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DOE Research Project

Task 1. Data analysis and interpretation of current
treatments in the Bossier.

Task 2. Drilling and data collection for wells in the
Dowdy Ranch Field.

Task 3. Fracture diagnostics program.

Task 4. Enhancing current frac models (proppant
transport and leak-off in water fracs).
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K 5. Fracture cleanup.
K 6. Model validation with field data

K /. Technology Transfer
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Bethel Plant

FREESTONE
COUNTY

Current Status
290 MMCED Gross Production
390 Wells

Dowdy
Ranch Field

2401 Miles ofi Gathering
19,000 H P of Compression

Dew/Mimms

Bear Grass
Field

LEON
COUNTY

ROBERTSON A

COUNTY

1-45

Bald Prairie
Field




Texas Bossier Properties

» Composition - Sandstone

> Depth ~ 12,500 ft

» Porosity ~ 10%

» Permeability ~ 0.03 md

> Net Pay ~ 150 ft

» Pressure Gradient ~ 0.65 psi/ft
» Fracture Gradient ~ 0.85 psi/ft




Texas Bossier Post-Frac Analysis

» Post-Frac PBU Tests (L, wkKk)
» Production Matching
» Matching with exisiting frac models

» Microseismic mapping




Texas Bossier Fracturing Analysis

Well A

Frac'd w/ 10083 BSW + 170k 40/70, AIR = 80 BPM, ATP 7524.
Net Pay = 159 ft
IP = 10962 MCFD
BHP (calc) = 9237 psi

Kres Xs WK Fed C
md ft mdft
Microseismic Imaging Created X; = 500 ft to the West & 300 ft to the East
PBU Results 0.0293 62 17 9 3
Production Matching 0.0241 102 10 4 1
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Objectives for Improvement

> Need longer propped fractures
> Need better conductivity

» Must contain height growth

Better proppant placement!




Technical Barriers

» Better models for proppant transport and fluid
leakoff with low viscosity fluid in turbulent
flow

» Measurement of propped fracture lengths in
the Bossier.

» Optimal fracture treatment design (fluids,
rates, pumping schedule, proppant size and
concentration etc.)

» Inexpensive frac-fluid formulations that allow
low pressure, low perm zones to flow back
and produce at economic rates.




Our Strategy
to Improve/Optimize TGS Fracs

» Develop accurate estimates of propped
and unpropped frac lengths,

» microseismic data
» post-frac PBU and production data.

» Develop more accurate models for
leakoff and proppant transport.

» Verify the models, develop modified
designs, and iteratively optimize in the
field.




Proppant Transport is the Key

Proppant settling depends on
» Fluid viscosity

» Fracture width

» Injection rate

» Fracture extension

> Leakoff

» Proppant size

An accurate model for proppant transport
iS essential in any water-frac simulation /
design.
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Proppant Transport Models In
Current Frac Simulators

» The fracturing fluid and proppant are grouped
together as a slurry.

» Relative motion between fluid and proppant is
generally Stokes settling.

» Gravity acts as a body force on the slurry.

» For gels, settling velocity is much less than advective
velocity of slurry (and so can be neglected).




New Proppant Transport Model
Coupled with Fully 3-d Frac Model
(UTFRAC)

The proppant mass balance equation can be
expressed as,

oc ow 0
—+(1-c)—+—|(1- +
v ot 1=e) 0t Ox [( C)qX]

9l -0yg e Prl=g
Oy ' P,




Fluid Flow Equations (UTFRAC)

Momentum balance equations for non-
Newtonian fluid flow in the fracture.

Power-law indices k and n are functions of
the proppant concentration

At high proppant concentration the slurry
viscosity increases dramatically.

Allow for relative motion between frac-
fluid and the proppant

qyp = qyf + Vl‘
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Settling Velocity of Particles (V,)
Corrections to Stokes Settling Velocity
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Settling Rate of a Single Particle
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Effect of Particle Concentration
V=V.=Vf(c)

Comparison Between Matched Curve and
Experimental Data
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Settling Velocity, Wall Effect

Average Wakiya Settling & Matched Curve
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Effect of Turbulence

Correction at Various Reynolds Numbers
(A=0.1, a/w=0.025, Density Ratio = 1.5)
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Properties:
* Fluid density:
Particle density:

Fluid viscosity:
poise

Radius of particle:
Width of cell:

Particle concentration:
Fluid horizontal velocity:

1 gml/cc
2.5 gm/cc
0.01

0.05cm
2cm

20%
0.2 m/s




Example

Single unbounded particle:

V=V, f(Re,)=14.1(cm/s)

Terminal settling

rate:

V,=V.f(Re )*f(¢) fW)](c)
£(c) =0.349

FW)=0.923

£(T)=1.004

V, =4.55 (cm /s)




Effect of Settling

Without
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Effect of Size
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Effect of Viscosity

200

200

100

=100

-200

_200 P— } 1 I ! ! ] 1 ! ! ! L1 ! ! ! 1 !
] 200 00 SO0 s00

300

200

100

-100

-200

-3000 200 400 500 800




Effect of Viscosity
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Effect of Inertia Correction
on Proppant Settling

Without Inertial
Effects
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Effect of Fracture Walls
on Proppant Settling

Without Width
Effects
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Effect of Viscosity
(Narrow Fracture)
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Effect of Turbulence

Without Turbulence
Effects
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Proppant Transport
Dimensional Analysis

Typical fracture Dimensionless Parameters

0'5% ;
—— Re = Uw/V = 20,000
L, U=131ts
s > a =0.05cm Re, = Re(a/w) =2000
H =40 ft —.—> l Ap = 1.5g/cm3
J _—' v=80 cm/s t.4/ t= Lv/UH = 1.6
— 2 —
[ =300 & S = Apga/pU-=0.2

* Flow ranges from turbulent to laminar - =0 01 — 0.6
along fracture

* Particle settling and inertia are important

 Particle resuspension occurs




Stages of Proppant Transport

» Stage 1: Convection / settling dominated.
» Stage 2: Buildup of a proppant bed.
» Stage 3: Steady state saltation over bed.

» Stage 4: Final settling after flow shutoff.
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Complex Flow Patterns can Arise
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Example of Stage 2: Bed Buildup




Effect of Perf Positions (Stage 2)
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Stage 3: Formation of Equilibrium Bed




Effect of Jet Position On Sandbed Profile
(Stage 3)

0.5
0.45 - »

04 \
0.35 -
s_ 03
05%25

0.2
0.15 -

andBed

f

Height

— — Bottom Holes Open

—4— Middle Holes Open
——-Top Holes Open

1.2 1.8 2.4

Distance From Entrance (m)




Stage 4: Final Proppant Bed

=3d = IR r
T TR




Effect of Unpropped Portion On
Fracture Conductivity

If 1% of fracture near the wellbore 1s unfilled

Stimulation ratio of partially filled fracture to fully filled fracture 1s:

J In(R_ /L In(2
_— (R. /L) = (2) =0.18

J, In(0.0IL/R_ )+In(R, /L) In(0.01*5000)




Experimental Observations

» In water fracturing, proppant settling is very
different from that in gel fracturing: settling
dominates.

» Flowing water forms eddies near the entrance.
The distance between the stagnation point and
entrance could be very large.

» Most of the early proppant forms a dune around
the stagnation point. The remaining proppant is
placed by saltation flow over this dune.

» The location of the dune is controlled by the flow
rate and the location of the perforations.




Experimental Observations

» Proppant transport far into the fracture occurs by
saltation type flow and is very much dependent on the
shape of the sand dune formed.

» High velocities, small proppant size and high viscosity
promote saltation.

» Packing proppant near the perforations is critical to
frac conductivity. Location of perfs in the pay zone,
the injection rates, rheology and proppant
concentration control whether proppant remains
packed around the perf tunnels.




Field Implications?

» Where should you perf within the zone? We must
ensure;

» proppant is packed around the perfs
» promote saltation type flow deep into the fracture

» Proppant concentration ramp-up?
» Injection rates?
» Is there an optimal rheology?

> Our experiments suggest some preliminary
answers that need to be verified in the field.




Performance of Fracture Treatments

in Tight Gas Sands
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Playing with Fluid Rheology
Texas Bossier Fracturing
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7 X-Ink Gel (16 wells)
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Conclusions

» An accurate model for proppant settling has
been incorporated into a fully 3-d frac model.

» The model allows us to evaluate the impact of
proppant size, fluid rheology and pump rates
on proppant placement.

» Experiments have been conducted to develop
additional insight into the process.

» Model is currently being tested and verified
against Bossier data.




Conclusions

» One can design for maximum propped frac
lengths based on model developed.

» Optimum values of the following need to be
selected,
» Fluid rheology,
» Proppant size
» Rates
» Location of perfs

> We have a better idea of where the proppant
iS going and it really does help!
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Location of Perforations Impacts
Location of the Proppant Bed
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Size of Proppant-Empty-Zone
(Bottom Holes Open)

Distance From Dune To Entrance At Different Rate
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