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Abstract

In this paper the origin of the bi-monthly variability in the Mas-

carene Basin is reconsidered. Free oscillatory modes of the Mascarene

Basin are determined by performing normal mode analysis on the mo-

tionless solution in a barotropic shallow-water model with realistic

bathymetry.

Several modes are identified with monthly to bi-monthly time scales.

The mode that agrees best with recent current meter observations can

be interpreted as a barotropic Rossby basin mode, confined to the

tilted geometry of the Mascarene Basin.

Keywords: barotropic modes, oscillations, shallow-water dynamics, eigen-

functions, South Indian Ocean, Mascarene Basin, 42◦E-64◦E, 2◦S-32◦S.

1. Introduction

Apart from its supposed role in the global overturning circulation as link

between the thermoclines of the Pacific and Atlantic Oceans (Gordon, 1986),

the South Indian Ocean is an interesting basin on its own merit. This is

largely due to its bathymetric complexity, with ridges and oceanic plateaus

and continental islands outlining a considerable number of abyssal plains.

[Figure 1 about here.]

The Mascarene Basin is a case in point (Fig. 1a). It is bounded in the west by

the continental island of Madagascar, and in the east by the crescent-shaped

Mascarene Plateau. The northern section of this plateau is formed by the
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continental Seychelles Archipelago, whereas the southern part, including the

islands of Mauritius and Réunion, has a volcanic origin. The basin itself is a

relatively flat abyssal plain with depths exceeding 5 km. The oceanographic

context is defined by the South Equatorial Current (SEC) entering the Mas-

carene Basin through a few narrow passages in the Mascarene Plateau (New

et al., 2007). Upon reaching Madagascar, the several branches form the East

Madagascar Current, flowing either northward or southward, and ultimately

feeding into the Agulhas Current system.

Early investigations found some distinct periodicities in the Mascarene

Basin. Quadfasel and Swallow (1986) interpreted a 50-day oscillation at the

northern tip of Madagascar at 11◦S as a barotropic Rossby wave. Schott

et al. (1988) analyzed current meter records at 12◦S and 23◦S and found

transport variations in the East Madagascar Current in the 40-55 day band.

Recently, Warren et al. (2002) (hereafter WWL) analyzed the data from

an array of current meters, deployed in the Mascarene Basin, and found a

very strong spectral peak with a period of 59 days. The signal was strongly

correlated between the 3 current meter moorings, displaying a propagation

speed of 0.070 m s−1 . The coherence between current meter records at differ-

ent depths strongly suggested a barotropic signal. Following classical theory,

they interpreted this signal as a resonantly excited Rossby Basin Mode, with

infinite meridional scale, and concluded that the observed variability must

reflect the mode of second lowest order.

Although the classical theory of Rossby basin modes is appealing for its

simplicity (Longuet-Higgins, 1964), its application to real world basins is not
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straightforward: realistic geometry and bathymetry often severely distort

the contours of potential vorticity f/H, in the most extreme cases leading

to the topographic trapping of modes (Weijer et al., 2007). It is the gradient

of potential vorticity that governs the dynamics of Rossby waves, and in a

depth-integrated context it can be expressed as:

H∇
f

H
= ∇f − f∇ lnH = β + βT (1)

where H denotes the water depth (here assumed to be dimensionless for

the sake of the logarithm) and f the Coriolis parameter. The gradient of

planetary vorticity is denoted by β, whereas βT is the so-called topographic-

β term. Both are implied to be vector fields.

Figure 1b shows where bathymetry dominates the gradient of planetary

vorticity in the Mascarene Basin. The most evident areas (indicated by gray

tones) are the continental shelf of Madagascar and the Mascarene Plateau,

but there are also some regions in the central Mascarene Basin. The most

prominent area where planetary β dominates (indicated in white) is an oval-

shaped basin between Madagascar and Réunion, roughly from 22◦ to 15◦.

Here we reconsider the interpretation of WWL by determining the normal

modes of the Mascarene Basin in a barotropic shallow-water model with full

bathymetry. We will show that several modes exist with periods between 40

and 70 days. The mode that is most consistent with the observations can be

interpreted as a plain Rossby basin mode in a tilted basin, confined to the

southern Mascarene Basin, in agreement with the interpretation of WWL.

2. Method
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The normal modes of the South Indian Ocean are studied using a barotropic

shallow-water (SW) model, similar to that used by Weijer et al. (2007). The

set of equations is given by:
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Here, (u, v) are the depth-averaged zonal and meridional velocity compo-

nents; t is time; h = H0 + η − hb is total water depth, with H0 denoting

maximum equilibrium depth, η sea-surface elevation and hb bathymetry; λ

and φ are east-longitude and latitude, respectively, expressed in radians; τ λ

and τφ denote zonal and meridional wind stress. In this paper, only unforced

solutions are considered (τλ = τφ = 0). No-slip boundary conditions are ap-

plied to the velocity field on the lateral boundaries. Model parameters and

their values are tabulated in Table 1.

[Table 1 about here.]

Friction is included partly for numerical reasons, as it facilitates the nu-

merical computations considerably. Rayleigh damping, however, appears to

be justified as representation of friction in a bottom Ekman layer acting on

a barotropic flow (e.g., Gill, 1982). WWL cite values of 3 · 10−9 − 1 · 10−7s−1
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as appropriate, so our value r = r0 (see Table 1) is on the high end of this

range.

Horizontal friction represents the damping effect of turbulent eddies, and

a Laplacian is generally considered a reasonable formulation (e.g., Davis,

1991) for the large-scale circulation. For such large scales, studies of tracer

dispersion indicate values of the order of O(103 − 104m2 s−1) (e.g., Zhur-

bas and Oh, 2003, 2004). How this scales down to small spatial scales as

those resolved by high-resolution numerical models is not evident. In high-

resolution General Circulation Models, the explicitly-resolved part of the

turbulent spectrum is expected to provide the implicit drag, and the explicit

viscosity should be lowered to a fraction of the above-quoted large-scale val-

ues. In our case it can be argued that the specific model formulation does

not allow for a mesoscale eddy field to evolve, since i) only barotropic mo-

tions are considered, and ii) the eigenmodes of the system are determined

directly, without resolving transients. So in order to represent the effect that

mesoscale eddies would have on the decay of these modes in the real ocean,

it seems that a characteristic large-scale value of eddy-viscosity is appropri-

ate (A = A0, Table 1). In the discussion, the sensitivity of the modes with

respect to the frictional parameters r and A will be discussed.

The model domain ranges from 42◦ to 64◦ east longitude, and from -32◦

to -2◦ latitude. The numerical grid consists of 88 × 120 grid points, which

is equivalent to a spatial resolution of 0.25◦ in either direction. Bathymetry

is based on the global 2-minute data set ETOPO-2, box-averaged onto our

model grid (Fig. 1a). It is smoothed once using a Laplace filter to remove

6



the smallest length scales. Depths smaller than 300 m (the continental shelf)

are set to zero. The discretized SW equations can be expressed as:

M
∂x

∂t
+ Lx + N (x) = 0 (5)

where x denotes the state vector, M the mass matrix, L the linear operators

and N the non-linear operators. Let x̄ be a steady solution of this system,

and let x̃ be a small perturbation such that x = x̄ + x̃. Neglecting terms

quadratic in the perturbations, we get:

M
∂x̃

∂t
+ Lx̃ + Nx(x̄)x̃ = 0, (6)

where Nx(x̄) = (∂N /∂x)
x̄

is the Jacobian of N , evaluated around x̄. Insert-

ing the generic form x̃ = x̂eσt leads to a generalized eigenvalue problem of

the form:

Ax̂ = σBx̂, (7)

where B = −M and A = L + Nx. Here, σ = σr + iσi is the complex

growth factor: the decay time scale of x̃ (and hence the linear stability

of the state x̄) is determined by its real part according to 1/σr, while the

oscillation period is given by 2π/σi. The eigenvectors x̂ for each σ are called

the eigenmodes associated with x̄. If σi 6= 0 the mode is oscillatory and

these eigenmodes are complex: x̂ = x̂r + ix̂i. The oscillation proceeds as:

x̂r → −x̂i → −x̂r → x̂i → . . ..

For this study, a motionless background solution x̄ is considered. This

assumption renders Nx(x̄) = 0 and basically eliminates all non-linear advec-

tive terms, as well as non-linear inertial terms that arise from the spherical

geometry.
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A powerful method to solve the generalized eigenvalue problem (7) is

the Jacobi-Davidson QZ-method (JDQZ; Sleijpen and Van der Vorst, 1996).

This method calculates eigenvalues that are closest to a prespecified target

value.

3. Modes of the Mascarene Basin

[Figure 2 about here.]

The spectrum of the computational domain is shown in Fig. 2, for those

eigenmodes with oscillation periods between 20 and 70 days. The dot-filled

circles denote modes that have a significant expression in the Mascarene

Basin (subjectively determined), in contrast to those that are found only in

the periphery (indicated by empty circles).

[Table 2 about here.]

In this diagram, modes farthest to the right have the longest decay time scale

(for the current selection of parameter values), and can be expected to persist

longer once excited by forcing. In this paper we will focus on the modes that

have decay time scales of at least 18 days (except for mode 4b). The decay

time scales Tdec and oscillation periods Tosc of these modes are listed in Table

2. The corresponding Q-factor is defined as 2πTdec/Tosc, and determines the

number of oscillations it takes before the signal has decayed to a factor e−2π

of its original amplitude. Note that the numbering of these modes is not

based on physical characteristics, and does not imply an ordering based on

stability properties.
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[Figure 3 about here.]

The spatial pattern of mode 1 (with a period of 58.7 days) is quite compli-

cated (Fig. 3). A defining feature is the westward propagation of anomalies

between the southern Mascarene Plateau and Madagascar. These anomalies

are elongated in the meridional direction, and tilted slightly (about 19◦) with

respect to due north. The anomalies of mode 1 span almost 10◦ in longitude,

from 23◦S to 14◦S. In addition, a wave emerges from the northern Mascarene

Plateau, and propagates southwestward to 14◦S, where it interacts with the

westward propagating wave.

Mode 3 also has a complicated structure. The most energetic features are

the anomalies that propagate due west along 14◦, but it has a distinct sig-

nature throughout the entire Mascarene Basin. Its spatial scales are slightly

larger than those of mode 1, resulting in a shorter period (46.6 days).

[Figure 4 about here.]

In the bi-monthly band, three other modes are present with long decay time

scales. Their spatial structure is very similar, and therefore we will refer to

them as modes 2a, 2b and 2c. Figure 4 shows the spatial structure of modes

2a and 2b. A characteristic of these modes is i) strong anomalies south of

Réunion, and ii) westward propagation of elongated anomalies in the south

Mascarene Basin. The latter appear to be “broken”, compared to those of

mode 1, and span about 5◦ in latitude, from 23◦S to 18◦S,

[Figure 5 about here.]
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In the monthly band, mode 4a is by far the least damped mode. Figure 5

shows that it consists of basin-filling anomalies in the central and northern

part of the Mascarene Basin. In addition, it appears to enter the north-

ern Mozambique Channel, leaving the confinements of the Mascarene Basin

proper. Although this may raise some suspicion regarding its robustness, the

mode was also found in computations on a much larger domain (ranging from

30◦ to 70◦ east longitude, and from -47◦ to -2◦ latitude, with 0.33◦ horizontal

resolution), albeit with a slightly longer period (27.4 days). In addition, the

large-scale structure is also featured by mode 4b, which displays a much bet-

ter confinement within the Mascarene Basin but has a much shorter decay

time.

4. Comparison to WWL

Considering the oscillation periods, Modes 1 and 2a are closest to the

period determined by WWL. Both modes feature westward propagation of

anomalies that are elongated in the meridional direction, albeit with a tilt of

about 19◦ from due north, imposed by the slanted coastline of Madagascar.

[Figure 6 about here.]

To find out whether either of these modes could be responsible for the obser-

vations, we will compare the phase speeds of the two modes with the 0.070

m s−1 propagation speed of meridional velocity as observed by WWL. Figure

6 shows Hovmüller diagrams for the zonal (u) and meridional (v) velocity

components of modes 1 and 2a along 20◦S for this segment. All the plots
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show clear westward propagation east of about 51◦E, consistent with the data

from current meter stations 4, 5 and 6. The propagation speed for meridional

velocity, cv, is estimated to be 0.078 m s−1 for mode 1, and 0.093 m s−1 for

mode 2. The propagation seen in the zonal velocity component, cu, is about

twice as fast (0.14 m s−1 for mode 1, 0.19 m s−1 for mode 2).

Based on the values of cv we may conclude that mode 1 is closer to the ob-

servations than mode 2a. Unfortunately, the zonal component of the current

meter records is rather noisy, and does not display as clear a propagation as

the meridional component. In the following section we will take a closer look

at mode 1 as the most likely candidate to explain the observations of WWL.

5. Interpretation of mode 1

The part of mode 1 residing in the southern Mascarene Basin displays

westward propagation of elongated anomalies. These anomalies have a finite

meridional extent, and tilt slightly east with respect to due north. This pat-

tern suggests that this mode may be described as a Rossby basin mode in

a tilted, enclosed basin. Longuet-Higgins (1964) derived the typical modal

solution for barotropic Rossby basin modes in a rectangular basin of dimen-

sions a × b, which is tilted through an angle µ west from due north (see

LaCasce and Pedlosky, 2002, for a similar analysis in a baroclinic context):

ψ = sin kmx
′ sin lny

′e−i(κmnx+σmnt) (8)

σmn =
β

2κmn

(9)

where (m,n) are the modal numbers, km = mπ/a and ln = nπ/b the cor-

responding wave numbers, and κmn = (k2
m + l2n)1/2 = km(1 + δ2)1/2, with
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δ ≡ l/k. Zonal and meridional directions are indicated by x and y, while x′

and y′ are the coordinates in the rotated system:

x′ = x cosµ+ y sinµ ; y′ = −x sinµ+ y cosµ (10)

The (purely zonal) phase speed of u-velocity is given by the relation cuβ/σ2 =

−2, which is independent µ and δ.

The propagation speed of v-velocity, cv, is more involved, and can be

expressed through the relation:

cvβ

σ2
=

2

(1 + k cosµ/κ)
≈

[

1 −
1

4
(µ2 + δ2)

]

−1

≈

[

1 +
1

4
(µ2 + δ2)

]

(11)

where the approximations hold for µ, δ � 1.

So for an untilted basin (µ = 0), cvβ/σ2 = (1+δ2/4), which differs from a

similar expression for free Rossby waves by the factor 1/4. WWL based their

estimate of l/k ≈ 0.1 on the assumption of free Rossby waves, but taking

into account the factor 1/4 required for basin modes doubles this ratio to

0.2.

As shown in the former section, zonal velocity was found to propagate

with a speed of 0.14 m s−1 . Taking the flat-bottom value β = 2.146 ·

10−11 m−1 s−1, and a frequency σ = 1.24 ·106 s−1 (corresponding to 58.7 days)

yields cu = 0.14 m s−1 , which corresponds perfectly to the actual value.

[Figure 7 about here.]

The actual value of cv is about 0.078 m s−1 , which gives for the ratio cvβ/σ2 =

1.09. Assuming that the basin is tilted µ = −19◦ from due north, this
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yields δ ≈ 0.53. The corresponding dimensions can be calculated from the

dispersion relation, and yield b = 775 km and a = 411 km. Figure 7 displays

the variance of mode 1 for the area east of Madagascar, confirming that the

actual size of the anomaly closely matches these theoretical estimates.

6. Discussion and Conclusion

The normal mode analysis presented here suggests that a spectrum of

barotropic modes exists in the Mascarene Basin. The results emphasize that

the structure and propagation characteristics of these modes are strongly

affected by the geometry and bathymetry of the Mascarene basin. A direct

comparison with Rossby basin modes in a rectangular, flat-bottom basin

from classical theory is therefore not straightforward.

Nonetheless, a mode was identified that appears to match the observa-

tions reasonably well. In the former section we saw that mode 1 can be

interpreted as the m = 1 mode of the southern Mascarene Basin, tilted with

respect to due north (Longuet-Higgins, 1964). This result largely supports

the conclusion by WWL, although they argued for an m = 2 mode as the

source of the observed variability. They based this estimate on a mean width

of the entire Mascarene Basin of about 750 km, whereas the basin width

in this southern part between Madagascar and the island of Réunion (the

assumed center of action of mode 1) is of the order of 350-400 km.

Although the normal mode shares characteristics with the observations,

the match is not perfect. The current meter records show a clear propagation

velocity (of the meridional velocity component) of 0.070 m s−1 , which is
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slower than the 0.078 m s−1 of the normal mode. Although this 10% difference

may be considered small, it does have implications for the interpretation of

the mode. Based on the observed value, WWL concluded that the mode was

likely to have a large meridional extent, with an aspect ratio of δ = 0.1. In

contrast, the normal mode calculated here can be best interpreted as a basin

mode of a basin with limited meridional extent; its corresponding aspect

ratio is close to 0.5.

The reason for this discrepancy is not clear, but may be caused by details

of the model formulation. Whether stratification or background flow play an

important role in the dynamics of the modes in the Mascarene Basin needs to

be considered in more detail. However, there is some sensitivity of the modes

with respect to friction and the choice of domain and spatial resolution. The

calculations were repeated on a much larger domain (ranging from 30◦ to 70◦

east longitude, and from -47◦ to -2◦ latitude) with lower spatial resolution

(0.33◦). Mode 1 was retrieved with an oscillation period of 63.3 days.

[Figure 8 about here.]

Sensitivity experiments were performed with respect to bottom friction r and

horizontal viscosity A. The standard values of these parameters were reduced

by a factor γ < 1. Figure 8 shows that reducing bottom friction (black lines)

does not affect the oscillation periods of the modes (right panel). It does

increase the decay time scale (left panel). Further inspection shows that

this sensitivity is identical for all modes. In fact, it seems that the effect

of bottom friction is fully separable from all the other dynamical processes,
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and only affects the decay rate. If a mode is written as x̂eσt, where x̂ is

the spatial pattern and σ = σr + iσi the complex growth rate, then this

result implies that σr can be written as σr
r + σA

r , where σr
r and σA

r are the

decay rates due to bottom friction and horizontal viscosity, respectively. An

estimate of the slope shows that σr
r has the same constant value for all modes:

σr
r = −0.0086r/r0d

−1. Reducing viscosity impacts both the decay time scale

and oscillation period (Fig. 8, gray lines). The spatial patterns, however, do

not change significantly.

In addition, complex geometries allow modes to couple and interact.

Miller (1986) and Bokhove and Johnson (1999) have shown, for example,

how a shelf surrounding a deep ocean basin can lead to hybrid planetary/shelf

modes, even in absence of friction and non-linear terms. Such interactions

can modify the propagation characteristics of the apparent mid-ocean plan-

etary oscillations. In complex geometries as the one studied here, it is hence

more than likely that modes with comparable frequencies interact. In fact,

the patterns in Figs. 3-5 show how structures in different parts of the do-

main are combined into single modes, and these forged alliances appear to

be somewhat dependent on friction. This makes it harder to find a perfect

match between modes in realistic geometries and those found in the idealized

context of analytical studies, or in observations.

WWL note that the spectral peaks at 59 days in their current meter

records are rather broad, pointing at a so-called Q-factor lower than about

3. They suggest that the large variation in the width of the Mascarene Basin

might “smudge” the spectral peak. The Q-factor measures the decay time
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scale of an oscillation, in relation to its oscillatory period, and can be defined

here as 2πTdec/Tosc. Table 2 shows that for the bi-monthly modes this factor

is close to 2, but obviously this value is strongly dependent on the frictional

parameters chosen in the model. An alternative explanation of the broadness

of the peaks in the current meter spectra is the excitation of multiple modes

in the Mascarene Basin.

This analysis also showed the possibility for oscillatory modes with a

monthly time scale (modes 4a and 4b). We share the surprise of WWL that

no monthly variability has been found observations. Mode 4a has by far

the longest decay time of the modes in the monthly range, and its Q-factor

exceeds that of the bi-monthly modes by a factor of 2 (Table 2). Figure 5

shows that its main expression is found in the central and northern part of

the Mascarene Basin, with the center of the anomaly propagating westward

close to roughly 13◦S. So its expression could have been expected in their

altimeter time series at 15◦S.
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7 Variance of mode 1, integrated over an oscillatory cycle. Area

shown ranges approximately from 49◦ to 61◦E, and from 24◦
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Figure 1: Bathymetry of the Mascarene Basin. a) Water depth (in km). b)

log(|βT |/|β|), where β denotes the gradient of planetary vorticity, while βT is

the topographic-β term, defined as −f∇ lnH. Positive values mean a ratio

> 1, hence a dominance of the topographic over the planetary component.

Contours show log(f/h), plotted for the interval [−9.5,−6.5] with step 0.1.
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Figure 2: Spectrum of the Mascarene Basin, for the oscillation periods be-

tween 20 and 70 days. Circles with dots denote modes that have a clear

expression within the Mascarene Basin. Modes that are discussed in the text

are numbered.
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Figure 3: Normal modes of the Mascarene Basin. Contours denote isolines of

vorticity f/H. The eigenmodes are complex patterns that define a complete

oscillatory cycle. (Minus) the imaginary part (right panels) follows the real

part (left panels) a quarter phase in the cycle.
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Figure 4: Normal modes 2a and 2b of the Mascarene Basin.
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Figure 5: Normal modes 4a and 4b of the Mascarene Basin.
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Figure 6: Hovmüller diagrams for the velocity components of Modes 1 (upper

row) and 2a (lower row) at 20◦S. Zonal (left column) and meridional (right

column) velocities are scaled with the maximum of meridional velocity; max-

imum zonal velocity is 0.2 for mode 1 and 0.32 for mode 2a. White lines are

contours of zero velocity. Black dashed lines denote (westward) propagation

speeds of 0.14 (u) and 0.078 (v) m s−1 for mode 1, and 0.19 (u) and 0.093 (v)

m s−1 for mode 2.
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Figure 7: Variance of mode 1, integrated over an oscillatory cycle. Area

shown ranges approximately from 49◦ to 61◦E, and from 24◦ to 15◦S, and is

converted to km. Contours denote 4000 m (dashed white) and 4500m (solid

white) isobaths. Amplitude is undetermined for this linear eigenmode, but

is assumed infinitesimally small.
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Figure 8: Decay time scale Tdec (left) and oscillation period Tosc (right) for

modes 1 (solid), 2a (dashed), 2b (dotted) and 2c (dash-dotted) as function

of a reduction factor γ with respect to the basic parameter choice of bottom

friction (γ = r/r0, black) and horizontal viscosity (γ = A/A0, gray). Bottom

friction is reduced four orders of magnitude (down to r = 1.0 · 10−11s−1),

viscosity one (down to A = 1.0 · 102 m2 s−1).
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Table 1: Model parameters and their standard values.

Symbol Scales: Value

H0 Equilibrium depth 5731.9 m

R0 Earth’s radius 6.37 · 106 m

Ω Earth’s rotation rate 7.272 · 10−5 s−1

g Gravitational constant 9.8 m s−2

ρ0 Density 1020 kg m−3

A0 Horizontal viscosity 1.0 · 103 m2 s−1

r0 Bottom friction 1.0 · 10−7s−1



Table 2: Decay time scale Tdec, oscillation period Tosc, and Q-factor

(2πTdec/Tosc) of the modes described in this paper.

Mode Tdec (days) Tosc (days) Q

1 19.5 58.7 2.1

2a 18.8 59.6 2.0

2b 20.6 55.3 2.3

2c 20.1 54.4 2.3

3 21.5 46.4 2.9

4a 19.1 26.1 4.6

4b 15.4 26.0 3.7


