to the planner that a cer-
tain cluster of parts be obeyed [3].

SUG-EARLY: Suggest that a particular part(s) be
handled as early in the sequence as possible.

SUG-ORDER-GENERAL: Suggest a general or-
der in which to add parts to the assembly. For
example, rivets might need to be done approxi-
mately in order from one end of an airframe to
another.

SUG-STATE: Suggest to the planner that a certain
assembly state be used if possible (perhaps to
speed the �nding of a feasible plan) [1].

6 Organization of Constraints

In compiling the constraint list above, a certain
amount of organization was imposed by the naming
process. Next we want to categorize the list of con-
straints in ways that may provide insights as to their
interrelations and possible approaches to implementa-
tion. We will use the categorizations introduced in
Section 3. We restrict each constraint to being in one
category in each categorization, which, again, may con-
stitute oversimpli�cation. All the categorizations be-
low are combined into Table 1. In the table, constraints
are sorted �rst by their entry in column two, then by
their entry in column three, etc., and lastly by the con-
straint name.

6.1 Organization by origin

When we started this survey, we began with the ori-
gin categorization, but it turns out to perhaps have the
least insight to o�er. However, we think it is worth-
while to discuss here to help the reader gain some sense
of the range of constraints in use and their purposes
in practice. As outlined in Section 3, the majority
of constraints mentioned in the literature are direct
assembly issues. Examples include the need for an
assembly to be stable with respect to a force during
a subsequent operation (REQ-STAB-ACTION), and
the need to perform all the assembly actions vertically
from above (REQ-PATHS-AXIAL). Such constraints

may be objectively evaluatable, or may be subjective,
such as the judgement that a required manipulation is
\awkward" (e.g., MIN-AWKWARD-ACTION). There
is a rich set of such \real-world" constraints in the lit-
erature. We also include as assembly-origin constraints
those that focus on the assembly process, such as MIN-
COST-FIXT and MIN-TOOLCHANGE.

The remaining constraints arise primarily from the
assembly planning process itself. Such constraints
should be viewed di�erently than the others, in that
an assembly planning system does not need to include
them in order to be comprehensive, if the methods used
in the planning system do not themselves require these
constraints in order to be e�ective.

In the last column of Table 1 we have indicated the
general origin of each constraint, and have added a
subcategory comment regarding a more speci�c topic
that constraint might be expected to address.

While not well shown in Table 1, some constraints
are sub-cases of others. For example, minimizing �x-
ture complexity (MIN-FIXT-COMPLEX) is an ap-
proach to minimizing cost of �xturing (MIN-COST-
FIXT), which is itself a subcase of minimizing cost
(MIN-COST).

6.2 Organization by function in planning

process

Here we wish to organize the constraints according
to their typical function in an assembly planning pro-
cess. This function can be represented by the obligation
and scope categorizations (see Section 3). In Table 1
we show in columns two and three all the six possible
combinations of obligation and scope. (Column two is
ordered by decreasing degree of obligation.) For ex-
ample, REQ-MONOTONE is a strategic requirement,
which is imposed to avoid the complication of mov-
ing a part into �nal position sometime after its initial
insertion.1 An example of a tactical requirement is a
requirement to have access to a portion of an assem-
bly at a particular stage in the assembly plan so that
a test can be executed (REQ-ACCESS-TEST), or the
requirement that a speci�c sequence of actions be used
at some point in the assembly process because it is
advantageous due to allowing simple �xturing, easy
manipulation, etc. (REQ-SUBSEQ). Note that many
tactical requirements, such as REQ-SUBSEQ, seem to
arise because a person wishes to impose his/her insight
into the assembly planning process.

Some optimization constraints, such as minimizing
the cost of �xturing (MIN-COST-FIXT), are strategic,

1REQ-MONOTONE is implicitly implemented in most plan-

ning systems, because producing non-monotone plans is usually

much more di�cult than producing monotone plans.



CONSTRAINT NAME OBLIGATION SCOPE INFO REQ'D ORIGIN(SUBTOPIC)
REQ-LINEAR requirement strategic each action assembly(line layout)
REQ-PATHS-AXIAL requirement strategic each action assembly(simplicity)
REQ-TWO-HANDED requirement strategic each action assembly(simplicity)
REQ-MONOTONE requirement strategic each action planning(simplifying)
REQ-PATHS-STR requirement strategic each action planning(simplifying)
REQ-CONNECT requirement strategic each state assembly(�xturing)
PRH-COLLISION requirement strategic each state assembly(fundamental)

REQ-ACTION requirement tactical a plan assembly(various)
REQ-STATE requirement tactical a plan assembly(various)
REQ-STAB-STATE requirement tactical a state assembly(�xturing)
REQ-ACCESS-TEST requirement tactical a state assembly(manipulability)
REQ-ACCESS-TOOL requirement tactical a state & action assembly(manipulability)
REQ-SUBSEQ requirement tactical a sub-plan assembly(various)
PRH-SUBSEQ requirement tactical a sub-plan planning(reject a bad plan)
REQ-STAB-ACTION requirement tactical each action assembly(�xturing)
REQ-LINEAR-SUBSET requirement tactical each action assembly(line layout)
REQ-CLUSTER requirement tactical each action assembly(mfg. e�ciency)
REQ-ORDER-FIRST requirement tactical each action assembly(mfg. e�ciency)
PRH-ACTION requirement tactical each action assembly(various)
REQ-FASTENER requirement tactical each action assembly(various)
REQ-ORDER-LIAISON requirement tactical each action assembly(various)
REQ-ORDER-PART requirement tactical each action assembly(various)
REQ-PART-SPECIAL requirement tactical each action assembly(various)
REQ-SUBASSY requirement tactical each action assembly(various)
PRH-SUBASSY requirement tactical each action planning(reject a bad plan)
PRH-STATE requirement tactical each state assembly(various)
REQ-ORDER-SPECIAL requirement tactical various assembly(various)

MAX-LINEAR optimization strategic a plan assembly(line layout)
MIN-COST optimization strategic a plan assembly(cost)
MIN-DIREC optimization strategic a plan assembly(cost)
MAX-STAB optimization strategic a plan assembly(cost: �xturing)
MIN-COST-FIXT optimization strategic a plan assembly(cost: �xturing)
MIN-FIXT-COMPLEX optimization strategic a plan assembly(cost: �xturing)
MIN-REFIXT optimization strategic a plan assembly(cost or time)
MIN-REORIENT optimization strategic a plan assembly(cost or time)
MAX-PARALLEL optimization strategic a plan assembly(time)
MIN-TIME optimization strategic a plan assembly(time)
MIN-TOOLCHANGE optimization strategic a plan assembly(time)
MIN-SIMUL-LIAISON optimization strategic a plan assembly(reliability)

MIN-AWKWARD-ACTION optimization tactical an action assembly(manipulation)
MIN-AWKWARD-GRIP optimization tactical an action assembly(manipulation)

SUG-ORDER-GENERAL suggestion strategic a plan assembly(various)

SUG-EARLY suggestion tactical a plan assembly(mfg. e�ciency)
SUG-ACTION suggestion tactical a plan planning(speeds the search)
SUG-CLUSTER suggestion tactical a plan planning(speeds the search)
SUG-STATE suggestion tactical a plan planning(speeds the search)

Table 1: Combined Table of Constraints



as they require that some numeric measure be summed
over all the states or actions of an assembly plan, and
are implemented as a search in the space of assembly
plans. Others, such as minimizing the awkwardness
of a particular action, are local, or tactical optimiza-
tions. However, note that a tactical optimization could
become a strategic optimization if it is applied to all
states or actions of a plan.

\Suggestion" type constraints, which are less com-
mon, also can be strategic, such as applying rivets gen-
erally from one end of an airframe to another (SUG-
ORDER-GENERAL), or tactical, such as suggesting
to a planner that a set of bolts be added as a subset if
possible (SUG-CLUSTER).

6.3 Organization by information required

When implementing constraints in automated as-
sembly planning software, a signi�cant consideration is
how much information is required to evaluate whether
a constraint is being met. In Table 1 we have indi-
cated in the fourth column what type of information
is typically required to evaluate it. Most of the con-
straints fall into one of two categories: ones that can
be implemented on the basis of local information, such
as an action, and ones that require that an entire plan
be derived before the constraint can be evaluated or
a score obtained for it. For example, REQ-STAB-
STATE could presumably be implemented by evalu-
ating states one at a time (whether algorithmically or
interactively by a human) to determine if they pass
the chosen stability criterion. Or, to implement REQ-
ORDER-PART constraints, each proposed assembly
action can be compared to a list of part order con-
straints. On the other hand, all the strategic optimiza-
tions { and some others { require in general that an
entire plan be proposed before a score can be obtained
for optimization purposes. (We note that in some cases
a score can be estimated from a partial plan.) Only a
few constraints, such as REQ-SUBSEQ, fall into a cat-
egory intermediate between these two extremes. We
use the term sub-plan in Table 1 to refer to a sequence
of actions smaller than a plan.

We should note that the information requirement
listed for some of the tactical requirements may seem
too localized. However, we have found that it is pos-
sible to implement a number of these constraints using
only a description of each action, provided that that
description includes a complete list of all parts in the
subassemblies involved.

7 A General Approach to Constraint

Implementation

This survey was performed to help create a plan for
implementing constraints in an interactive extension of
the Archimedes 2 system [9]. In this context, the obli-
gation category seems the most important category of
constraint for structuring a constraint implementation.
Next most important is information required. We plan
to structure our constraint implementation along these
lines.

7.1 Requirements

We plan to implement nearly all of the tactical re-
quirements, and some strategic requirements, as �lters
organized by information required. A �lter will take a
proposed state, action, or sub-plan as input, and return
whether the input passes the �lter's test.

It is somewhat surprising that all the strategic re-
quirements, and most of the tactical requirements,
need only local information to evaluate them. Thus,
we can interact with the user in a coherent manner
about a whole set of �lterable constraints which are
then implemented in a more or less integrated manner.
In addition, the optimizing phase of the Archimedes
2 system will then accrue the bene�t of this �ltering
function a fortiori.

The remaining strategic requirements are either im-
plicit in the Archimedes 2 system (such as REQ-
MONOTONE) or else can be implemented more e�-
ciently as ags to the planner (such as REQ-LINEAR).

7.2 Optimizations

In Archimedes 2 we currently have implemented
three degrees of optimization: a full state-space search,
a search in a subspace of plans which use given sub-
assemblies, and a non-optimized \�rst feasible plan"
method. We plan to expand this set of search tools
by providing a \beam" search, a greedy search, a
K-lookahead greedy search, and variations of the
subassembly-guided search. This will provide the user
with a selectable level of computing e�ort, so he/she
can trade o� computing time with level of assurance of
the optimality of the plan.

Once such a fairly general search strategy has been
implemented in the space of assembly plans, a number
of strategic optimization constraints could be o�ered to
the user of an interactive planner by allowing the user
to de�ne a weighted sum of several metrics as an op-
timization criterion. We have experimented with this
idea in Archimedes 2 using criteria such as \minimize
the sum of tool changes plus subassembly inversions".



7.3 Suggestions

In this survey we found few \strategic suggestion"
constraints, but we believe such constraints could be
an e�ective tool for communicating between a human
user and an interactive planning system to jointly �nd
an appropriate plan for a large assembly. For example,
it seems it would be useful to suggest to a planning
system that the formal hierarchy of subassemblies de-
�ned within a CAD model be used as actual subassem-
blies when feasible, rather than requiring that they be
obeyed, which might fail. Or, general preferences could
be stated, such as a preference for assembling parts ap-
proximately from the assembly center outward. Such
suggestions could e�ciently guide the planning system
toward �nding an acceptable plan (or an optimal plan
within a chosen subspace) in less time.

There is some question as to how to approach im-
plementation of suggestions. We believe the right ap-
proach may be to treat the suggestion �rst as a require-
ment; then, if that fails to produce an acceptable plan,
the requirement would be progressively relaxed in some
manner until an acceptable plan is obtained. If an op-
timization is being performed the suggestion might be
relaxed further if a better score is so obtained.

8 Conclusion

We have winnowed, formalized, and categorized a
substantial body of constraints appearing in the as-
sembly planning literature or of common knowledge.
We hope this collection of constraint de�nitions and
their categorizations will be useful to other assembly
planning software e�orts, or even be the beginning of
a framework for more formal discussion of constraints
in assembly planning. In any event, the perspective
these categorizations provide has been of assistance in
planning the implementation of constraints in the in-
teractive version of Archimedes 2 which we are now
developing.

References

[1] T. E. Abell, G. P. Amblard, D. F. Baldwin, T. L. D.
Fazio, M.-C. M. Lui, and D. E. Whitney. Computer
aids for �nding, representing, choosing amonst, and
evaluating the assembly sequences of mechanical prod-
ucts. In [6], pages 383{435.

[2] D. Bara�, R. Mattikalli, and P. Khosla. Mini-
mal �xturing of frictionless assemblies: Complexity
and algorithms. Technical Report CMU-RI-TR-94-08,
Robotics Inst., CMU, 1994.

[3] N. Boneschanscher and C. J. M. Heemskerk. Grouping
parts to reduce the complexity of assembly sequence
planning. In E. A. Puente and L. Nemes, editors, In-
formation Control Problems in Manufacturing Tech-

nology 1989, pages 233{238. Pergamon Press, 1989.

[4] J. M. Henrioud and A. Bourjault. LEGA: a computer-
aided generator of assembly plans. In [6], pages 191{
215.

[5] R. L. Ho�man. Automated assembly in a CSG do-
main. In Proc. IEEE Intl. Conf. on Robotics and Au-

tomation, pages 210{215, 1989.

[6] L. S. Homem de Mello and S. Lee, editors. Computer-

Aided Mechanical Assembly Planning. Kluwer Aca-
demic Publishers, 1991.

[7] L. S. Homem de Mello and A. C. Sanderson. Evalu-
ation and selection of assembly plans. In Proc. IEEE

Intl. Conf. on Robotics and Automation, pages 1588{
1593, 1990.

[8] L. S. Homem de Mello and A. C. Sanderson. A correct
and complete algorithm for the generation of mechan-
ical assembly sequences. IEEE Trans. on Robotics and

Automation, 7(2):228{240, 1991.

[9] S. G. Kaufman, A. L. Ames, T. L. Calton, R. E. Jones,
C. A. Laguna, and R. H. Wilson. The Archimedes 2
assembly planning system: Implementation and per-
formance. Proc. IEEE Intl. Conf. on Robotics and Au-

tomation, 1996.

[10] H. Ko and K. Lee. Automatic assembling procedure
generation from mating conditions. Computer Aided

Design, 19(1):3{10, 1987.

[11] S. Lee and Y. G. Shin. Assembly planning based
on geometric reasoning. Computation and Graphics,
14(2):237{250, 1990.

[12] J. M. Miller and R. L. Ho�man. Automatic assembly
planning with fasteners. In Proc. IEEE Intl. Conf. on

Robotics and Automation, pages 69{74, 1989.

[13] R. H. Wilson and J.-C. Latombe. Geometric reason-
ing about mechanical assembly. Arti�cial Intelligence,
71(2):371{396, 1994.

[14] J. D. Wolter. On the Automatic Generation of Plans

for Mechanical Assembly. PhD thesis, Univ. of Michi-
gan, 1988.

[15] J. D. Wolter, S. Chakrabarty, and J. Tsao. Mating
constraint languages for assembly sequence planning.
IEEE Trans. on Robotics and Automation. To appear.

[16] J. D. Wolter and J. C. Trinkle. Automatic selection
of �xture points for frictionless assemblies. In Proc.

IEEE Intl. Conf. on Robotics and Automation, pages
528{534, 1994.


