
VHA
Health Information Systems

Privilege Management

Infrastructure

VHA Role Based Access Control (RBAC)

Constraint Catalog

Version 1.34

14 September 2007

 VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

ii

Record of Changes

Date Version Description By

12/26/2006 1.0 Initial Draft Suzanne Gonzales-Webb

12/31/2006 1.1 Quality Assurance Review / Revision Craig Winter

05/10/2007 1.2 Update Suzanne Gonzales-Webb

05/11/2007 1.3 Quality Assurance Review / Revision Craig Winter

06/25/2007 1.31 Update Suzanne Gonzales-Webb

07/20/2007 1.32 Update post peer review Suzanne Gonzales-Webb

7/23/2007 1.33 Quality Assurance Review / Revision Craig Winter

9/14/2007 1.34 Quality Assurance Review / Revision Craig Winter

H E A L T H I N F O R M A T I O N

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

Table of Contents

Section Page
1 Introduction...1
2 Context Constraints..7

2.1 Static and Dynamic Constraints ..7
2.2 Endogenous and Exogenous Constraints ...8
2.3 Authorization and Assignment Constraints..9

3 Constraint Process ...10
3.1 Assumptions ..10
3.2 High-Level View of The Constraint Process..10

3.2.1 Model Interrelations ..10
3.3 Process Steps [Neumann/Strembeck]...12

3.3.1 Identification of Permission Constraints [Neumann/Strembeck 4.3] ..12
4 Constraint Table ...14

List of Tables

Table Page
Table 1: Definitions ...4
Table 2: Permission Constraint Catalog EXAMPLE ...15

List of Figures

Figure Page
Figure 1: Interrelations of Scenario Model and Documents..11
Figure 2: RBAC Permission with Context Constraint..12
Figure 3: XACML Components ...19
Figure 4: Using SAML 2.0 to transport XACML ..21

List of Appendices

Appendix Page
Appendix A: Constraints Associated with Permissions EXAMPLE...15
Appendix B: Healthcare Information Technology Standards Panel (HITSP)..18
Appendix C: References ...22

iii

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

1 Introduction
Role-Based Access Control or RBAC is a method to control access to resources on an
information system. It was developed to overcome the complexities of managing individual user
permissions and their assignments.i Access control and authorization services ensure that
people, computer systems, and software applications can use only those resources (e.g., files,
directories, computers, networks) that they are authorized to use and then only for approved
purposes. Access controls protect against unauthorized use, disclosure, modification, and
destruction of resources and unauthorized issuing of system commands. [HITSP]

The intent of this document is to introduce a process to introduce constraints upon the identified
healthcare permissions as presented in the HL7 RBAC Permission Catalog. Future iterations of
this constraint document may introduce constraints as applied to structural roles and possibly
functional roles. This document presents an overview of constraint types and introduces
permission constraint identification using a proposed high level process. The licensed and
certified healthcare provider healthcare permissions cited are derived from the HL7 RBAC
Healthcare Permission Catalog tables. Future updates may include healthcare permissions that
may be assigned to non-licensed healthcare personnel.

Constraints are restrictions (conditions or obligations) that are enforced upon access permissions.
In RBAC, a constraint may restrict for example, a user to continue to have an action on the data
they are accessing. They can include contextual properties such as separation of duties, time-
dependency, mutual exclusivity, cardinality, location, etc. For the complex healthcare
environments, constraints provide the higher flexibility required in RBAC implementation (see
[Neumann Strembeck]).

Examples of contextual constraints could include:

• Head Nurse on a hospital floor at any given time (cardinality of 1, time-dependency),
• Chief of Staff (cardinality of 1),
• Lab Technician vs. Lab Technician Supervisor (separation of duties),
• Provider’s access to a remote hospital that is not his/her primary workplace

(location), and
• A physician working scheduled clinic hours (time-dependency) vs. physician working

in a 24 hour Emergency Room (no time-dependency).

With respect to access control, one has to ask first which parts of these unmanageable quantities
of context information are relevant for a specific authorization decision, and how the
corresponding information may be elicited and defined on the modeling level. In this document
we suggest a process for the specification of context constraints. This process is based as an
extension to the scenario-driven role engineering process for RBAC roles presented in Neumann

1

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

2

and Strembeck [2002]. Prior to describing the engineering of context constraints in detail, we
give some background information concerning the scenario-driven role engineering process.

In Role-Based Access Control, users (i.e., individuals or authorization services, etc.) are given a
set of permissions—the ability to have an action (create, read, write, etc.) on an object (a
laboratory order, patient history, etc.). In a healthcare environment arena however, flexibility in
RBAC is needed as the duties and functions of identified structural rolesii such as a physician,
nurse or pharmacist1 in relation to accessing an information system can vary on the time of day,
their location (i.e., clinic, ward) and when given additional temporary duties (i.e., supervisory or
administrative). These conditional changes or constraints modify the level of access control an
individual user may have. One possibility to deal with this dynamically changing context is to
rapidly modify permission assignment relations according to the changes in the [healthcare]
environment. This central idea supports constraints on almost all parts of an RBAC model (e.g.,
permissions, roles, or assignment relations) to achieve a high flexibility.iii

Using the Context Constraint Examples above, permission constraints could include:

• Head Nurse permission functions can be accessed only by one Registered Nurse per
12-hour shift on a hospital floor at any given time (cardinality of 1, time-
dependency),

• Only one Physician may have access to the Chief of Staff permissions (cardinality
of 1),

• A laboratory user can co-sign another Lab Technician’s results, but cannot co-sign
their own even if logged on as the Lab Technician Supervisor (separation of duties),

• Provider’s access to a remote hospital that is not his/her primary workplace
(location), and

• A physician working scheduled clinic hours (time-dependency) vs. physician working
in a 24 hour Emergency Room (no time-dependency).

With respect to access control, one has to ask first which parts of these unmanageable quantities
of context information are relevant for a specific authorization decision, and how the
corresponding information may be elicited and defined on the modeling level. In this document
we suggest a process for the specification of context constraints. This process is based as an
extension to the scenario-driven role engineering process for RBAC roles presented in Neumann
and Strembeck [2002]. Prior to describing the engineering of context constraints in detail, we
give some background information concerning the scenario-driven role engineering process.

1 Structural roles are categories of healthcare personnel warranting differing levels of access control. Structural
roles allow a user to ‘connect’ to a resource, but do not grant authorization. Structural roles define what specific
healthcare workflow users are allowed to participate in, while functional roles define authorizations granted to an
entity to allow access (i.e., to protected health information).

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

In the scenario-driven role engineering process usage, scenarios of an information system are
used to derive permissions and to define tasks. In general, a scenario describes an action and
event sequence, for example, to register a new patient in a hospital information system. Thus,
each scenario consists of several steps, and a subject performing a scenario must possess all
permissions that are needed to complete the different steps of this scenario. In turn, a task
consists of one or more scenarios, and tasks are combined to form work profiles. A work profile
comprises all tasks that a certain role (functional role) is allowed to perform. In a hospital
environment different work profiles for physicians, nurses, and clerks are needed, for instance.
In the role engineering process, work profiles are then used together with the permission catalog
and the constraint catalog to define a concrete RBAC model. However, the scenario-driven
approach presented in Neumann and Strembeck [2002] only provides general guidance for the
sub process of defining (exogenous) constraints. This fact and our aim to specify and enforce
context constraints in an RBAC environment led us to the definition of the process extension
proposed in this section. [Neumann Strembeck]

According to Neumann and Strembeck,iv “A context constraint is defined as a dynamic RBAC
constraint that checks the actual values of one or more contextual attributes for pre-defined
conditions. If these conditions are satisfied, the corresponding access request can be permitted.
Accordingly, a conditional permission is an RBAC permission that is constrained by one or more
context constraints.” Thus, constraints are restrictions that are enforced upon access
permissions. They can include contextual properties such as separation of duties, time-
dependency, mutual exclusivity, cardinality, location, etc. Context constraints are used to define
conditional permissions.

The conditions to be satisfied can be either positive (e.g., “…location is ward,” or negative (e.g.,
“…the location is not Texas.”) In the first instance if the location is “Ward,” then access is
granted, otherwise access from all other locations is denied. In the second instance, all locations
will be granted access except for “Texas.”

Table 1 lists definitions of terms used in this document.

3

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

Table 1: Definitionsv vi

Term Definition Source

Cardinality Cardinality occurs when there is a limit to the certain number of roles
(users, people, etc.) who may be holding permission at any one time.

[Neumann-
Strembeck]

Conditional
Permission

A conditional permission is a permission that is associated with one or
more context constraints and grants access if each corresponding context
constraint evaluates to “true.” Therefore, conditional permissions grant
an access operation if the actual values of the context attributes captured
from the environment fulfill the attached context constraints. The
relation between context constraints and permissions is a many-to-many
relation. A number of permissions can be associated with the same
context constraint if necessary. Similarly, one permission may have
many context constraints associated with it.

[Neumann-
Strembeck]

Context
Constraint

A context constraint is a clause containing one or more context
conditions. It is satisfied if (if and only if) all its context conditions hold.
Context constraints are used to define conditional permissions.

[In an RBAC environment], a context constraint is defined through the
terms context attribute, context function, and context condition:

—A context attribute represents a certain property of the environment
whose actual value might change dynamically (like time, date, or
session-data for example) or which varies for different instances of the
same abstract entity (e.g., location, ownership, birthday, or nationality).
Context attributes are a means to make (exogenous) context information
explicit.

—A context function is a mechanism to obtain the current value of a
specific context attribute (i.e., to explicitly capture context information).
For example, a function date () could be defined to return the current
date. Of course a context function can also receive one or more input
parameters. For example, a function age(subject) may take the subject
name out of the _subject, operation, object_ triple to acquire the age of
the subject, which initiated the current access request (e.g., the age can
be read from some database).

—A context condition is a predicate (a Boolean function) that consists of
an operator and two or more operands. The first operand always
represents a certain context attribute, while the other operands may be
either context attributes or constant values. All variables must be ground
before evaluation. Therefore, each context attribute is replaced with a
constant value by using the corresponding context function prior to the
evaluation of the respective condition.

[Neumann-
Strembeck]

4

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

5

Term Definition Source

Location Location is a constraint that creates a location requirement for the role
holding the permission.

Creation of a location requirement for the role holding the permission

[Neumann-
Strembeck]

Mutual
Exclusivity

To be mutually exclusive, the minimum user cardinality is ‘one’
e.g., constraints like: the roles “accounting clerk” and “controller” must
be statically mutual exclusive, or the minimum user cardinality for the
“controller” role is “one”.

Two mutual exclusive roles must never be assigned to the same subject
simultaneously, as specified in static separation of duty (SSD)
constraints.

In dynamic separation of duty constraints which define that two mutual
exclusive roles must never be activated simultaneously within the same
user session, or time constraints which restrict role activation to a
specific time interval (e.g., from 8 a.m. to 8 p.m.).

[Neumann-
Strembeck]

Object An object is an entity that contains or receives information. The objects
can represent information containers (e.g., files or directories in an
operating system, and/or columns, rows, tables, and views within a
database management system) or objects can represent exhaustible
system resources, such as printers, disk space, and CPU cycles.

The set of objects covered by RBAC includes all of the objects listed in
the permission catalog that are assigned to roles.

[ANSI-
RBAC]

Operation An operation is a capability provided by a currently executing program
(i.e., an executable image) which upon invocation executes some
function for the user. Within a file system, operations might include
read, write, and execute. Within a database management system,
operations might include insert, delete, append, and update.

Basic Permission Name Operations:

A = Append
C = Create
R = Read
U = Update
D = Delete
E = Execute

[ANSI-
RBAC]

Permission Permission is an approval to perform an operation on one or more RBAC
protected objects.

[ANSI-
RBAC]

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

6

Term Definition Source

Separation of
Duties

Separation of duty occurs when a single role (user, person, etc.) cannot
hold two functionally conflicting permissions at the same time.

[Neumann-
Strembeck]

Time
Dependency

Time-dependency creates a time of day/hour dependence on the role
holding the permission.

[Neumann-
Strembeck]

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

2 Context Constraints
A context constraint specifies that certain context attributes must meet certain conditions in order
to permit a specific operation. A context constraint is defined (and primarily used) as a dynamic
exogenous authorization constraint.

From Neumann and Strembeck, “a context constraint is defined through the terms context
attribute, context function, and context condition:

—A context attribute represents a certain property of the environment whose actual value
might change dynamically (like time, date, or session-data for example) or which varies
for different instances of the same abstract entity (e.g., location, ownership, birthday, or
nationality). Thus, context attributes are a means to make (exogenous) context
information explicit. On the programming level, each context attribute CA represents a
variable that is associated with a domain which determines the type and range of values
this attribute may take (e.g., date, real, integer, string).

—A context function is a mechanism to obtain the current value of a specific context
attribute (i.e., to explicitly capture context information). For example, a function date()
could be defined to return the current date. Of course a context function can also receive
one or more input parameters. For example, a function age(subject) may take the subject
name out of the _subject, operation, object_ triple to acquire the age of the subject,
which initiated the current access request (e.g., the age can be read from some database).

—A context condition is a predicate (a Boolean function) that consists of an operator and
two or more operands. The first operand always represents a certain context attribute,
while the other operands may be either context attributes or constant values. All
variables must be ground before evaluation. Therefore, each context attribute is replaced
with a constant value by using the corresponding context function prior to the evaluation
of the respective condition.

A context constraint is a clause containing one or more context conditions. It is satisfied if (if
and only if) all its context conditions hold.”

Neumann and Strembeck state that constraints in general have multiple dimensions. As such,
constraints can be static or dynamic; exogenous or endogenous; and authorization or assignment.
These different dimensions are explained in this section.

2.1 Static and Dynamic Constraints
A static constraint refers to constraints that can be evaluated directly at the design time of an
RBAC model (i.e., static separation of duties or SSD). Static separation of duty requirements
can be enforced in the administration environment. For this reason, assignments that should

7

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

never occur can thus be prohibited. It has been pointed out that this feature can be very
restrictive to business operations, especially in smaller organizations. However, it may still
prove useful in cases where business rules that span an entire organization and stay constant over
time must be expressed.

 Example: Two mutually exclusive roles must never be assigned to the same subject
simultaneously (i.e., as above wherein the roles of a Physician and a Pharmacist should
not be accessed simultaneously by the same user).

A dynamic constraint can only be checked at runtime according to the actual values of specific
attributes or with respect to characteristics of the current session (i.e., dynamic separation of
duties or time constraints). The objective behind dynamic separation of duty is to allow more
flexibility in operations. Consider the case of initiating and authorizing payments. A static
policy could require that no individual who can serve as payment initiator could also serve as
payment authorizer.

 Example: A Resident can enter an order for a patient but cannot activate an order without
a co-signature by their Attending Physician.

2.2 Endogenous and Exogenous Constraints
[Neumann/Strembeck] Endogenous constraints inherently affect the structure and construction
of a concrete instance of an RBAC model. It influences the definition of the respective role-
hierarchy since it further prohibits that two distinct roles to which these permissions are assigned
can have a common senior role. Otherwise a common senior could acquire both (mutual
exclusive) permissions and thereby violate the corresponding static separation of duties
constraint.

• Cardinality occurs when there is a limit of a certain number of people who may be
holding the permission at any one time.

 Example: At any given time per floor/unit, only one person may hold the permission of
charge nurse.

• Separation of duties occurs when the same person cannot hold two related permissions
at the same time.

 Example: A Staff RN permission vs. permissions for an RN supervisor.

Exogenous constraints are constraints that apply to attributes that do not belong to the core
elements of an RBAC model, but are defined as “side conditions” for certain operations or
decisions of an access control service. These include time constraints that restrict role activation
to a specific time internal, or allow access operations for a particular resource only on a specific
weekday.

• Time-dependency creates a time of day/time dependence on the person holding the
permission.

8

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

 Example: A person with banker permission can only e-sign money vouchers during
regular business hours 9-5 (or a physician working in a clinic w/‘set hours’). An example
of no time-dependency is a physician working in the ER.

 Example: An RN with Pharmacy privileges outside of regular Hospital Pharmacy Hours.
At some sites, an RN may assume pharmacist ‘review order’ privileges (i.e., accepting an
entered physician order to allow it to dispense) so that a patient may receive the
medication - only during hours (time) when the pharmacy is closed (pharmacist is not
available).

• Location creates a location requirement for the person holding the permission.

 Example: A physician or provider access to a remote hospital which is not their primary
workplace.

 Example: An emergency room physician who covers another physician’s shift/duty call
during low patient census at multiple locations. A Physician’s Assistant (PA) may be
physically present, but the emergency room physician must override the PA order at the
remote location in order for the order to process.

2.3 Authorization and Assignment Constraints
Beside the categorization as static/dynamic and endogenous/exogenous, constraints can also be
subdivided in authorization constraints and assignment constraints:

—Authorization constraints are constraints that place additional controls on access control
decisions. Thus, even if a subject is in possession of a permission that grants a certain access
request, the access can only be allowed if the corresponding authorization constraints are
fulfilled at the same time. For example, such constraints can be applied to implement access
control policies based on access histories, as in Chinese Wall policies for instance.

—Assignment constraints are constraints that control the assignment or activation of permissions
and roles (e.g., maximum and minimum cardinalities or separation of duty constraints). On the
source code level, assignment constraints may be implemented through the same means as
applied for authorization constraints (e.g., as an authorization constraint on the “assign role” or
“activate role” permission). We think, however, that it is sensible to discriminate assignment
and authorization constraints on the design level since both types address distinguishable
intentions when engineering an RBAC policy. [Neumann Strembeck]

9

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

3 Constraint Process
3.1 Assumptions
Readers of this Constraint document should familiarize themselves with the HL7 Role
Engineering Process. Each step requires the user to have the permission in order to accomplish
the step. The compilation of sequential steps creates a scenario. A subject performing a scenario
must possess all permissions that are needed to complete the different steps of this scenario. In
turn, a task consists of one or more scenarios, and tasks are combined to form work profiles. A
work profile comprises all tasks that a certain type of subject is allowed to perform. In a hospital
environment different work profiles for physicians, nurses, and clerks are needed, for instance.
In the role engineering process, work profiles are then used together with the permission catalog
and the constraint catalog to define a concrete RBAC model. However, the scenario-driven
approach presented in Neumann and Strembeck [2002] only provides general guidance for the
sub process of defining (exogenous) constraints. This fact and our aim to specify and enforce
context constraints in an RBAC environment led us to the definition of the process extension
proposed.

Using Figure 3 as an activity diagram for the engineering (sub) process, the role engineering
process as a whole and the engineering of context constraints is in essence a requirement for the
engineering process. This process is based on goal-oriented requirements engineering techniques
as found in van Lamsweerde Goal-Oriented Requirements Engineering: A Guided Tour
[Neumann Strembeck].

3.2 High-Level View of the Constraint Process

3.2.1 Model Interrelations
Figure 1 illustrates how the Scenario Model and documents are related to the remaining
components of the Constraint Catalog. Developing the Usage Scenarios (i.e., the Scenario
Model) is the first step in the process.

10

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

11

Figure 1: Interrelations of Scenario Model and Documents
(Adapted from [Neumann/Strembeck])

Scenario Model

......

Task_1=Scenario-sequence(S1,S7,S4)

Task_2=Scenario S3
Task_n=Scenario-sequence(S21,S14)

Task Definitions

Derived from and
composed of

Perm_1={operation, object}

Perm_2={operation, object}
Perm_n={operation, object}

Permission Catalog

Profile_1={Task_2,...Task_7}
Profile_2={Task_6, Task_8}

Profile_n={Task_x,...Task_y}

Work Profile

Consists of

Derived from

refer to

Perm_3 <exclude> Perm_9
Perm_5 <exclude> Perm_12

Max_cardinality (Perm_n) = 4

Constraint Catalog

Created in
accordance with

Created in
accordance with

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

3.3 Process Steps [Neumann/Strembeck]
The following constraints sub-process will be applied to define the following types of
constraints:

• User-role constraint – user cannot be assigned to two separate roles (e.g., a user cannot be
assigned to both the Prescriber role and the Pharmacist role).

• Role-role constraints – users may have more than one role, but only one role may be
active in a session at any given time (e.g., a user cannot activate the Prescriber role and
the Pharmacist role within a session).

Role-permission constraint – wherein a role cannot be assigned a certain permission (e.g.,
the ‘write DNR Order’ permission cannot be assigned to the Resident role).

• Permission-permission constraint – wherein permission(s) are in conflict or should not be
assigned to the same role (e.g., The ‘Order Medication’ and ‘Dispense Medication’
permissions cannot be assigned to the same role).

Figure 2: RBAC Permission with Context Constraint

3.3.1 Identification of Permission Constraints [Neumann/Strembeck 4.3]

Preliminary
Scenarios and the scenario model serve as the basis for the scenario-driven role engineering
process [Neumann and Strembeck 2002]. The first step of the constraint engineering sub-process
shown in Figure 3 is thus to fetch the current scenario model.

12

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

Process Overview
Review the permissions and identify the applicable constraints. For each of these constraints,
create a record in the constraint catalog.

STEP 1 Review each permission and identify the applicable obstacle or constraint(s).

STEP 2 For each permission, record the associated constraint(s) if applicable (verify
‘constraint’ vs. ‘business rule’ constraint conditions and brief description;
include factors which make it differ from a business rule).

STEP 3 Identify Constraint Type (cardinality, separation of duty, time, location)

STEP 4 Assign Constraint ID

Table 1 depicts an example of a constraint catalog. Each record in the catalog will consist of a
permission ID, basic permission name or {operation, object} pair, and applicable constraint(s).
Note: the constraint catalog will be populated after Scenario Model Refinement which is
described in a subsequent section.

13

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

14

4 Constraint Table
Listed below are the legends for the healthcare permission table that follows.

ID (xy-nnn) Legend:
x = P (permission)
y = C (constraint identifier)
nnn = Sequential number starting at 001

Unique Permission ID - refers to the identifier assigned to the abstract permission name

Permissions are organized according to the following clinical tasks; [VHA Healthcare
Permission Catalog]

• Order Entry (OE),
• Review Documentation (RD),
• Perform Documentation (PD) and
• Scheduling (SC).

Unique Permission-Constraint ID – refers to the identifier assigned to the permission
constraint

Constraint Type – refers to the constraint definition as described in Table 1

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

Appendix A: Constraints Associated with Permissions EXAMPLE

Table 2 lists the definitions of the objects presented in Section 2:

Unique_Permission_Constraint-ID – Unique Constraint identification
Permission_Constraint_Description – brief description of constraint application on the listed permission(s)
Constraint_Type – definition of the constraint as applied to the corresponding permission
Permission_ID, Permission Name – corresponding unique Permission ID and name as described in the VHA Healthcare Permission
Catalog to which the constraint is being applied.

Table 2: Permission Constraint Catalog EXAMPLE

Unique_
Permission
_Constraint
_ID

Permission_Constraint
_Description Constraint_Type Permission

_ID Permission_Name

POE-005 New/Renew Outpatient Prescription Order

POE-006 Change/Discontinue/Refill Outpatient Prescription
Order

POE-016 Change/Discontinue Standing Order(s) PRN
POE-017 New Verbal and Telephone Order
POE-018 Change/Discontinue Verbal and Telephone Order
POE-023 Sign Order(s)
POE-028 Release Orders

PC-002 A Resident may operate in
ER as an Attending.

Location

POE-028 Release Orders

15

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

16

Unique_
Permission
_Constraint
_ID

Permission_Constraint
_Description Constraint_Type Permission

_ID Permission_Name

PPD-001 New Progress Notes
PPD-002 Edit/Addend/Sign Progress Notes
PPD-010 Edit/Addend/Sign History and Physical
PPD-013 Edit/Addend/Sign Consultation Findings
PPD-030 Edit/Addend/Sign Discharge Summary
PPD-041 Edit/Addend/Sign Encounter Data
PPD-045 Edit/Addend Patient Acuity
PRD-017 Review Progress Notes
POE-023 Sign Order(s)
POE-028 Release Orders
PPD-001 New Progress Notes
PPD-002 Edit/Addend/Sign Progress Notes
PPD-010 Edit/Addend/Sign History and Physical
PPD-015 New Surgical Report
PPD-016 Edit/Addend/Sign Surgical Report

PC-003

Surgery Service has
rotating designation of
Chief Resident (Only one
Resident may have title
(permission access or role)
of Chief Resident in
Surgery Service at any
given time).

Cardinality

PRD-017 Review Progress Notes

PC-004

Only one (1) nurse (RN)
may be acting in the role of
charge nurse on any given
floor or ward.

Cardinality POE-028 Release Orders

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

17

Unique_
Permission
_Constraint
_ID

Permission_Constraint
_Description Constraint_Type Permission

_ID Permission Name

PC-005 Only one (1) physician may
be acting as Chief of Staff
at any given time.

Cardinality POE-028 Release Orders

PC-006 Only one (1) physician may
be acting as Chief of
Medical Records at any
given time.

Cardinality POE-028 Release Orders

POE-005 New/Renew Outpatient Prescription Order
POE-006 Change/Discontinue/Refill Outpatient Prescription

Order
POE-007 New Inpatient Medication Order
POE-008 Change/Discontinue Inpatient Medication Order

PC-007 In the event that a Hospital
or Clinic Pharmacy does
not have 24 hour service.
A Charge Nurse may have
access to some of the
pharmacy override
privileges (i.e., verify
orders). During regular
pharmacy hours, the Charge
Nurse would normally not
have these permission(s).

Time-Dependency

POE-028 Release Orders

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

Appendix B

Healthcare Information Technology Standards Panel (HITSP)

Security policy management includes the security rules to be enforced by the system, constraints
on the rules and obligations of systems and conveying these to the security mechanism used in
enforcing the rules. Security policy provisioning management includes granting privileges and
attributes to users and making these known to the various components of the security system.
Security policy management includes managening and instantiating security policy within the
application security mechanisms. ISO 22600-1 & 2 provide the framework and models for
security management used in this package.

Security policy enforcement or access control, deals with ensuring that users attempting to access
system functions and data have the requisite privileges (granted and provisioned in privacy and
security management). Access control considers all access control information needed to make
and enforce an access control decision. ISO 10181-3 provides the framework and models for
access control. It also defines the types of access control used in this package.

The following are the requirements derived from the American Health Information Community
(AHIC) Use Case for this component:

1. Access Control policies are managed (created, modified, deleted, suspended or restored,
and provisioned based on defined rules and attributes)

2. Data access policy is enforced

3. Data access policy bypass permission is established (granted) (Emergency Access/break
glass)

4. Data access policy bypass is enforced (Emergency Access/break glass)

5. User data are located by an entity with the ability (privileges) to search across systems

6. Protected data are accessed based on user permission for data access

7. Protected data are modified, updated or corrected by identified users

8. Selective protected data are blocked from users

9. Requests for changes to protected data are made by users to providers/sources of data

10. Obligations can be used to full access permissions and actions

18

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

Figure 3: XACML Components

XACML (eXtensible Access Control Markup Language) (is a general-purpose language for
specifying access control policies [Pro04]. In Extensible Markup Language (XML) terms, it
defines a core schema with a namespace that can be used to express access control and
authorization policies for XML objects. Since it is based on XML, it is, as its name suggests,
easily extensible. XACML provides features that make it possible to support a broad range of
policies [Oas06]; it provides the capability to request a specified action within a system using a
standardized syntax, and then receive one of four replies:

• Permit – action allowed

• Deny – action disallowed

• Indeterminate – error or incorrect/missing value prevents a decision

• Not Applicable – request cannot be processed.

XACML’s standardized architecture (Figure 2) for this decision-making uses two primary
components: the Policy Enforcement Point (PEP) and the Policy Decision Point (PDP). The PEP
constructs the request based on the user’s attributes, the resource requested, the action specified,
and other situation-dependent information through PIP. The PDP receives the constructed
request, compares it with the applicable policy and system state through the Policy Access Point
(PAP), and then returns one of the replies specified above to the PEP. The PEP then allows or
denies access to the resource. The PEP and PDP components may be embedded within a single
application or may be distributed across a network.

19

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

To make the PEP and PDP work, XACML provides a policy set, which is a container that holds
either a policy or other policy sets, plus (possibly) links to other policies. Each individual policy
is stated using a set of rules. XACML also includes methods for combining these policies and
policy sets, allowing some to override others. This is necessary because the policies may overlap
or conflict.

Transferring XACML Policies
Policies may need to be transferred from one entity to another in a Privilege Management
Infrastructure. Some of the situations where this is required are:

a) A PDP evaluates a policy that references other policies by name. The other policies must
be fetched from a Policy Administration Point (PAP) when required for evaluation.

b) A PDP may need to obtain its “root” policy from the enterprise Policy Administration
Point as part of configuration.

c) A resource may be transferred between security domains and the source domain may
transfer a policy for protection of the resource that the destination domain is responsible
for enforcing.

d) Multiple sites may need to use common policies, even though their PDPs are local for
performance reasons. These policies need to be transferred from the central Policy
Administration Point to each site’s PDP.

While XACML defines a policy language, it’s designed to be one component in an overall
authorization system. It relies on other components to provide mechanisms for verifying that
policy instances were issued by a trusted Policy Administration Point for protecting the integrity
and confidentiality of instances of policies, and for protocols used to query for and respond with
policy instances. XACML has been integrated with the Organization for the Advancement of
Structured Information Standards (OASIS) Security Assertion Markup Language (SAML)
Version 2.0 as one way of providing these necessary functions. SAML may be used with
XACML to protect Access Control Information attributes as well as policies. The following
diagram illustrates the integration of SAML and XACML. [HITSP]

20

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

Figure 4: Using SAML 2.0 to transport XACML
(Used by permission of OASIS)

21

VHA RBAC Healthcare
Constraint Catalog v1.34

14 September 2007

22

Appendix C: References

[ANSI] American National Standard for Information Technology - Role-Based Access Control,
ANSI INCITS 359-2004, 2004

[ANSI] An Integrated Approach to Engineer and Enforce Context Constraints in RBAC
Environments; ACM Transactions on Information and System Security; Neumann and
Strembeck

[ASTM] ASTM E 1986-98: Standard Guide for Information Access Privileges to Health
Information

[HITSP] Healthcare Information Technology Standards Panel HITSP Manage and Control Data
Access Transaction Package, V0.2 May 16, 2007

ISO 10181-3-00: Security Frameworks for Open Systems: Access Control Framework; also
available as ITU-T X.812: 1995

ISO TC 215/WG4/N ANSI Health informatics – Privilege management and access control – Part
1: Overview and policy management, 2004-01-08

[Neumann-Strembeck] An Integrated Approach to Engineer and Enforce Context Constraints in
RBAC Environments; Received November 2003; revised March 2004, April 2004 and May
2004; accepted May 2004

OASIS, Extensible Access Control Markup Language (XACML) v2.0, February 2005

OASIS, XACML Profile for Role-based Access Control (RBAC): Committee Draft 01
(normative; 13 February 2004)

VHA/IHS Role-based Access Control Task Force Charter Version 2.0, 17 September 2004

Latest versions of the following documentation can be found on: www.va.gov/RBAC

VHA Role-based Access Control Task Force Project Management Plan (PMP)
VHA Role-based Access Control Task Force Structural Roles
VHA Role-Based Access Control, Functional Roles
VHA Role-Based Access Control, Permission Catalog

i HL7 RBAC Role Engineering Process v1.1, November 2005
ii HL7 Structural Roles v1.0, September 2006
iii M Strembeck and G. Neumann, An Integrated Approach to Engineer and Enforce Context Constraints in RBAC
Environments; Received November 2003; revised March 2004, April 2004 and May 2004; accepted May 2004
iv M. Strembeck and G. Neumann, An Integrated Approach to Engineer and Enforce Context Constraints in RBAC
Environments; ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.
v Ibid
vi D. Richard Kuhn, Mutual Exclusion of Roles as a Means of Implementing Separation of Duty in Role-Based
Access Control Systems. 1997

http://www.va.gov/RBAC

	1 Introduction
	2 Context Constraints
	2.1 Static and Dynamic Constraints
	2.2 Endogenous and Exogenous Constraints
	2.3 Authorization and Assignment Constraints
	3 Constraint Process
	3.1 Assumptions
	3.2 High-Level View of the Constraint Process
	3.2.1 Model Interrelations
	3.3 Process Steps [Neumann/Strembeck]
	3.3.1 Identification of Permission Constraints [Neumann/Strembeck 4.3]
	4 Constraint Table

