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ABSTRACT

To understand the nature of coupling between a hurricane vortex and asymmetries in its near-core region, it
is first necessary to have an understanding of the spectrum of free waves on barotropic vortices. As foundation
for upcoming work examining the nonaxisymmetric initial-value problem in inviscid and swirling boundary
layer vortex flows, the complete spectrum of free waves on barotropic vortices is examined here.

For a variety of circular vortices in gradient balance the linearized momentum and continuity equations are
solved as a matrix eigenvalue problem for perturbation height and wind fields. Vortex eigensolutions are found
to fall into two continuum classes. Eigenmodes with frequencies greater than the advective frequency for
azimuthal wavenumber n are modified gravity–inertia waves possessing nonzero potential vorticity in the near-
core region. Eigenmodes whose frequencies scale with the advective frequency comprise both gravity–inertia
waves and Rossby–shear waves. Linearly superposing the Rossby–shear waves approximates the sheared dis-
turbance solutions. For wavenumbers greater than a minimum number, Rossby–shear waves exhibit gravity wave
characteristics in the near-vortex region. Although such eigenstructure changes are not anticipated by traditional
scaling analyses using solely external flow parameters, a criterion extending Rossby’s characterization of ‘‘bal-
anced’’ and ‘‘unbalanced’’ flow to that of azimuthal waves on a circular vortex is developed that correctly
predicts the observed behavior from incipient vortices to hurricane-like vortices. The criterion is consistent with
asymmetric balance theory. Possible applications of these results to the wave-mean-flow dynamics of geophysical
vortex flows are briefly discussed.

1. Introduction

Above the boundary layer the hurricane can be mean-
ingfully idealized as a circular vortex in gradient balance
plus small-amplitude asymmetries (Shapiro and Mont-
gomery 1993, Fig. 1). The source for the asymmetries
is a combination of synoptic-scale forcing, turbulent
stress at the sea surface, and cumulus convection. De-
spite extensive hurricane modeling using three-dimen-
sional primitive equation models, surprisingly little is
known about the nature of coupling between asymme-
tries and the mean vortex in rapidly rotating (large Ross-
by number) divergent flow regimes. To fix ideas, sup-
pose at time zero a circular vortex is subject to a small
but finite-amplitude asymmetric disturbance in both
mass and wind fields near its radius of maximum winds.
In general, the initial disturbance will excite radiating
gravity waves and shear waves on the vortex. Do the
excited waves interact with the mean vortex in the near-
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core region? If significant interaction occurs, then can
one meaningfully quantify its dependence on the wave
amplitude, the Rossby number, and the Froude number?
Since forcing mechanisms in hurricanes exist on a spec-
trum of length scales, it is also of meteorological interest
to be able to quantify the dependence of the interaction
on the radial and azimuthal scales of the initial distur-
bance. In the first approximation, the ensuing adjustment
may be represented by a superposition over the free
eigensolutions of a circular vortex in gradient balance.
Because interaction among these modes ultimately de-
termines the mean flow coupling at second order in wave
amplitude, understanding the structure of free waves on
barotropic vortices is a necessary prerequisite. Thus, as
a foundation for future investigations of the wave-mean-
flow dynamics in barotropic and baroclinic vortices, this
work examines the structure of free waves on barotropic
vortices representative of hurricanes.

Knowledge of the wave spectrum in a spherical en-
velope of rotating fluid on a resting basic state has pro-
vided valuable insight into the dynamics of the tropical
atmosphere (Matsuno 1966; Lindzen 1967; Longuet-
Higgins 1968; Gill 1982). In contrast, our understanding
of the wave spectrum in rapidly rotating vortices, such
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as hurricanes and polar lows, is incomplete. Previous
studies have emphasized the identification of exponen-
tial instabilities and forced waves in hurricane-like vor-
tices (Kurihara 1976; Fung 1977; Willoughby 1977; Fla-
tau and Stevens 1989; Ford 1994) and ocean-ring vor-
tices (Dewar and Killworth 1995). But little attention
has been given to elucidating the physics of neutral
gravity-wave and neutral shear-wave disturbances in
barotropic vortex flows, which are necessary for com-
pleting the solution to the nonaxisymmetric initial-value
problem. In light of renewed interest in the application
of balance models to complex geophysical flows (Spall
and McWilliams 1992; Shapiro and Montgomery 1993),
classification of the vortex eigenspectrum into ‘‘bal-
anced’’ and ‘‘unbalanced’’ flow is also of some theo-
retical interest. Such a classification is straightforward
on a resting basic state since a clear timescale separation
between ‘‘fast’’ (gravity–inertia) and ‘‘slow’’ (geo-
strophic/Rossby) modes exists. In the rapidly rotating
region of an intense vortex, however, a well-defined
timescale separation generally does not exist.

The outline of the paper is as follows. To facilitate
the interpretation of vortex eigenmodes, section 2 re-
views the well-known properties of linearized eigen-
states on a resting basic state. Section 3 summarizes the
formulation of the matrix eigenvalue problem and the
construction of the nonresting basic states. Section 4
presents vortex eigenspectra. Section 5 presents vortex
eigenmode structures for several swirl profiles, and key
results are interpreted using a monochromatic general-
ization of Rossby’s adjustment problem. Section 6 brief-
ly considers the nonaxisymmetric adjustment problem
and it is demonstrated that superposing over all modes
yields radially propagating gravity–inertia waves and
vortex–Rossby waves. Section 7 summarizes the results
and indicates avenues for future work.

2. Free waves on a resting basic state revisited

To facilitate the interpretation of vortex eigenmode
structures on a rapidly rotating vortex, we consider a
variation of Kelvin’s problem (Thomson 1879) on the
small-amplitude gravitational oscillations in rotating
shallow water. Although the main results are well
known, a brief review proves useful in upcoming sec-
tions. If the curvature of the free surface is neglected,
the linearized f-plane shallow-water equations in cylin-
drical coordinates are

]u9 ]h9
2 fy9 1 g 5 0, (2.1a)

]t ]r

]y9 ]h9
1 fu9 1 g 5 0, (2.1b)

]t r]l

]h9 ] ]y9
1 H (ru9) 1 5 0. (2.1c)[ ]]t r]r r]l

Here, f denotes a constant Coriolis parameter; g is

gravitational acceleration; H is a constant resting depth;
h9 is surface-height perturbation; and (u9, y9) are per-
turbation radial and tangential winds, respectively. Oth-
er notation is standard. The flow domain occupies the
circular region 0 # r # a. Perturbation quantities are
assumed finite at r 5 0, while the height perturbation
is assumed to vanish at r 5 a. Vanishing height is pre-
ferred over a vanishing radial velocity at r 5 a since
the limit a → ` corresponding to the unbounded domain
is obtained most simply.

Free waves of (2.1) are obtained via the modal ansatz

ˆ(u9, y9, h9) 5 (û(r), ŷ(r), h(r))exp[i(nl 2 st)], (2.2)

where n denotes the azimuthal wavenumber and s the
wave frequency. In azimuthal-Fourier space the linear-
ized disturbance equations (2.1) can be written as a
matrix equation

d
s f 2g

iûdr
g

ŷ 5 0, (2.3)f s 2n 1 2r ˆH d nH h1 2r 2 s
r dr r

which possesses three manifolds of solutions. The first
manifold corresponds to steady geostrophic flow (s 5
0) in which the Coriolis force is balanced by the pressure
gradient force

ˆ]h
f ŷ 5 g , (2.4a)

]r

2in ˆfû 5 gh. (2.4b)
r

Here, g /f is a streamfunction for the geostrophic wind.ĥ
Vorticity ( ) and potential vorticity (P̂) amplitudes areẑ
given by

d in
ẑ 5 (rŷ) 2 û

rdr r

g 2ˆ ˆ5 h, (2.4c)¹
f

ˆ ˆz h
P̂ 5 2 f

2H H

g
2 2ˆ ˆ ˆ5 {¹ h 2 g h}, (2.4d)

fH

where 2 5 d/rdr(rd/dr) 2 n2/r2 is the horizontal La-¹̂
placian in azimuthal-Fourier space and g2 5 f 2/gH is
the inverse square of the Rossby radius of deformation.
For isolated disturbances, and P̂ are anticorrelatedẑ
with .ĥ

Had the parabolic free surface associated with the
rotating annulus not been neglected in (2.1), the geo-
strophic modes would become Rossby waves (Phillips
1965). For small free-surface slopes, these waves ret-
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rogress in the rotating frame, possess small frequencies
compared to the rotation frequency, and are well de-
scribed by quasigeostrophic dynamics. The Rossby
wave vorticity and potential vorticity (PV) are again
anticorrelated with the height

z9 } 2h9,

P9 } 2h9. (2.5)

Superposing the geostrophic and iso-allobaric winds
shows that the total wind lags the height contours. The
propagation of a monochromatic Rossby wave around
the annulus can then be interpreted as an adjustment
process whereby wind adjusts to mass,

wind → mass, (2.6)

where mass represents the perturbation height and wind
represents the total perturbation wind.

On letting beff 5 f/HdH/dr, the local dispersion re-
lation for topographic Rossby waves in an annulus takes
the form

n
2 beffr

s 5 , (2.7)
2 2n f

2k 1 1
2r gH

where s is wave frequency and k is radial wavenumber.
For sufficiently small free-surface slopes, Rossby waves
possess frequencies smaller than f, therefore

s2 , f 2. (2.8)

Substituting (2.7) into (2.8) yields
2c

2L . , (2.9)
2f

where L 5 r/n, the characteristic azimuthal length scale
for azimuthal wavenumber n, and c 5 sr/n, the azi-
muthal Rossby wave phase speed. Because (2.9) is for-
mally identical to Rossby’s adjustment criterion for bal-
anced flow, it suggests a useful interpretation of lin-
earized Rossby wave dynamics. Rewriting (2.9) yields

2L 1
. , (2.10)

2 2c f

indicating that if the wave timescale is sufficiently long
the Coriolis force can effectively rotate the wind vectors,
and thus wind adjusts to mass. Such wave disturbances
are regarded as balanced and are customarily identified
with the slow manifold.

Returning to the constant depth model (2.3), the sec-
ond and third solutions are unsteady (s ± 0). In this
case, (2.3) may be solved by eliminating winds in favor
of height yielding a simplified Tidal equation

2 2ˆ ˆd h 1 dh n
2 ˆ1 1 k 2 h 5 0, (2.11)

2 21 2dr r dr r

where k represents the eigenvalue for azimuthal wave-

number n. The frequency s is determined from the dis-
persion relation for gravity–inertia waves (Poincaré
waves),

s2 5 f 2 1 k2gH. (2.12)

Solutions to (2.11) that are bounded at r 5 0 are given
by

(r) 5 AJn(kr),ĥ (2.13)

where Jn is the Bessel function of the first kind of order
n and A is an arbitrary amplitude. The outer boundary
condition (a) 5 0 furnishes discrete eigenvalues (kj; jĥ
5 1, 2, . . .) for each azimuthal wavenumber n. The
dispersion relation (2.12) then yields a positive and neg-
ative frequency for each j. As a is increased, so as to
better approximate an unbounded domain, the eigenfre-
quencies (2.12) become more closely spaced and ulti-
mately approach a twofold continuum as a → `. Non-
axisymmetric modes (n 5 1, 2, . . .) with s . 0 prop-
agate around the origin in a counterclockwise sense,
(progress relative to f ), while nonaxisymmetric modes
with s , 0 propagate around the origin in a clockwise
sense (retrogress relative to f ). Velocity amplitudes fol-
low from the polarization relations

ˆ2nf dhˆgh 1 sg1 2r dr
iû 5 , (2.14a)

2 2s 2 f

ˆns dhˆgh 2 fg1 2r dr
ŷ 5 . (2.14b)

2 2s 2 f

On making use of (2.11), the PV amplitude is then

ˆ ˆz h
P̂ 5 2 f

2H H

2gf
2 2ˆ ˆ ˆ5 {¹ h 1 k h}

2 2H(s 2 f )

5 0. (2.15)

Gravity–inertia waves are thus invisible on PV maps
and vorticity is correlated with height

z9 } h9. (2.16)

For gravity waves, a rising (falling) free-surface follows
convergent (divergent) flow and so mass adjusts to wind

mass → wind. (2.17)

Gravity–inertia waves always possess frequencies great-
er than f, thus

s2 . f 2, (2.18)

implying
2L 1

, , (2.19)
2 2c f
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where again L 5 r/n; yet c 5 sr/n the azimuthal gravity–
inertia wave phase speed. In contrast to Rossby waves,
(2.19) indicates if the wave timescale is sufficiently
short, the Coriolis force has too little time to rotate the
wind vectors and hence mass adjusts to wind. Such wave
disturbances are regarded as unbalanced and are cus-
tomarily identified with the fast manifold.

The geostrophic and gravity–inertia wave solutions
constitute a complete basis for the linear problem (2.1)
from which an arbitrary initial condition in the height
and/or velocity field may be represented and evolved
forward in time.

3. Free waves on barotropic vortices: Model
formulation

a. Disturbance equations

Having reviewed the free waves on a resting fluid
layer, we now investigate the free waves on a circular
vortex in gradient balance

2 ¯ȳ dh
f ȳ 1 5 g , (3.1)

r dr

where 5 (r) denotes the basic-state tangential windȳ ȳ
and 5 (r) the basic-state free surface height. For¯ ¯h h
small-amplitude disturbances on a stationary vortex, the
linearized f-plane momentum and continuity equations
are, respectively,

] ȳ ] 2ȳ ]h9
1 u9 2 f 1 y9 1 g 5 0,1 2 1 2]t r ]l r ]r

(3.2a)

] ȳ ] d ]h9
1 y9 1 f 1 (rȳ) u9 1 g 5 0,1 2 1 2]t r ]l rdr r]l

(3.2b)

¯] ȳ ] ] ]y9 dh¯1 h9 1 h (ru9) 1 1 u9 5 0.1 2 1 2]t r ]l r]r r]l dr

(3.2c)

The modal ansatz

ˆ(u9, y9, h9) 5 [û(r), ŷ(r), h(r)]exp[i(nl 2 st)] (3.3)

again yields a matrix equation

d˜ŝ f 2g
iû 0dr

n
ŷ 5 0 , (3.4)h̄ ŝ 2g 1 2 1 2r¯ ˆd nh h 01 2¯[rh( )] 2 ŝ

rdr r

though now 5 s 2 n denotes the Doppler-shiftedŝ V/r
frequency, (r) 5 /r the mean angular velocity, 5V ȳ h̄

f 1 d(r /dr the absolute vertical vorticity, and 5 f 1˜ȳ) f
2V/r the modified Coriolis parameter.

At r 5 0, perturbation quantities are assumed to be
finite, and symmetry considerations require that d /drĥ
5 0 for n 5 0 (symmetric modes) and that 5 0 forĥ
n ± 0 (asymmetric modes). To retain the analog of the
two-fold continuum of gravity–inertia waves derived in
section 2, we require a vanishing perturbation height
field as r → `.

b. Discrete eigenvalue problem

Eigenmodes on smooth vortices generally cannot be
found by analytical means, so a numerical procedure is
adopted. This work discretizes (3.4) and the boundary
conditions using second-order centered-difference ap-
proximations. The numerical solution technique imple-
ments Flatau and Stevens’ (1989) numerical primitive
equation model, in which discretization is implemented
on a staggered grid: 2k11 is defined at even grid pointsĥ
r2k 5 2kdr, for k 5 0, 1, 2, . . . , N; while (û2k, 2k) isŷ
defined at odd grid points r2k21 5 (2k 2 1)dr, for k 5
1, 2, . . . , N. At odd-numbered grid points, the discrete
radial and tangential momentum equations are, respec-
tively:

ˆ ˆh 2 hk11 k21˜2iŝ û 2 f ŷ 5 2g , (3.5a)k k k k 2dr

2ign 1 ˆ ˆ2iŝ ŷ 1 h̄ û 5 h 1 h . (3.5b)k k k k k11 k211 2r 2k

At even-numbered grid points, the discrete continuity
equation is

¯ ¯(rhû) 2 (rhû)k11 k21ˆ2iŝ h 1k k 2r drk

in 1¯1 h (ŷ 1 ŷ ) 5 0. (3.5c)k k11 k21r 2k

The radial domain is truncated at an outer radius of 2000
km where is assumed to vanish. The principal featuresĥ
of the eigensolutions discussed below have been verified
to be insensitive to the particular choice of outer radius,
provided it is at least one external Rossby radius
( /f ). For n ± 0, the boundary condition at r 5 0gHÏ
is simply 1 5 0. For n 5 0, the boundary condition atĥ
r 5 0 is 1 5 4 3/3 2 5/3, ensuring that d /dr 5 0 toˆ ˆ ˆ ˆh h h h
within second-order accuracy.

The discrete system (3.5) yields a standard matrix-
eigenvalue problem,

AX 5 sX, (3.6)

where s is the eigenfrequency and the matrix A rep-
resents the discretization of the differential operator
(3.5) incorporating the boundary conditions. If N de-
notes the number of grid intervals for , then X is aĥ
column vector consisting of { 2k, iû2k, 2k11} for k 5 1,ˆŷ h
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2, 3, . . . , N 2 1, and { 2N, iû2N} for the next-to-lastŷ
grid point. The eigenproblem (3.6) is solved with a stan-
dard EISPACK routine. Unless otherwise stated, all ei-
gencalculations employ an outer radius of 2000 km and
a radial grid increment of dr 5 5 km (N 5 400). The
size of the A matrix is thus 1199 3 1199. Results shown
below have been verified to be converged at this res-
olution.

c. The basic state: A PV inversion problem

Among the many vortex profiles that could be se-
lected, this work focuses on basic states representative
of hurricanes. A distinguishing property of such vortices
is the manner in which the azimuthally averaged tan-
gential winds decay with radius in the near-vortex re-
gion. To maintain a quasi-steady state under the influ-
ence of quadratic surface drag, the near-surface tangen-
tial winds in the near-vortex region must decay ap-
proximately as the inverse square root of the radius
(Riehl 1963; Pearce 1993). Although one may readily
construct wind profiles that are consistent with this prop-
erty and are furthermore inertially (centrifugally) stable,
the vortex may still be susceptible to shear instability
if the radial PV gradient changes sign. As our objective
is to first elucidate the structure of neutral waves in
hurricane-like vortices, we limit the ( , ) profiles to be¯ȳ h
descendants of PV profiles

1 d(rȳ)
P̄ 5 f 1 , (3.7)¯ [ ]h rdr

which decrease monotonically from the storm center, are
positive in the Northern Hemisphere (inertial stability),
and exhibit the proper decay in the near-vortex region.ȳ
For vanishing disturbances at infinity monotonic PV pro-
files guarantee shear stability in the asymmetric balance
(AB) slow manifold (Montgomery and Shapiro 1995).

In defining the basic state, it proves convenient to
introduce nondimensional variables indicated by an as-
terisk:

5 Hh*, r 5 Rmr*, 5 Vmy*.h̄ ȳ

Here, H denotes the resting depth, Vm the maximum
tangential wind speed, and Rm the radius of maximum
tangential winds. Differentiating (3.7) with respect to
radius and substituting (3.1) furnishes the nondimen-
sional invertibility problem for (r),ȳ

2 ¯d ȳ 1 dȳ 1 b FP
1 2 b 2 1 1 ȳ

2 2 21 2 1 2dr r dr r r R
2P̄ȳ F b

2 5 , (3.8)
r R R

where b 5 1/P̄·dP̄/dr a normalized basic-state PV gra-
dient, R 5 Vm/fRm a Rossby number, and F 5 /gH a2Vm

squared Froude number. In (3.8) asterisks have been
dropped. Solutions are sought subject to the boundary

conditions that (0) 5 0 and that at sufficiently largeȳ
radius the tangential wind decays as an equivalent point
vortex with a deformation radius of gH/f. Mathemat-Ï
ically this latter condition takes the form (r)K1( Fr/ȳ Ï
R) for Fr/R k 1, where K1 is the modified BesselÏ
function of the second kind of order one.

When R k 1, the nonlinearity of (3.8) prevents an-
alytical solution. Denoting i 5 (ri) where ri 5 i r,ȳ ȳ ·d
the solution to the invertibility problem is obtained by
relaxation on the quadratic difference equation

2P̄ ȳ F ȳ 2 2ȳ 1 ȳ 1 ȳ 2 ȳi i i11 i i21 i11 i212 1 1 2 bi2 1 2r R dr r 2dri i

¯1 b P F bi i i2 1 1 ȳ 5 , (3.9a)i2 21 2r r R Ri i

for i 5 1, 2, . . . , M 2 1. Of the two possible roots, only
one is compatible with geostrophy at large radius. This
solution is then subjected to the boundary conditions

ȳ 5 0, (3.9b)0

2ÏFȳ 2 ȳM M22 5 ȳ . (3.9c)M212dr R

The second condition (3.9c) ensures consistency with
the asymptotic behavior ; K1( Fr/R) for Fr/R kȳ Ï Ï
1. Since numerical computations must ultimately be
confined to a finite domain, experiments have shown
that (3.9c) is sufficiently accurate for r $ 60, corre-
sponding to a dimensional outer radius of 3000 km. To
be compatible with the resolution of the discrete eigen-
value problem of section 3b an equivalent radial grid
increment of dr 5 2.5 km (M 5 1200) is used in (3.9).

Basic states are then derived from the family of non-
dimensional PV profiles

a1P̄ 5 1 1 , (3.10)
2 31 1 a r 1 a r2 3

where a1, a2, and a3 are adjustable constants. Figure 1a
shows four monopolar PV profiles determined suitable
for this study. Beginning with the most intense vortex,
the constants (a1, a2, a3) used to construct these four
profiles are (200, 1, 4), (60, 0.2, 1.0), (8, 0, 0.1), and
(2, 0, 0.05), respectively. Solutions to (3.9) were de-
termined convergent when the pointwise residual for
(3.8) had maxima less than O(1028). Since the intensity
of the vortex could be varied by adjusting the amplitude
and radial scale of the PV profile, the nominal Rossby
and squared Froude numbers were held fixed at R 5 20
and F 5 0.25. These R and F values correspond to a
resting fluid depth of H 5 1 km, a characteristic radius
of maximum winds of rm 5 50 km, a characteristic
tangential velocity of Vm 5 50 m s21, and a Coriolis
parameter of f 5 5 3 1025 s21. The resulting dimen-
sional tangential wind and free-surface height for each
of the four vortices are shown in Figs. 1b and 1c.

The vortices fall into four intensity regimes. The in-
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FIG. 1. Basic-state vortex profiles obtained by solving the nonlinear invertibility problem
(3.8) for the family of PV monopoles given by (3.10). See text for parameters used. (a)
Dimensional PV as a function of radius. Units are s21 m21. (b) Dimensional free-surface height

as a function of radius. (c) Dimensional tangential wind as a function of radius. (d) Rossbyh̄ ȳ
number R 5 /fr as a function of radius.ȳ

FIG. 2. A comparison of tangential wind profiles for the minimal
hurricane vortex and standard r21 (dotted) and r21/2 (dashed) profiles.

tense hurricane possesses maximum tangential winds of
56 m s21. The minimal hurricane possesses 37 m s21

maximum tangential winds. The tropical storm pos-
sesses 15 m s21 tangential winds, while the incipient
vortex has only 5 m s21 tangential winds. Figure 2d
plots the Rossby number as a function of radius for each
vortex. For much of this paper we concentrate on the
minimal hurricane case. A comparison of its tangential
wind profile with standard r21 (dotted) and r21/2 (dashed)
profiles is shown in Fig. 2. The profile agrees reasonably
well with the r21/2 profile for the first 200 km beyond
the radius of maximum winds.

Recently, the pioneering study of Broadbent and
Moore (1979) examining the interaction of acoustic

waves and Rossby edge waves on a Rankine vortex has
been extended by Ford (1994) who considered the anal-
ogous problem in rotating shallow water. Ford dem-
onstrated that circular Rankine-like vortices possessing
a radial discontinuity in basic state PV at the radius of
maximum winds are susceptible to mixed Rossby–grav-
ity wave instabilities. In particular, for rapidly rotating
cyclonic vortices, Ford showed that high azimuthal
wavenumber disturbances become susceptible to mixed
instabilities. This is quite unlike quasigeostrophic, or
semigeostrophic, balance formulations that guarantee
exponential stability for all azimuthal wavenumbers for
monotonic PV profiles. Though the corresponding
growth rates found by Ford are extremely small through-
out the entire (R, F) parameter space (seldom exceeding
1024 inverse turnover times for an inertially stable cy-
clonic vortex), Ford’s work reiterates the inherent fuzz-
iness of the slow manifold concept and raises the pos-
sibility that even smooth PV profiles may be susceptible
to mixed instabilities. Their somewhat unexpected de-
pendence on azimuthal wavenumber alerts us to the pos-
sibility of qualitatively different flow behavior at low
and high azimuthal wavenumbers. The present formu-
lation allows further examination of these issues using
smooth hurricane-like profiles.

4. Vortex eigenfrequencies

For azimuthal wavenumbers 0–10 no unstable eigen-
frequencies are found that remain independent of the
grid spacing as the grid increment dr → 0. Since can-
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didate instabilities are found to have associated e-fold-
ing times of several hundred vortex-turnover times, and
because such instabilities disappear upon decreasing dr,
we feel confident in concluding that this family of vor-
tices is exponentially stable1. Our conclusion is consis-
tent with that of Chan et al. (1993), who, in a related
study of two-dimensional compressible vortices, found
no instabilities on an everywhere smooth basic state con-
sisting of a Gaussian radial vorticity profile.

a. Gravity–inertia waves

Because gravity–inertia wave eigenmodes are found
to be smooth eigenfunctions throughout the flow even
when the Doppler-shifted frequency vanishes, the cor-
responding eigenfrequencies are easily distinguished
from the Rossby–shear wave eigenfrequencies whose
eigenmodes possess a discontinuous tangential velocity
at radii where the Doppler-shifted frequency vanishes
(see section 5 for further discussion). Figure 3 displays
gravity–inertia frequency spectra for azimuthal wave-
numbers 0 and 11. Frequencies marked by V correspond
to a resting basic state, while frequencies marked by 3
correspond to the minimal hurricane vortex. Both cal-
culations assume a resting depth of 1 km and impose a
vanishing height perturbation at rmax 5 2000 km. Only
the first nine eigenfrequencies are shown for both s ,
0 and s . 0.

It is evident from Fig. 3 that axisymmetric (n 5 0)
waves on a vortex possess smaller frequencies than their
resting counterparts. The frequency shift is the same for
positive and negative eigenfrequencies and the shift is
seen to increase with mode number. Nonaxisymmetric
waves, on the other hand, display a different behavior.
For wavenumber one, retrogressive waves are shifted
to lower frequencies than progressive waves. For higher
wavenumbers (n . 2), retrogressive waves are shifted
towards lower frequencies, while progressive waves are
shifted towards higher frequencies (not shown).

These frequency characteristics may be qualitatively
understood from the local dispersion relation

2 5 1 g (k2 1 n2/r2),˜ ¯ŝ fh̄ h (4.1)

where k is a local radial wavenumber, and other notation
is defined in section 3. The derivation of (4.1) is based
on a WKB approximation which assumes the pertur-
bation radial scale k21 is small compared to the local
radial scale of the mean vortex (Hunter 1983, section
4). Although strictly valid for rapidly varying oscilla-
tory modes, (4.1) predicts qualitatively correct results
for slowly varying oscillatory modes. In particular, (4.1)
implies that

s 5 n 6 1 g (k2 1 n2/r2).¯ ˜ ¯V fh̄ hÏ (4.2)

1 See notes 1 and 2 added in proof, page 1884

Thus for axisymmetric modes on a cyclonic vortex, the
reduced depth in the near-vortex region causes a re-
duction in the phase speed and an equal frequency shift
for positive and negative frequencies. For nonaxisym-
metric waves, retrogressive-wave frequencies are Dopp-
ler-shifted to smaller magnitudes, while progressive-
wave frequencies are Doppler-shifted to larger magni-
tudes.

b. Rossby–shear waves

The disturbance equations (3.4) admit an additional
class of time-dependent disturbances associated with the
shear of the tangential wind. For the simpler problem
of rectilinear shear flow in a nondivergent fluid, these
waves comprise the well-known sheared disturbances
(Thomson 1887; Farrell 1984). In gridpoint models,
sheared disturbances are represented by a superposition
over a dense but discrete set of eigenfunctions whose
frequencies fill the advective interval [0, n ] (FarrellV̄max

1982). Figure 4, for example, shows wavenumber 1,
wavenumber 2, and wavenumber 3 eigenspectra for the
minimal hurricane vortex. As previously noted no un-
stable frequencies are evident in these plots. For clarity
only frequencies satisfying zsz , (n 1 1) have beenV̄max

plotted. On comparing Fig. 4 with Fig. 3 the progressive
low-frequency gravity waves are embedded in a dense
spectrum filling the frequency interval [0, ] oc-¯nVmax

cupying the real part of the circle whose center lies at
/2 and whose radius equals /2. Because of¯ ¯nV nVmax max

the nonzero basic-state PV gradient in the near-vortex
region, this dense wave spectrum will be referred to as
Rossby–shear waves.

5. Vortex eigenmodes

Figure 5a shows a progressively rotating gravity–in-
ertia wave for azimuthal wavenumber 1 whose fre-
quency (s 5 0.968 3 1023 s21) lies just outside the
advective frequency interval. The eigenmode has been
normalized to give unit maximum in perturbation geo-
potential. The dashed curves represent the vortex ei-
genmode while the solid curves represent the eigen-
mode’s resting counterpart. Not surprisingly, the eigen-
mode possesses a wavelike structure throughout the vor-
tex including the vortex environment. Despite its
distortion relative to its resting counterpart in the near-
vortex region, the map plot of Fig. 5b nonetheless ex-
hibits familiar gravity-wave characteristics. Perturbation
vorticity is correlated with height, and convergent (di-
vergent) flow is followed by a rising (falling) free
sur ace. The arguments of section 2 imply thatf̃

mass → wind.

Derived quantities such as PV, divergence, and vorticity
are shown in Fig. 5c. In the near-core region, divergence
has approximately the same magnitude as vorticity, and
at larger radii divergence is even larger than vorticity.
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FIG. 3. Frequency comparison of gravity–inertia waves with and without cyclonic swirl. (a)
Azimuthal wavenumber zero. (b) Azimuthal wavenumber one. Plotting axes are Re(s) on the
abscissa and Im(s) on the ordinate. Frequencies are dimensional and only the first nine modes
are shown. Swirling modes are indicated by 3, while resting modes are indicated by V.

Thus by all conventional measures we would designate
this mode a gravity–inertia wave. Higher frequency
modes for the same azimuthal wavenumber behave sim-
ilarly but possess smaller radial wavelengths than shown
in Fig. 5a. Unlike gravity–inertia waves on a resting fluid,
which have zero disturbance PV, vortex gravity waves
possess nonzero PV in the near-core region where dP̄/dr
± 0. Though the amplitude and radial extent of distur-
bance PV is found to diminish with wave frequency, the
fact that such modes are visible on PV maps suggests
using solely PV to partition the asymmetric flow into
slow and fast components is not a unique procedure.

Figures 6 and 7 illustrate the typical structure of Ross-
by–shear wave eigenmodes whose frequencies lie within
the advective frequency interval [0, n ]. The sameV̄max

format of Fig. 5 is adopted. A wavenumber-1 mode is
shown in Fig. 6, while a wavenumber-2 mode is shown
in Fig. 7. Unlike gravity waves, the radial structure of
individual Rossby–shear modes is not wavelike. Each
mode has a critical level where the Doppler-shifted fre-

quency vanishes. At such points, the perturbation tan-
gential velocity is discontinuous, but the perturbation
radial velocity and geopotential are continuous as re-
quired by kinematic and dynamic boundary conditions
at the critical level. Each mode is a discrete approxi-
mation to one of the continuum of singular neutral
modes in the continuous formulation whose superpos-
ition describes sheared disturbances (Farrell 1982). For
the problem of rectilinear simple-shear flow there is no
basic state vorticity gradient. The corresponding shear
eigenmodes consequently possess a delta function in
vorticity at the critical level, yet are irrotational else-
where. In circular vortices possessing a smooth radial
gradient in basic-state PV, however, shear modes possess
nonzero disturbance PV in regions where dP̄/dr ± 0
(see Figs. 6c and 7c).

Looking closely at Figs. 6b and c, several features
stand out. First, as the wave propagates around the vor-
tex center wind follows height, that is,

wind → mass.
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FIG. 4. Frequency scatterplots for the minimal hurricane vortex. Gravity–inertia wave and
Rossby–shear wave eigenfrequencies are both indicated by X. Only frequencies satisfying z ,zs
(n 1 1) are shown, where n is azimuthal wavenumber. (a) Azimuthal wavenumber 1. (b)V̄max

Azimuthal wavenumber 2. (c) Azimuthal wavenumber 3.
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FIG. 5. Progressive gravity–inertia wave (s 5 0.968 3 1023 s21)
for azimuthal wavenumber 1. (a) Radial structure for (r), iû(r), andŷ

(r). The vortex mode is indicated by the dashed plot, while itsF̂
resting counterpart is indicated by the solid plot. (b) Map plot. Per-
turbation winds are indicated with vectors. Light solid and dashed
lines denote positive and negative perturbation height contours, re-
spectively. Heavy solid and dashed lines denote perturbation vorticity
contours. (c) Radial structure for P̂V(r), (r), and divergence ampli-ẑ
tude (r) for vortex eigenmode. The eigenvector (r), iû(r), (r) hasˆ ˆd ŷ F
been normalized to give unit maximum in perturbation geopotential.



1878 VOLUME 54J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 6. Rossby–shear mode (s 5 0.1922 3 1023 s21) for azimuthal
wavenumber 1. Plotting convention is as in Fig. 5.
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FIG. 7. Rossby–shear mode (s 5 0.01 3 1023 s21) for azimuthal
wavenumber 2. Plotting convention is as in Fig. 5.
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FIG. 8. Local Rossby number squared (r) for the minimal hurricane2Rn

vortex.

Second, within the region bounded by the critical level
vorticity and height are anticorrelated,

z9 } 2h9.

Finally, Fig. 6c indicates that vorticity is approximately
fifteen times greater than divergence within this same
region. Thus by conventional measures one may regard
this mode as balanced. Other wavenumber-1 Rossby-
shear modes behave similarly.

At higher wavenumbers (n $ 2), we observe both
expected and unexpected features. Figure 7, for ex-
ample, shows a wavenumber-2 Rossby–shear mode hav-
ing its critical level near r 5 975 km. Like the previous
shear wave example, the radial structure is not wavelike.
At the critical level, the tangential velocity is discon-
tinuous, while the radial velocity and geopotential are
continuous. Within the region bounded by the critical
level but beyond approximately 400 km from the vortex
center the height field and vorticity field are anticor-
related,

z9 } 2h9;

perturbation winds are anticyclonic (cyclonic) where
perturbation heights are positive (negative); and vortic-
ity is more than an order of magnitude larger than the
divergence. In the vortex environment (away from the
core region) this mode can thus be regarded as balanced.
This is to be expected since both Rossby and Froude
numbers are small compared to unity2 for r k Rm.

In the near-core region unexpected structure changes
are found. Within 400 km of the vortex center, the height
field and vorticity field become correlated,

z9 } h9,

and divergence is only a factor of 4–5 smaller than
vorticity. To verify this is not a coincidence, PV, vor-
ticity, and divergence amplitudes for wavenumber-3
Rossby–shear modes were also examined but are not
shown here. For Rossby–shear modes possessing their
critical levels far from the near-core region, the diver-
gence becomes only a factor of 2 smaller than vorticity
in the near-core region, and radial plots of again showĥ
them to be correlated with vorticity there. The tendency
for divergence to become comparable to vorticity for
higher wavenumber Rossby–shear modes has also been
verified for wavenumber-4 Rossby–shear modes. Be-
cause the squared Froude number is approximately 0.2
in the near-core region, the disparity between vorticity
and divergence for wavenumber 1 is not at all surprising.
However, the emergence of gravity-wave-like behavior
in the near-core region for the advective modes at higher
wavenumbers is not anticipated by simple scaling ar-
guments depending solely on external parameters such
as the squared Froude number (McWilliams 1985). The

2 See note 3 added in proof, page 1884

mixed wave structure of Fig. 7b is reminiscent of mixed
Rossby–gravity waves (Yanai waves) found on the equa-
torial beta plane (Matsuno 1966).

These unexpected structure changes can be under-
stood physically upon considering the generalization of
the Rossby adjustment argument of section 2 to a rapidly
rotating vortex in gradient balance. On substituting

2 ˜f ← f h̄,
2 2c ← ȳ , (5.1)

the condition for balanced behavior (2.10) becomes

2 2n ȳ
, 1. (5.2)

2f̃ h̄r

The left side of the inequality is simply the square of
the local Rossby number for wavenumber n (Shapiro
and Montgomery 1993). Figure 8 shows as a func-2Rn

tion of radius for the minimal hurricane vortex. Figure
8 suggests that only wavenumber-1 Rossby–shear
modes can be considered balanced throughout the
near-core region and the vortex environment. The lo-
cal Rossby number for wavenumbers n $ 2 is greater
than unity in a substantial portion of the near-vortex
region. Consistent with this finding, we observe that,
within 400 km where . 1, height and vorticity2R2
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FIG. 9. Local Rossby number squared (r) for the incipient vor-2Rn

tex.

FIG. 10. Rossby–shear map plots for the incipient vortex. (a) Rossby–shear mode (s 5 0.005 3 1023 s21) for azimuthal wavenumber 3.
(b) Rossby–shear mode (s 5 0.005 3 1023 s21) for azimuthal wavenumber 4. Plotting convention is as in Fig. 5.

fields are correlated (cf. Fig. 7b). Similar consistency
has been verified for wavenumber three and higher
modes.

The robustness of the balance criterion (5.2) has been
tested for the other vortex profiles of section 3c. As an
example, Fig. 9 plots as a function of radius for the2Rn

incipient vortex. It is evident that is uniformly less2Rn

than unity throughout the vortex and its environment
for n # 3. For n $ 4, however, the criterion predicts
mixed-mode behavior in the near-core region. Figures
10a and 10b confirm this prediction by showing an ex-
ample of a Rossby–shear mode for n 5 3 and n 5 4,
respectively. For n 5 3, vorticity is anticorrelated with
height throughout the near-core region bounded by the
critical region, while for n 5 4, vorticity is correlated
with height in the same region. Physically, high wave-
number disturbances possess a smaller length scale than
the basic-state circular vortex. Consequently, scaling
considerations that presume the existence of a single
length scale characterizing the slow manifold, such as
McWilliams (1985) or Spall and McWilliams (1992),
are no longer appropriate (M. Spall 1996, personal com-
munication).

The more general implementation of (2.10) encom-
passing both low and high frequencies within the ad-
vective range 0 # s # considers the Doppler-¯nVmax

shifted phase velocity relative to the local tangential
wind . In this case one substitutesȳ

2 ˜f ← f h̄,

2
sr

2c ← 2 ȳ , (5.3)1 2n
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to obtain the generalized criterion for balanced behavior
in the near-core region:

2¯(s 2 nV)
, 1, (5.4)

f̃ h̄

where 5 /r is the basic state angular velocity.V̄ ȳ
Denoting D2 as the ratio of the advective accelerations
following the circular vortex to the inertial stability
(Shapiro and Montgomery 1993), the left-hand side
of (5.4) is recognized as D2 for frequency s and az-
imuthal wavenumber n. Eigenmodes whose eigenfre-
quencies reside in the advective range with magni-
tudes closer to have also been examined. In this¯nVmax

case, the eigenmodes exhibit balanced characteristics
in regions where D2 , 1, whereas in regions where
D2 . 1, the eigenmodes exhibit gravity-wave char-
acteristics. As a result, modes that behave like gravity
waves in the vortex environment display balanced be-
havior in the near-core region.

6. Radiating gravity–inertia and vortex–Rossby
waves

Having characterized the vortex eigenmodes for cir-
cular vortices with smooth and monotonic PV profiles,
we now briefly consider the initial-value problem. Our
goals here are twofold. First, we provide evidence that
the eigenmodes so constructed comprise a complete ba-
sis for the linear dynamics defined by (3.2). Second,
with a simple initial condition we show that the non-
axisymmetric adjustment process typically consists of
radiating gravity–inertia waves and vortex–Rossby
waves. A more in-depth study of the nonaxisymmetric
adjustment problem will be reported in a forthcoming
publication.

As is usual in linear dynamics, the general solution
for wavenumber n is written as a superposition over all
possible eigenmodes for wavenumber n. Recalling the
staggered grid arrangement defined in section 3b, at the
N velocity grid points (rj; 5 1, 3, 5, . . . , 2N 2 1) we
write

3N21

û(r , t) 5 C û exp(2is t), (6.1a)Oj k j ,k k
k51

3N21

ŷ(r , t) 5 C ŷ exp(2is t), (6.1b)Oj k j ,k k
k51

whereas at the N 2 1 height grid points (rj; j 5 2, 4,
6, . . . , 2N 2 2) we write

3N21

ˆ ˆh(r , t) 5 C h exp(2is t). (6.1c)Oj k j ,k k
k51

Here, (ûj,k, j,k, j,k) represent components of the ei-ˆŷ h
genvectors for wavenumber n as defined in section
3b, where j is the radial index and k is the eigenfre-
quency index. For a given initial condition [û(rj, 0),
(rj, 0), (rj, 0)] the coefficients (Ck) are determinedˆŷ h

by inverting the linear system (6.1). The system is
well posed and represents 3N 2 1 equations in 3N 2
1 unknowns. Keeping with the parameters of section
3, we choose N 5 400, which yields a coefficient
matrix with 1199 3 1199 elements. The solution to
(6.1) has been success ully implemented on the Na-f̃
tional Center for Atmospheric Research (NCAR)
Cray-Y-MP using a standard EISPACK routine for a
variety of initial conditions. Although the successful
inversion of (6.1) does not constitute a rigorous proof
that the vortex eigenmodes form a complete set, the
numerical evidence suggests this is indeed the case
at least for localized initial disturbances.

As an example of the evolutionary dynamics implied
by (6.1), we consider a windless initial condition for an
azimuthal wavenumber-1 disturbance on the minimal
hurricane vortex,

2r
ĥ(r, 0) 5 b r exp 2 , (6.2)1 1 2[ ]gRm

where b1 5 2e/gRm, g 5 2, and Rm 5 50 km. AsÏ
evident from the recipe, vanishes at r 5 0 and isĥ
consistent with the boundary condition there. The height
perturbation is dimensionalized in order to attain a max-
imum amplitude of 10 m at r 5 gRm/ 2.Ï

Figure 11 highlights the salient features of the so-
lution. Shown are snapshots of the perturbation height
(Figs. 11a,b) and PV (Figs. 11c,d) at t 5 0.0, 3.25,
and 5.0 h. Figures 11a and 11b show an outward prop-
agating gravity–inertia wave packet that quickly sep-
arates from the near-core region. Since the basic-state
radial PV gradient is effectively zero beyond 400 km,
this wave packet becomes invisible on PV maps at
distant radii. The radial group velocity with which the
wave packet propagates has been verified to equal

gH (99 m s21). The secondary wave packet just be-Ï
hind the leading packet is associated with inward prop-
agating gravity waves that become outward propagat-
ing gravity waves upon reaching the vortex center.
Analysis confirms that the leading edge of the wave
packet can be accurately depicted as an outward prop-
agating trailing spiral (the dashed line in Fig. 11a). For
t $ 3 h, a least squares calculation for the leading edge
of the packet gives

h9(r, l, t) 5 Re{exp^i[k(r 2 R) 1 nl]&}, (6.3)

where k 5 2.16 3 1022 rad km21, and R 5 1136.4
km 1 gH(t 2 3 h). In (6.3) the 1/ R geometricalÏ Ï
factor that usually multiplies (6.3) in cylindrical ge-
ometry has been neglected because of its weak vari-
ation over the distance considered. The simulation
was terminated at t 5 5 h because the gravity wave
reached the outer boundary at 2000 km soon after this
time. The features thus described have been verified
with an independent linear PE simulation employing
grid points radially and Fourier modes azimuthally.
Hence, although each gravity–inertia eigenmode of
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FIG. 11. Snapshots of perturbation height and PV highlighting the nonaxisymmetric adjustment process obtained by summing the vortex
eigenmodes for the minimal hurricane vortex. The initial condition is the wavenumber-1 height disturbance (6.2). (a) Map-plots of perturbation
height at time t 5 0.0, 3.25, and 5.0 h. (b) Radial-profile plots of perturbation height along l 5 0 at the same times of (a). (c) Map-plots
of perturbation PV at the same times of (a). Contour intervals are 61027, 1028, . . . , 10212 s21 m21. (d) Radial profile of z z at the sameP̂V
times of (a). Note the reduced domain size in (c) and (d).
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section 5 represents a standing wave in the radial di-
rection, superposing them correctly captures inward
and outward wave propagation.

Following the rapid emission of gravity–inertia
waves, Figs. 11c,d reveal vortex–Rossby waves (PV
waves) in the near-core region that begin to get sheared
by the differential rotation of the mean vortex. Previous
work (Montgomery and Kallenbach 1997) has already
developed the basic theory for these waves in the con-
text of nondivergent and asymmetric-balance vortex
dynamics. The relevant features to note in Figs. 11c,d
are outward-propagating PV wave packets and the
emergence of the steady-state pseudo-mode near r 5
0 indicating the displacement of the vortex. Unlike
gravity–inertia waves, vortex–Rossby waves are tied
to the near-vortex region where the radial PV gradient
is nonzero. Although each Rossby–shear eigenmode
does not propagate radially, superposing them correctly
captures inward and outward wave propagation.

7. Conclusions

Previous work has examined the physics of vortex
axisymmetrization using idealized nondivergent and
asymmetric balance models (Montgomery and Kallen-
bach 1997, and references therein). To quantify the role
of radiating gravity–inertia waves and vortex–Rossby
waves in the ensuing wave-mean-flow dynamics of the
primitive equations, one must first understand the struc-
ture of nonaxisymmetric waves in the primitive equa-
tions. As a first step towards tackling the more complex
nonaxisymmetric adjustment problem in inviscid and
swirling boundary-layer vortex flows, the complete
wave spectrum in barotropic shallow water vortices rep-
resentative of hurricane-like flows has been investigated
here. Armed with an understanding of the free waves
on a resting fluid in an unbounded domain, eigenfre-
quencies and eigenfunctions were examined for hurri-
cane-like vortices. Eigensolutions are found to fall into
two continuum classes.

Eigenmodes possessing frequencies greater than the
maximum advective frequency for azimuthal wavenum-
ber n are modified gravity–inertia waves that propagate
around the vortex. Changes in the gravity-wave spectra
were accounted for using simple WKB theory. Unlike
gravity–inertia waves in a resting fluid layer, vortex
gravity–inertia waves are no longer invisible to the PV
dynamics in the near-core region.

Classification of modes with frequencies less than
or equal to the advective frequency (‘‘advective
modes’’) is more subtle. In addition to the continuous
spectrum of gravity–inertia waves, the continuous
spectrum of Rossby–shear waves comprises the second
class of disturbances. Rossby–shear waves possess
critical levels where the Doppler-shifted frequency
vanishes and also possess disturbance PV in regions
where the radial PV gradient is nonzero. Although no
exponentially unstable modes are found for the class

of smooth monopolar PV profiles considered here, we
find that both vortex structure and azimuthal wave-
number govern whether the advective modes may be
identified as balanced (‘‘slow’’) or unbalanced (‘‘fast’’)
in the near-vortex region. A simple criterion general-
izing Rossby’s characterization of balanced and un-
balanced flow to that of azimuthal wave disturbances
on a circular vortex was proposed for monochromatic
disturbances that is consistent with AB theory (Shapiro
and Montgomery 1993). Consistent with the scaling
predictions of AB theory, Rossby–shear waves on
monopolar vortices exhibit gravity–wave-like charac-
teristics in the near-core region when the local Rossby
number for wavenumber n is greater than unity. This
structure change is not anticipated by traditional scal-
ing arguments using solely external flow parameters
such as the squared Froude number and is reminiscent
of the mixed Rossby–gravity waves found on an equa-
torial beta plane (Matsuno 1966). The implication of
such structure changes in the nonaxisymmetric ad-
justment process is the subject of current work that
will be reported in a forthcoming publication.

Note 1 added in proof (see page 1874). We believe
our conclusion is valid for the unbounded domain,
which is approximated here by vanishing height per-
turbations at r 5 a. On further inspection of our results
a weakness of this formulation was noted through the
discovery of a pure inertial oscillation with frequency
s 5 2f and uniform or increasing wind amplitudes near
r 5 a. When the eigenvalue problem (3.6) was refor-
mulated with the boundary condition u9 5 0 at r 5 a,
this inertial mode disappeared altogether yet the other
results of sections 4 and 5 were essentially unaffected.
The drawback of this latter condition, however, is the
excitation of spurious boundary inabilities associated
with Kelvin edge-waves on r 5 a which have no coun-
terpart in the infinite domain problem and only com-
plicate the physical interpretations.

Note 2 added in proof (see page 1874). The displayed
vortex gravity–inertia eigenfrequencies have been ver-
ified to approximate a twofold continuum by increasing
the domain size while keeping the number of grid points
constant and observing that the eigenfrequencies be-
come more closely spaced.

Note 3 added in proof (see page 1880). At sufficient
distances beyond the critical level h9 cannot remain an-
ticorrelates with z9 because the perturbation PV ulti-
mately vanishes. At such distances z9 5 fh9|H but the
mode is nevertheless balanced since the perturbation
winds are nearly geostrophic.
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