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ABSTRACT

This paper investigates the extent to which the statistics of extratropical synoptic eddies may be deduced
from the assumption that the eddies are stochastically forced disturbances evolving on a baroclinically stable
background flow. To this end, a two-level hemispheric quasigeostrophic model is linearized about the observed
long-term mean flow and forced with Gaussian white noise. The mean flow is baroclinically stable for a reasonable
choice of dissipation parameters. Synoptic-scale eddy disturbances can still grow on such a flow, albeit for a
finite time, either in response to the stochastic forcing or through baroclinic and barotropic energy interactions
with the background flow. In a statistically steady state, a fluctuation–dissipation relation (FDR) links the
covariance of the eddies to the spatial structure of the background flow and the covariance of the forcing.
Although not necessary, in this study the forcing is assumed to have always the same trivial statistics (white in
both space and time). Under this assumption, the FDR states that the geographical distribution of synoptic eddy
covariance is controlled solely by the spatial structure of the background flow, which can therefore be used to
predict it. All other second-order eddy statistics, such as eddy kinetic energy, momentum and heat fluxes, and
power spectra, can then also be predicted. Despite the apparently drastic underlying assumption of synoptic
eddy evolution as a stable linear Markov process, the comparisons of the predicted and observed geographical
distributions of eddy kinetic energy and momentum and heat fluxes are found to be encouraging. The FDR is
also shown to be sensitive enough to basic-state changes that it is able to predict important aspects of observed
storm-track variability associated with seasonal and interannual changes of the background flow. The success
of these calculations suggests that it is not necessary to invoke either baroclinic instability or the details of the
eddy forcing to understand much of the observed spatial and temporal structure of extratropical synoptic eddy
statistics. Rather, the dynamics of nonmodal eddy growth in the Pacific and Atlantic jets, and the downstream
propagation and dispersion of the eddy activity in the diffluent regions downstream of the jets, appear sufficient
for this purpose.

1. Introduction

The last two decades have seen considerable progress
in the modeling and prediction of extratropical weather
systems. Numerical weather prediction models are now
able to forecast them up to nearly a week ahead of time,
and many general circulation models (GCMs) are able
to capture important aspects of their general behavior
as represented in the variance and covariance statistics
of transient fluctuations with periods of less than about
a week. Parallel advances have also been made in the
understanding of their dynamics in a variety of situa-
tions, aided in significant measure by ‘‘potential vortic-
ity thinking.’’

Despite these advances, however, a successful theory
of the statistics of such eddies has yet to emerge. By
itself, a reasonable simulation of the eddy statistics in
GCMs does not constitute such a theory. Without a the-
ory one cannot understand why, for example, a GCM
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produces synoptic eddy variance maxima where it does,
or why it does not produce variance maxima where it
should. A quantitative theory of the eddy statistics
would help one understand such model deficiencies. It
would also help one understand better the geographical
distributions of the observed climatological mean syn-
optic eddy variances and fluxes, as well as their changes
from season to season, from year to year, and during
persistent extreme anomaly events.

Synoptic eddies have almost always been discussed
in relation to a background flow, either steady, time-
mean, slowly evolving, or representative of some ‘‘in-
stantaneous’’ weather regime. When the focus shifts
from the behavior of individual eddies to that of an
ensemble of eddies, consideration of the ensemble-av-
erage flow as a background flow seems even more rel-
evant. Nevertheless, as is well recognized, such a sep-
aration of the flow into mean and eddy parts often pre-
sents conceptual difficulties, and also raises the issue of
whether, and to what extent, the mean flow actually
determines the eddy statistics or vice versa. Still, one
can always ask the question: Given an ensemble-average
flow, to what extent can one deduce the ensemble-av-
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erage eddy statistics? This is the problem considered in
this paper.

The association of the geographical distribution of
synoptic eddy variance with the spatial structure of the
background flow has long been appreciated in the lit-
erature. Blackmon et al. (1977) noted that the clima-
tological synoptic eddy variance maxima during north-
ern winter are located just downstream of the clima-
tological Pacific and Atlantic jets. Lau (1988) and Metz
(1989) showed that slow monthly variations of the eddy
statistics are also significantly correlated with slow vari-
ations of the background flow. Frederiksen (1983, 1989)
and Robertson and Metz (1989, 1990) showed that some
of these observational features can be related to the
structures of the most unstable eigenmodes of the zon-
ally varying climatological flow and how those struc-
tures change with changes in the background flow.

One could certainly formulate a theory of synoptic
eddy statistics in terms of the fastest growing eigen-
modes of the background flow. There are, however, sev-
eral reasons why one might wish to avoid such a theory.
First, the most unstable modes of observed zonally vary-
ing flows are often not substantially more unstable than
other modes. The time required for them to emerge as
dominant structures can therefore be much longer than
their individual e-folding times. For climatological
flows, this emergence time is too long for the scenario
to be plausible. Second, the most unstable modes are
often highly sensitive to small changes in the back-
ground flow and the linear model used in the eigen-
analysis. If the properties of the most unstable eigen-
modes are uncertain, then so must be any predictions
of eddy statistics based on them.

Partly to circumvent these difficulties, Branstator
(1995) hypothesized that the synoptic eddy statistics
associated with any background flow may be approxi-
mated as the statistics of random initial disturbances
evolving linearly over a short time interval t b on that
background flow. Applying this idea to the prediction
of the synoptic eddy statistics associated with a GCM’s
representative background flows, he was able to repro-
duce many features of those statistics. His success helps
retain confidence in linear theories of eddy statistics,
and also draws the focus away from the most unstable
eigenmodes. It is interesting that Branstator found his
results to be sensitive to the choice of t b, reporting that
the best results were obtained for t b ; 5 days. Presum-
ably, for t b ; 0, his predicted eddy variance field does
not have time to evolve significantly away from the
globally uniform initial distribution, and for t b . 10
days, it asymptotes to the amplitude structure of the
most unstable eigenmode, which in his case is a poor
match to the GCM’s synoptic eddy variance. To obtain
the best match, therefore, an intermediate value has to
be chosen so that many, if not all, of the eigenmodes
contribute to the eddy statistics.

Branstator’s results are encouraging, but his approach
also has difficulties. Because the eddy variances at time

t 5 0 and t 5 t b are not the same, his theory of the
eddy statistics is not statistically stationary: it matters
what the time origin is. The theory is also silent about
what happens after t 5 t b, and why it is not important
in determining the eddy statistics. Surely the higher am-
plitude eddies at these later times must also contribute
to the eddy statistics, especially the momentum fluxes?

An entirely different approach to the problem of pre-
dicting extratropical synoptic eddy statistics has been
advocated by Farrell and collaborators. In a series of
papers (Farrell and Ioannou 1993, 1994, 1995; Delsole
and Farrell 1995; Farrell 1989) they propose that the
eddies are best viewed as stochastically forced distur-
bances evolving on a baroclinically stable background
flow. Eddies can still grow on such a flow, for a finite
time, through local energy extraction from the back-
ground shears. If the quadratic nonlinearities are ap-
proximated as stochastic excitation plus an augmented
dissipation, as done in many early studies of homoge-
neous turbulence (e.g., Kraichnan 1959; Leith 1971),
the governing equations reduce to a (multi-) linear Mar-
kov process. The extensive theory of stationary Markov
processes can then be employed to deduce the statistics
of the eddies in statistical equilibrium. The results of
Farrell and Ioannou (1994) and Delsole and Farrell
(1995) suggest that this approach can explain certain
features of observed transient eddy energy and heat flux
spectra that baroclinic instability theory cannot. But per-
haps the most attractive feature of this alternative theory
is that it is statistically stationary. The theory also takes
into account, however crudely, two of the most impor-
tant nonlinear aspects of synoptic eddy evolution: sat-
uration and excitation. The latter conceivably represents
what synopticians sometimes refer to as the seeding of
new weather systems by the ‘‘debris’’ of old systems.

Farrell and collaborators have thus far discussed their
ideas in zonally symmetric contexts. Our principal goal
here is to investigate to what extent their alternative
viewpoint is quantitatively useful in deducing the ob-
served zonally varying synoptic eddy statistics associ-
ated with observed zonally varying background flows.
To this end, we linearize a two-level hemispheric qua-
sigeostrophic model about representative observed
flows, stabilize it with an extra dissipation, force it with
Gaussian white noise, and compare the stationary sta-
tistics of the resulting eddies with observations.

To focus the discussion and establish terminology, we
begin with some theoretical preliminaries in section 2.
Section 3 describes the observational datasets and data
filtering procedures, the two-level model equations, and
the procedure for obtaining the eddy statistics in statis-
tical equilibrium using the theory of stationary Markov
processes. Results for the climatological winter eddy
statistics are presented in section 4. Results for the sea-
sonal and interannual variations of the statistics are pre-
sented in section 5. Sensitivity to the specification of
the extra damping is discussed in section 6. Section 6
also considers the sensitivity to whether the Gaussian
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white forcing is specified as white in the streamfunction,
rotational kinetic energy, or vorticity norms; that is,
whether the streamfunction, kinetic energy, or vorticity
on different spatial scales are excited equally by it. Sec-
tion 7 follows with a discussion and conclusion.

2. Theoretical preliminaries

Consider the evolution equation for synoptic eddies
in the form

dx̃ ˜5 Lx̃ 1 ñ 1 F, (1)
dt

where x̃ is a vector of eddy expansion coefficients in
say a spherical harmonic basis, L is the dynamical op-
erator of the model linearized about a specified back-
ground flow in that basis, ñ denotes nonlinear terms,
and F̃ represents forcing. We will assume that (1) has
been written in such a way that x̃ is a real vector and
L is a real matrix. Note that Lx̃ includes eddy dissipation
terms in addition to the terms linearized about the spec-
ified background flow. Our aim in this paper is to relate
the covariance matrices

TC 5 ^x̃(t)x̃ (t)&, (2a)0

TC 5 ^x̃(t 1 t)x̃ (t)&, (2b)t

of the synoptic eddies, where angle brackets denote an
ensemble average (which is often estimated as a time
average) to the structure of the background flow. To this
end, we will approximate the sum of the nonlinear and
forcing terms in (1) as

ñ 1 F̃ 5 Dx̃ 1 F̃s, (3)

where F̃s is Gaussian white noise and D is a damping
operator. Equation (3) is only expected to hold on av-
erage, not for every realization. As discussed by DelSole
and Farrell (1995), (3) may be thought of as a param-
eterization of quadratic nonlinearities in the spirit of
classical studies of homogeneous turbulence (Kraichan
1959; Leith 1971). With this approximation, (1) be-
comes

dx̃ ˜ ˜5 (L 1 D)x̃ 1 F 5 Bx̃ 1 F . (4)s sdt

We will specify D such that B is a stable operator—that
is, all its eigenvalues have negative real parts. Equation
(4) then becomes a multivariate linear Markov model
of the synoptic eddies.

The general properties of a model such as (4) have
been discussed recently in detail in other geophysical
contexts by Penland and Ghil (1993), DelSole and Far-
rell (1995), Penland and Sardeshmukh (1995), and New-
man et al. (1997, hereafter NSP). Its most important
property is that without the forcing F̃s, all eddies even-
tually decay. In a multivariate system, however, that
decay need not be monotonic. As noted by numerous
authors, if the maximum singular value of the operator

exp(Bt) is greater than 1 for some t , then eddy growth
is possible over the interval [t, t 1 t]. Nevertheless, to
achieve a statistically stationary state, the general de-
caying tendency of the eddies must be balanced by forc-
ing. This balance condition, known in the stochastic
dynamical systems literature as a fluctuation–dissipation
relation (FDR) (e.g., see Gardiner 1985) may be ex-
pressed as

BC0 1 C0BT 1 Q 5 0, (5)

where Q 5 ^F̃s(t) (t)& dt is the covariance matrix ofTF̃s

the stochastic white noise forcing. Equation (5) is some-
times also referred to as the ‘‘Lyapunov equation’’ in
the literature (e.g., Farrell and Ioannou 1993). A rig-
orous derivation involves the Fokker–Planck equation
(Arnold 1974) and can be found, for example, in Pen-
land and Matrosova (1994). The only assumption made
in going from (4) to (5) is that B is stable. It is important
to note also that in order for (5) to be valid Q must be
symmetric but not necessarily diagonal—that is, that F̃s

be white in time but not necessarily white in space.
Equation (5) links the covariance structure of the eddies,
C0, to the structure of the background flow, B, and to
the covariance structure of the forcing, Q. Given B and
Q, therefore, one can solve for C0. Further, the lag-
covariance matrices Ct in any dynamical system of the
form (4) are related to C0 as

Ct.0 5 exp(Bt)C0 (6)

(Penland 1989) and can therefore also be determined
once C0 is known.

To simplify even further, we hypothesize that the geo-
graphical coherence of the forcing is unimportant in (4)
and (5), and approximate Q as Q 5 «I, where I is the
identity matrix and « is a scaling constant. Our param-
eterization of the eddy statistics then becomes

TBC 1 C B 1 «I 5 0, (7a)0 0

C 5 exp(Bt)C , (7b)t.0 0

TC 5 C . (7c)t,0 t.0

Given any background flow, that is, B, we determine
C0 through (7a) and Ct through (7b) and (7c). Note that
(7a) implies that if the background flow changes, the
eddy statistics change in such a way that the symmetric
part of BC0 remains the same as before. This is the
essence of our parameterization. Note also that our pre-
diction of a change in C0 does not depend upon an
explicit specification of Q in (5). We only need Q to
predict the actual C0, and will show below that speci-
fying Q 5 «I works quite well.

If x̃v is the Fourier transform of the multivariate Mar-
kov process x̃(t) in (4), then its covariance matrix in the
frequency domain is

Cv 5 ^x̃v & 5 (vI 1 iB)21Q(vI 2 iBT)21,Tx̃ *v (8)

where the superscript T* denotes complex conjugate
transpose. The power spectra of all components of x̃v,
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as well as their cross-spectra, are given by (8). Now,
since Cv and Ct form a Fourier transform pair,

1`1
2ivtC 5 C e dv, (9a)t E v2p

2`

1`

2ivtC 5 C e dt . (9b)v E t

2`

Solving (7), for all t , thus yields not only complete
information on the spatial structure of the eddies but
their Fourier spectra as well.

We emphasize again that nothing about the mathemat-
ical development presented here is new. Once the as-
sumptions leading to (4) are made, Eqs. (5)–(9) follow
from the well-developed theory of stationary linear Mar-
kov processes. However, ours is the first comprehensive
evaluation of the ability of such a model to explain the
observed zonally varying statistics of synoptic eddies.

One may ask why our model should be considered a
model of synoptic eddy statistics and not the full spec-
trum of transient eddies. NSP examined whether the
FDR for a barotropic model linearized about the ob-
served 300-mb flow could account for the observed sta-
tistics of low-frequency anomalies in the atmosphere.
They found that although the model could be tuned to
produce fairly realistic zero-lag covariances, the simu-
lated time lag-covariances did not match observations
very well. They concluded that the details of forcing
and nonlinear interactions with other frequency bands
are important in the dynamics of low-frequency tran-
sients. We do not expect our model to do any better
with low-frequency eddies. Rather, our aim is to see if
a simple stochastic baroclinic model can simulate the
statistics of higher-frequency synoptic eddies.

Some caveats are in order. The parameterization prob-
lem is meaningfully posed only for ensembles that include
a sufficiently large number of synoptic eddy events that
their statistics can be reliably defined. For ensemble av-
erages defined as time averages, this suggests that one
should consider averages over at least one, and preferably
many, 90-day seasons. We will consider the problems of
deducing the 13-winter (DJF) average eddy statistics for
1982–95 given the 13-winter average flow, the differences
between the 13-yr average eddy statistics for northern mid-
winter (January) and midspring (April) given the differ-
ence between the 13-yr mean flows for these months, and
finally the anomalous eddy statistics for individual winters,
given the anomalous flows for those winters. From sam-
pling considerations alone, one would expect some deg-
radation in the answers to these problems as the sample
size is reduced.

There is, however, another, and perhaps even more
important, reason as to why one should expect a deg-
radation in the answers for smaller sample sizes. Any
parameterization problem is well posed only to the ex-
tent that there is a clear temporal and spatial scale sep-
aration between the eddies and the mean flow, that is,

a clear spectral gap. We define our synoptic eddies as
eddies with timescales shorter than 8 days, and our mean
flow as flow with timescales longer than 90 days. It
might therefore appear that we have adequate scale sep-
aration. It is, however, important to bear in mind that
there is actually no spectral gap in the observations. The
spectrum of the observed variability is predominantly
red, and eddies with timescales between 10 and 90 days
may also be expected to affect the synoptic eddy sta-
tistics. One could thus observe, in principle, different
90-day mean synoptic eddy statistics associated with the
same 90-day mean flow. Since the intermediate time-
scale eddies are unaccounted for in our analysis, they
contribute, to the extent that they affect the synoptic
eddies, an unparameterized portion to the synoptic eddy
statistics in our problem. One could reasonably expect
this contribution to be smaller for larger ensembles
(such as climate means), particularly if it is a linear
function of the intermediate timescale eddies (i.e., if a
positive 10–90-day anomaly has the same effect on the
synoptic eddies as an identical negative anomaly). For
individual winters, however, it could be relatively large,
and remains to be determined.

Our linear model L in (1) will be a two-level, hemi-
spheric, quasigeostrophic model linearized about rep-
resentative observed zonally varying flows at 400 and
800 mb. We will specify D in (4) as a simple linear drag
D 5 2aI. The scaling constant « in (7) will be chosen
so that the global maximum of rotational eddy kinetic
energy obtained via (7) matches observations. Maps of
the eddy streamfunction variance, kinetic energy, vor-
ticity, and heat fluxes predicted by (7) will then be com-
pared with the corresponding observed quantities.

Finally, we stress again that even if B 5 L 1 D is a
stable operator, this does not imply that all eddy growth
is associated with the stochastic forcing. As mentioned
above, if exp(Bt) has singular values greater than 1, as is
true in our system, then deterministic (as opposed to sto-
chastic) eddy growth is possible over the interval [t, t 1
t]. The energy for this growth comes from the background
flow, not the forcing. Indeed we will make a case that
nearly 75% of the domain-integrated eddy variance in the
statistically equilibrated system (4) comes from the back-
ground flow, and only about 25% from the stochastic forc-
ing. Locally, in the jet regions where the energy source
associated with the background flow shears is strongest,
the relative importance of the energy source associated
with the stochastic forcing is even less.

3. Data, equations, and solution procedure

a. Observational data and processing

The data used in this study were derived from the
reanalysis dataset (Kalnay et al. 1996) produced by the
National Centers for Environmental Prediction (NCEP).
We utilize global 400-mb, 700-mb, and 850-mb wind
fields sampled four times daily over the period 1982–



15 JANUARY 1998 241W H I T A K E R A N D S A R D E S H M U K H

95. Winds at 800 mb were estimated by linear inter-
polation in the natural logarithm of pressure between
700 and 850 mb. Spherical harmonic coefficients of the
400-mb and 800-mb angular velocity (winds multiplied
by cosine of latitude) were then calculated from the 2.58
gridded data using the SPHEREPACK1 package and
truncated to T31 resolution. Only the nondivergent
winds were used in the analysis; these were obtained
from the spectral coefficients of the vorticity field. Fi-
nally, bandpass filtered data were obtained by applying
a 1–8-day bandpass 251-point Lanczos filter (see Sar-
deshmukh et al. 1997) to the 400-mb and 800-mb
streamfunction coefficient time series.

b. The two-level model

We use a quasigeostrophic two-level model based on
the linear balance equation (Lorenz 1960; Frederiksen
1983; often referred to as the P-model). After nondimen-
sionalizing using the radius of the earth (a) as a length
scale and the inverse of the earth’s rotation rate (V21) as
a timescale, the governing equations may be written:

2]¹ cj 21 J(c , ¹ c 1 2m) 1 = · (2m=x )j j j]t
4 25 2((2 2 j)r 1 n¹ )¹ c , (10)M j

] 1
(f 2 f ) 1 J(c 1 c , f 2 f ) 1 sv2 1 1 2 2 1 3/2]t 2

45 2(r 1 n¹ )(f 2 f ), (11)T 2 1

2¹ (f 2 f )2 1

5 = · [2m=(c 2 c )], (12)2 1

where

]A ]B ]B ]A
J(A, B) 5 2 ,

]m ]l ]m ]l

c is streamfunction, f is geopotential, x is velocity
potential, m is the sine of latitude, v 5 dp/dt, and (rM,
rT, n) are damping parameters. The subscript j 5 1 (2)
denotes the 800-mb (400-mb) level, while the subscript
3/2 denotes the 600-mb level. The variables c, x, f,
and v are nondimensionalized by (Va)2, (Va)2, Va2,
and VDp, respectively, where Dp 5 p2 2 p1 5 2400
mb. The static stability parameter s is assumed to be a
constant, given by

2DpDQ
s 5 , (13)

2 2V a

where Dp is the difference between the Exner function
[[ ] at 400 and 800 mb and DQ is the meanR/CPc (p/p )p 0

1 FORTRAN source code available free from the National Center
for Atmospheric Research (NCAR) via anonymous FTP
(ftp.ucar.edu).

potential temperature difference between 400 and 800
mb. For all of the results presented here, the dimensional
values of the lower-level Rayleigh damping (rM), the
thermal damping (rT), and the coefficient of the bihar-
monic diffusion (n) are fixed at 2/5 day21, 1/7 day21,
and 2.338 3 1016 m4 s21, respectively. The stability
parameter is fixed by specifying DQ 5 15 K.

The horizontal boundary conditions are

v5/2 5 0 and v1/2 5 J(c1, h), (14)

where h is topographic height (scaled by r0g/Dp, where
r0 is a reference value of density at 1000 mb) and the
subscript 1/2 (5/2) denotes the 1000-mb (200-mb) level.
The velocity potential x is related to v through the
continuity equation:

¹2xj 5 (2j 2 3)v3/2 1 (2 2 j)v1/2. (15)

The vorticity equation (10) is the prognostic equation
for the model. Since geopotential and streamfunction
are coupled through the balance equation (12), elimi-
nation of the time derivatives in (10) and (11) using ]/]t
of (12) yields a diagnostic ‘‘v equation’’ for the diver-
gent flow (not shown).

c. Calculation of eddy statistics

Since (10) is the prognostic equation of our model,
we define our state vector x̃ in (4) as the vector of 400-
mb and 800-mb streamfunction spherical harmonic co-
efficients. The linearized version of the two-level model
may be used to construct L, the matrix representing the
linearized dynamical operator acting on x̃. Here we use
the observed nondivergent seasonally averaged flow at
400 and 800 mb to determine the basic state, with the
static stability s and the damping coefficients (rM, rT,
n) fixed at the values given previously.

The operator D in (4) is chosen to be a linear damping
on the state variables, D 5 2aI, where I is the identity
matrix and a is a positive real scalar constant. It may
be incorporated into the model without changing the
eigenvectors or the imaginary parts of the eigenvalues
of L by simply shifting the real parts of the eigenvalues
by a. Unless otherwise noted, a is set to 1/10 day21,
which is more than sufficient to stabilize B 5 L 1 D
for observed long-term seasonal mean basic states. Fur-
ther discussion of the sensitivity of our results to a is
given in section 6.

The only quantity remaining to be specified in (7) is
«, an arbitrary scaling constant that affects the overall
amplitude of the solution, but not its structure. We set
it so the predicted global maximum of rotational eddy
kinetic energy matches observed maximum.

d. Solution procedure

The spherical harmonic expansion of the state variable
is truncated at T31, yielding a 2048-element real state
vector in (4). To further reduce the dimensionality, we
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FIG. 1. Observed (a) and simulated (b), (c), and (d) DJF mean 400-mb 1–8-day bandpass streamfunction variance. In (b), the full DJF basic
state is used. In (c), only the barotropic part of the DJF mean winds are included, while in (d) only the zonally symmetric part of the barotropic
winds are included. Contour interval is 1 3 1013 m4 s22 in (a) and (b), 1.125 3 1012 m4 s22 in (c) and (d). Values greater than 6 3 1013 m4 s22

(6.75 3 1012 m4 s22) are shaded in (a) and (b) [(c) and (d)]. In this and all following polar stereographic plots, the outermost latitude is 108N.

reflect the Northern Hemisphere basic state onto the
Southern Hemisphere, and also impose hemispheric sym-
metry on the eddies. This results in an L of rank 992. The
FDR (7a) is then solved for C0 in the eigenspace of B [see
appendix C in Penland and Sardeshmukh (1995)], and then
transformed back to the spherical harmonic space. Then
Ct is calculated from (7b) using the fact that exp(Bt) 5
ELE21, where E is the matrix with the eigenvectors of B
as columns, lj are the eigenvalues of B, and L is a diagonal
matrix with elements exp(ljt). Finally, C0 and Ct are trans-
formed from spectral to grid space, and their diagonal

elements are displayed as variance and lag-covariance
maps, respectively.

4. Results for the winter mean background flow

Using the 13-winter (DJF) mean winds to compute L,
we solve the FDR with the parameter settings given in
section 3. Our state variable x̃ contains the spherical har-
monic coefficients for perturbation streamfunction, so C0

represents streamfunction covariance. The specification Q
5 «I therefore amounts to assuming that all the stream-
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FIG. 2. Observed (a) and simulated (b) DJF mean 400-mb 1–8-day bandpass rotational kinetic energy. Contour interval is 15 m 2 s22.
Values greater than 90 m2 s22 are shaded.

FIG. 3. Observed (a) and simulated (b) 400-mb streamfunction tendency associated bandpass eddy vorticity fluxes. See text for details of
computational procedure. Contour interval is 3 m2 s22 in (a) and 6 m2 s22 in (b). Values less than 23 m2 s22 are shaded in (a), 26 m2 s22

in (b). The zero contour is omitted for clarity here and in Figs. 4–7.

function coefficients are excited equally, and indepen-
dently, by our stochastic forcing F̃s. In general, the solution
C0 of the FDR (7a) will depend upon the norm in which
Q is specified to be white, that is, whether the stream-
function or, say, the vorticity coefficients are excited equal-
ly. Unless noted otherwise, all results in this paper are for
Q 5 «I in the streamfunction norm. Sensitivity to the
choice of norm is discussed further in section 6.

Figures 1a and 1b show the observed and predicted
400-mb DJF bandpass streamfunction variance, respec-

tively. The scaling constant « in (7a) has been chosen so
that the maximum 400-mb rotational eddy kinetic energy
of the solution matches observations (see Fig. 2). It is
clear that the prediction is able to capture the most im-
portant features of the observed distribution, the Atlantic
and Pacific storm tracks. The main deficiencies appear to
be that the predicted Atlantic storm track is too far north
and too little eddy activity penetrates the mean ridge in
the eastern Pacific.

Figure 1c shows the result of a calculation in which
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FIG. 4. Observed (a) and simulated (b) 400-mb streamfunction tendency associated with bandpass eddy heat fluxes. See text for details of
computational procedure. Contour interval is 3 m2 s22; values less than 23 m2 s22 are shaded.

FIG. 5. Observed (a) and simulated (b) 1.5-day lag-covariance of DJF mean bandpass eddy streamfunction. Contour interval is 1 3 1013

m4 s22; values less than 21 3 1013 m4 s22 are shaded.

only the barotropic part of the observed DJF winds are
used to compute L. Since there are now no basic-state
temperature gradients, Fig. 1c represents the eddy variance
that is maintained solely by the stochastic forcing and
barotropic energy conversions. The domain-integrated
streamfunction variance is about 37% of that in Fig. 1b,
indicating that baroclinic energy conversions play a dom-
inant role in maintaining eddy variance in our stochasti-
cally forced, baroclinically stable model. To some extent,
the barotropic calculation also yields localized regions of

eddy variance over the Atlantic and Pacific oceans, al-
though the dynamics of eddy growth supporting these
‘‘storm tracks’’ are clearly different from those in the full
baroclinic calculation. When the zonally varying com-
ponent of the barotropic basic flow is removed, the eddy
variance is reduced even further (Fig. 1d), indicating that
the barotropic energy source for the eddy variance in Fig.
1c is associated primarily with the zonally varying part of
the barotropic deformation field. Finally, when only the
solid body rotation component of the barotropic zonal
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FIG. 6. Observed (left) and simulated (right) one-point lag-correlation maps for a base point at 38.9668N, 172.58W. Contour interval is
0.1; values less than 20.1 are shaded.

wind is retained in the basic state, the domain integral of
streamfunction variance (not shown) is reduced to about
27% of that in the full baroclinic case (Fig. 1b). For this
extreme distortion of L, there are no barotropic or baro-
clinic sources of energy for the eddies, and the variance
is maintained solely by the stochastic forcing. We infer
then that most of the eddy variance in the full baroclinic
calculation (Fig. 1b) is associated with energetic interac-
tions (mainly baroclinic) with the mean flow and is not
forced directly by F̃s.

For any quantity ỹ 5 Mx̃, the zero-lag covariance matrix
of ỹ is MC0MT, and its diagonal elements displayed in grid
space constitute a variance map of ỹ. Figure 2 shows the
observed and predicted rotational eddy kinetic energy at
400 mb determined in this manner. Again, the Atlantic
and Pacific storm tracks, defined now in terms of rotational
eddy kinetic energy instead of streamfunction variance,
are quite well predicted. Note that both the predicted and
observed Atlantic storm tracks are stronger than their Pa-

cific counterparts, suggesting that at least some of the
dynamics associated with the ‘‘midwinter suppression’’ of
eddy activity in the Pacific noted by Nakamura (1992) are
being captured by the model. We will return to this point
in section 5a.

In addition to producing realistic variance maps, our
theory (7) can also reproduce the observed heat and
momentum fluxes, lag covariances, and one-point lag
correlation maps quite well, as we will now demonstrate.

a. Simulated eddy fluxes of heat and momentum

Transports of heat and momentum by subweekly
timescale eddies play an important role in maintaining
the observed time-mean flow (Hoskins et al. 1983; Lau
and Holopainen 1984; Hoskins and Sardeshmukh
1987a; Valdes and Hoskins 1989) as well as large-scale,
persistent flow anomalies (e.g., Green 1977; Kok and
Opsteegh 1985; Hoskins and Sardeshmukh 1987b; Held
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FIG. 7. Observed (left) and simulated (right) one-point lag-correlation maps for a base point at 46.38868N, 63.758E. Contour interval is 0.1.

et al. 1989; Nakamura and Wallace 1990). Although
nonlinear feedbacks make it difficult to establish causal
relationships, it would still be useful to know what
changes in the storm tracks (including the attendant flux-
es of heat and momentum) could be expected to ac-
company a change in the quasi-stationary large-scale
flow. Such a ‘‘storm-track model’’ [e.g., our Eq. (7)]
could then be used to parameterize the effects of syn-
optic eddies in a model of low-frequency atmospheric
variability. For any such low-frequency model to be
useful, however, one must first demonstrate that the
storm track model accurately simulates the feedback of
the synoptic eddies on the time-mean flow.

Our two-level model’s time-mean vorticity equation
may be written

2]¹ c j 2 mean1 J(c , ¹ c 1 2m) 1 = · (2m=x )j j j]t
4 2 25 2((2 2 j)r 1 n¹ )¹ c 2 J(c9, ¹ c9)M j j j

eddy2 = · (2m=x ), (16)j

where overbars represent a long time mean and primes
indicate eddies. The quantities and are ob-eddy meanx xj j

tained by solving the QG ‘‘v equation’’ forced by tran-
sient eddy fluxes and mean advections, respectively. The
mean streamfunction tendency associated with the syn-
optic eddy vorticity fluxes contains a part associated
with the second term on the right-hand side of (16), as
well as a contribution associated with the differences
between the synoptic eddy vorticity fluxes at 400 and
800 mb, which enters through . These two com-eddyx j

ponents can be thought of as the barotropic and baro-
clinic components of the vorticity flux forcing, respec-
tively. The contribution to the mean streamfunction ten-
dency associated with transient eddy heat fluxes only
enters through .eddyx j

Figure 3 shows the streamfunction tendency associ-
ated with the synoptic eddy vorticity fluxes, obtained
in this manner, from both observations and from the
solution of our storm track model, the FDR (7a). The
model captures the general tendency of the eddy mo-
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mentum fluxes to accelerate the Pacific and Atlantic jets,
although the values are about twice as large as observed.

The streamfunction tendency given by the predicted
heat fluxes matches observations very well, in both geo-
graphical distribution and magnitude (Fig. 4). The only
deficiency is the tendency for the simulated heat fluxes
to be too strong in the Atlantic storm track. Our model
appears not to have the problem noted by both Bran-
stator (1995) and Frederiksen (1983); that is, when the
eddy amplitudes are scaled so that the simulated mo-
mentum fluxes match observations, the heat fluxes are
too large. In fact, our simulations appear to have the
opposite problem; that is, the momentum fluxes over
the Pacific are too large when the heat fluxes match
observations. At this time we do not have an explanation
for this behavior, but as pointed out by a reviewer, it
may be related to the extreme vertical truncation of the
model. Since the horizontal structure of the eddies is
much better resolved than their vertical structure, baro-
clinic processes may be relatively less active than baro-
tropic processes in our model. This can only be verified
by increasing the vertical resolution of the model.

b. Lag-covariances and propagation characteristics

NSP examined whether the FDR for a barotropic
model linearized about the observed 300-mb flow could
account for the observed statistics of low-frequency
flow anomalies in the atmosphere. They found that al-
though the model could be tuned to produce fairly re-
alistic zero-lag covariances, the corresponding lag-co-
variances did not match observations very well. Having
established that our model (7a) produces realistic sim-
ulations of observed synoptic eddy variances and fluxes,
we now examine to what extent it can also simulate the
time lag-covariances. This is a more demanding test
since we are now asking the model to simulate the char-
acteristic timescales of the observed synoptic eddies,
even though there are no preferred timescales in the
forcing F̃s.

Figure 5 shows the 1.5-day lag streamfunction co-
variances computed from observed bandpass transients
and the FDR (7). Both are predominately negative, with
patterns similar to the zero-lag covariances (Figs. 1a
and 1b) but with less amplitude. The predicted lag-co-
variance is somewhat weaker (stronger) than observed
in the Pacific (Atlantic) storm track. Note that since the
observations are subjected to a 1–8-day bandpass filter,
the observed 5-day lag-covariance is small (see Fig. 10).
The model’s 5-day lag-covariance (not shown) is slight-
ly larger than observed, indicating that some low-fre-
quency motions are being excited by the white noise
forcing. The contribution of these low-frequency mo-
tions to the eddy statistics shown here is, however, neg-
ligible.

One-point lead and lag-correlation maps are often
used to illustrate the statistical structure and evolution
of synoptic eddies (e.g., see Wallace et al. 1988). They

represent a particular row (column) of Ct for negative
(positive) t , transformed to grid space and normalized
by the corresponding diagonal element of C0. Figure 6
shows such maps for both observed and simulated 400-
mb streamfunction at lags 22, 0, and 12 days for a
base point near the western entrance of the Pacific storm
track. There is a good correspondence between the ob-
served and simulated maps, indicating that the structure
and propagation characteristics of the synoptic eddies
are well simulated in the Pacific storm track. The down-
stream energy propagation of eddy energy in the Pacific
jet is slightly faster than observed, which may account
for the fact that the simulated lag covariances are too
weak (Fig. 5). Also, the horizontal tilts of the simulated
eddies in the Pacific jet are too strong, consistent with
the unrealistically large simulated momentum fluxes
noted in the previous section.

The lag-correlation maps for a base point at the west-
ern entrance of the Atlantic storm track are shown in
Fig. 7. Here discrepancies between simulated and ob-
served eddies are more apparent, particularly for the 12
day correlations. The zonal scale of the simulated eddies
is somewhat too short, the 12 day correlation is too
large, and the eddies tend to propagate too far north and
east, compared to the observed eddies.

One may ask why our model is able to succeed where
NSP failed in simulating lag-covariance statistics, es-
pecially when, unlike NSP, no knowledge of the ob-
served eddy statistics is used to specify Q. The answer
must be related to fundamental differences between the
dynamics of high- and low-frequency atmospheric tran-
sients. It appears that the details of forcing and nonlinear
interactions with other frequency bands are important
in the dynamics of low-frequency transients, while en-
ergetic interaction with the background flow is the dom-
inant process controlling the dynamics of high-frequen-
cy transients. In other words, the relative importance of
the processes incorporated in B versus Q is opposite for
the two types of variability.

c. Eddy growth: Deterministic or stochastic?

Since there is no exponential instability in our model
(4), the simulated synoptic eddies must either be forced
directly by the stochastic forcing or grow through tran-
sient energetic interactions with the background flow.
Some indication of the relative roles of these processes
was given in Fig. 1 and the accompanying discussion.
Here we examine this issue in greater detail.

That the simulated eddy variance is much larger when
the background flow has vertical and horizontal shears,
and is geographically localized even though the forcing
variance is spatially uniform, suggests that eddy inter-
actions with the background flow are important. The
maximum amplification (MA) curve (Penland and Sar-
deshmukh 1995; Borges and Sardeshmukh 1995; Sar-
deshmukh et al. 1997) summarizes the maximum growth
of eddy variance that is possible in a linear system over
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a time interval t through such interactions. It consists
of the square of the maximum singular values of the
propagator G(t) 5 exp(Bt) plotted as a function of t .
The initial eddy structures associated with this optimal
growth are the corresponding right singular vectors of
G. The MA curve for our system, using the rotational
kinetic energy norm (see section 6a), and derived from
a B based on the 13-winter mean flow, is shown as the
thick curve in Fig. 8. It shows that even though the
background flow is asymptotically stable, amplification
of global eddy rotational kinetic energy by as much as
a factor of 12 is possible over 3 days through energetic
interactions with the background flow. The thin curves
in Fig. 8 show the evolution of perturbations optimized
to give maximum growth over some selected time in-
tervals. Note that perturbations optimized for short time
intervals are highly suboptimal for longer time intervals,
and eventually all perturbations decay.

The MA curve merely reveals the possibility of
growth in a stable linear system in the absence of forc-
ing. As discussed in Sardeshmukh et al. (1997), whether
such growth actually occurs depends upon whether the
state vector projects significantly on the subspace of the

growing singular vectors. The fact that the variance
maxima over the Pacific and Atlantic Oceans in Fig. 1b
are more than one order of magnitude larger than in the
calculation with no shears in the background flow (not
shown) suggests that this does indeed happen in our
system.

It is important to distinguish between eddy growth
arising from interactions with the background flow and
that arising from the stochastic forcing. The former is
associated with the Bx̃ term in (4) and is potentially
predictable; the latter is associated with the F̃s term and
is unpredictable. If interactions with the mean flow are
important, then (4) must also have some skill as a fore-
cast model of synoptic eddies. According to (4), given
an initial condition x̃ (t), the most probable eddy state
vector at time t 1 t is x̃(t 1 t) 5 G(t)x̃(t) (Penland
1989). This is the same as making a forecast using (4)
with the stochastic forcing ignored. Such forecasts were
made from each one of the 4680 bandpass-filtered initial
states in our 13 winter dataset, and verified against the
observed bandpass-filtered x̃(t 1 t).

Figure 9 shows the local anomaly correlation of the
observations and the t 5 36 h forecasts of 400-mb
streamfunction, defined as

ˆ^c(l, f, t 1 t)c(l, f, t 1 t)&
r(l, f, t) 5 , (17)

1/2ˆ ˆ{^c(l, f, t 1 t)c(l, f, t 1 t)&^c(l, f, t 1 t)c(l, f, t 1 t)&}

where the caret indicates a forecast value, and the angle
brackets denote an ensemble average over the 4680
cases. The contour interval is 0.1, values greater than
10.3 are shaded, and zero skill is indicated by the thick
contour. The model has positive forecast skill almost
everywhere on the hemisphere, except in a small area
around the pole. As expected from the discussion in the
previous paragraph, it has the greatest skill (r exceeding
0.4) in the vicinity of the Pacific and Atlantic jets, where
the Bx̃ term in (4) is most important. Figure 9 may be
contrasted with a similar figure for 36-h persistence
forecasts, obtained by dividing the values in Fig. 5a with
those in Fig. 1A. That figure is not shown here for
brevity; it is has negative values between 20.3 and 20.5
everywhere, and is relatively featureless.

Figure 10 shows, as a function of the forecast lead
time t , the global pattern anomaly correlation

Tˆ^x̃(t 1 t) x̃(t 1 t)&
r 5g T T 1/2ˆ ˆ{^x̃(t 1 t) x̃(t 1 t)&^x̃(t 1 t) x̃(t 1 t)&}

TTr(C G )t5 (18)
T 1/2{Tr(GC G )Tr(C )}0 0

of the observations and t-day forecasts of the 400-mb
and 800-mb bandpass-filtered streamfunction. Here Ct

and C0 are the time-lag and zero-lag covariance matri-

ces, respectively, of the observed bandpass eddies. The
anomaly correlation drops below 0.2 after about day 2,
but the predicted patterns remain positively correlated
with the observed patterns out to at least 5 days. For
comparison, the pattern anomaly correlation of the t-
day persistence forecasts, rper 5 Tr(Ct )/Tr(C0), is shown
in Fig. 10 as the solid curve with filled squares. The
QG model clearly outperforms persistence at all forecast
ranges.

In summary, consistent with the enhancement of eddy
variance in Fig. 1 near the jets associated with energetic
eddy interactions with the mean flow, the model (4) does
indeed have some forecast skill in those areas. A sub-
stantial portion of the eddy growth in those areas is
deterministic, not stochastic. These statements can be
made independent of the most uncertain parameter in
our model, the extra damping parameter a, since the
QG model anomaly correlations shown in Figs. 9 and
10 are independent of a.

5. Annual and interannual variations of the storm
tracks

As discussed earlier, if our storm track model is to
be useful as a parameterization of synoptic eddy statis-
tics in a model of low-frequency variability, it should
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FIG. 8. Maximum amplification (MA) curve for DJF basic state,
together with the evolution of selected optimal perturbations. Curves
are labeled with optimization time in days. Amplification factor refers
to increase in total rotational kinetic energy. Extra damping included
in the D operator is 1/10 day21.

be able to predict the changes in those statistics asso-
ciated with observed low-frequency changes of the
background flow. We have tested our model in this re-
gard by examining the sensitivity of the simulated storm
tracks to the observed annual cycle and interannual vari-
ability of the background flow.

a. Annual cycle of storm tracks

Nakamura (1992) examined the annual evolution of
the Northern Hemisphere storm tracks during the 6-
month cold season (October through April). He found
that although the Pacific jet is strongest in January, the
Pacific storm track is actually weaker in January than
in both November and April. The Pacific storm track
in January is also weaker than the Atlantic storm track,
even though the Pacific jet is stronger than the Atlantic
jet. To see if our model can reproduce these aspects of
the annual cycle, we have solved the FDR using long-
term January and April mean states. As before, the pa-
rameter « is set so that the simulated maximum eddy
rotational kinetic energy at 400 mb matches observa-
tions, but separately in each case.

Figure 11 shows the observed and simulated 400-mb
rotational eddy kinetic energy for the two cases. Con-
sistent with observations, the simulated Pacific storm
track is weaker than the Atlantic storm track in January,
and stronger than the Atlantic storm track in April. How-
ever, if equal forcing amplitudes (i.e., the same «) are
used in the two cases, the model does not produce a
weaker Pacific storm track in January than in April.
Thus the model does not capture the midwinter mini-
mum in the Pacific storm track. It is, however, able to
simulate the relative amplitudes of the Pacific and At-
lantic storm tracks in both winter and spring seasons.
The model also captures the observed tendency of the
downstream end of the Atlantic storm track to be more
connected with the upstream end of the Pacific storm

track in April than in January, associated with the en-
hanced propagation in April of the eddy activity over
Northern Europe and Asia.

b. Interannual variability of the winter storm tracks

Extratropical seasonal mean circulation anomalies are
known to be associated with significant storm track
shifts (Lau 1988). The associated anomalous eddy mo-
mentum and heat fluxes have an important feedback on
the anomalous seasonal flow (Kok and Opsteegh 1985;
Held et al. 1989; Hoerling and Ting 1994). In this sec-
tion we examine to what extent our stochastic model
can reproduce the storm track shifts accompanying the
seasonal mean circulation anomalies observed in the 13
northern winters of DJF 1982/83–1994/95.

We have solved the FDR (7a) for each of these 13
winters, but with a different a for each case, chosen
such that the growth rate of the most unstable eigen-
mode of each winter basic state is 21/20 day21 . The
reason for this choice of damping is discussed in detail
in section 6b. Briefly, without a, the growth rate for
the most unstable eigenmode ranges from 0.0394
day21 (for DJF 85/86) to 0.0966 day21 (for DJF
93/94). It was found that the simulated eddy variance,
TrC 0 , is sensitive to a only when a is close to the e-
folding time of the most unstable mode (see Fig. 16).
Therefore, using a fixed a of 1/10 day21 for all 13
cases resulted in very large amplitude storm tracks
for DJF 1993/94. We chose a mean-flow-dependent a
to avoid this nearly resonant behavior. We could have
circumvented this by repeating all the calculations
with a stronger a, say a 5 1/7 day21 .

As discussed in section 2, both limited sampling
and the neglect of intermediate (8–90 day) timescale
eddies would prevent our model from accurately sim-
ulating the storm track anomalies for individual sea-
sons. Even so, one would expect the model to simulate
at least some of the statistics of the interannual vari-
ability of the storm tracks. Figure 12 shows the ob-
served and simulated standard deviation of the 13
bandpass variance maps of 400-mb streamfunction
obtained for the 13 winters. The model correctly cap-
tures the large interannual variability of the storm
tracks in the eastern Pacific and Atlantic basins, albeit
with considerably stronger amplitude than observed
in the Pacific basin. Thus the model has some skill
in simulating the observed interannual variability of
the storm tracks, given the observed interannual vari-
ability of the winter mean flow.

The results of the 13 individual calculations are sum-
marized in Table 1. For each winter, the table shows the
hemispheric pattern correlation of the observed and sim-
ulated 400-mb anomalous streamfunction variance
maps. The anomalous maps of the observed and sim-
ulated variances were obtained as departures from their
respective 13-winter means, and smoothed to T12 res-
olution before calculating their pattern correlation. (We
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FIG. 9. Local anomaly correlation between observed bandpass-filtered 400-mb streamfunction
and 36-h forecasts produced by the QG model. Contour interval is 0.1 with values greater than
0.3 shaded. See text for details.

FIG. 10. The curve with solid circles shows pattern correlation as
a function of forecast time for unforced linear integrations using (4)
starting from observed bandpass streamfunction at 400 and 800 mb.
The curve with solid squares shows pattern correlation for persistence
forecasts. See text for details.

note in passing that the average of the 13 simulated
variance maps is nearly identical to the variance com-
puted using the 13-winter mean basic state shown in
Fig. 1b.) The pattern anomaly correlation averaged over
the 13 cases in Table 1 is only 0.3. This suggests that
either 1) there are significant errors in our storm track
model and/or 2) a large fraction of the anomalous syn-
optic eddy variance for an individual winter is not di-
rectly linked to that winter’s anomalous mean flow. At
present we do not have a way of deciding between these
two interpretations.

Figure 13 shows the observed and simulated anom-
alous storm tracks for three winters: one with the best
anomaly correlation (top), one with the worst (middle),
and an ENSO case (bottom). In the best case (DJF 1994/
95), the model appears able to capture virtually every
detail of the observed storm track anomalies. On the
other hand, it has virtually no skill in the worst case
(DJF 1984/85). In the warm ENSO case of DJF 1982/
83, the dominant features of the observed anomalous
storm tracks are a southward shift and eastward exten-
sion of the Pacific storm track and a northward shift of
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FIG. 11. Observed (left) and simulated (right) monthly mean 400-mb bandpass rotational kinetic energy for January (top) and April (bot-
tom). Contour interval is 15 m2 s22; values greater than 105 m2 s22 are shaded.

the Atlantic storm track. These shifts are consistent with
the observed anomalous southward and eastward ex-
tension of the Pacific jet, and the northward shift of the
Atlantic jet, respectively. The latter is consistent with
the particular phase of the North Atlantic oscillation
(NAO) that was persistent during that winter. The sto-
chastic model is able to capture the observed northward
shift of the Atlantic storm track quite well. In the Pacific
basin, the model does produce an eastward shift of the
Pacific storm track as observed, but the negative anom-
alous streamfunction variance in the Gulf of Alaska is
weaker than observed.

6. Sensitivity

a. Sensitivity to the choice of norm

Given that our state vector x in (4) is a vector of 400-
mb and 800-mb streamfunction spherical harmonic co-
efficients Cj, the specification Q 5 «I in (7a) amounts
to assuming that all those coefficients are excited equal-
ly and independently by the stochastic forcing. In other
words, Q is assumed to be white in the streamfunction
norm. One may ask if our results depend strongly upon
this assumption. To explore this, we have solved the
FDR for the 13-winter mean DJF basic state assuming
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FIG. 12. Observed (a) and simulated (b) standard deviation of DJF mean 400-mb bandpass streamfunction variance for 13 winters (DJF
1982/83–1994/95). Individual winter means were truncated to T12 resolution before standard deviation was computed. Contour interval is
2 3 1012 m4 s22; values greater than 1.2 3 1013 m4 s22 are shaded.

TABLE 1. Summary of results of calculations for individual winter
seasons. AC is pattern correlation of observed and simulated T12
anomalous 400-mb bandpass eddy streamfunction variance maps.
Anomalies are computed relative to the 13-winter mean. Extra damp-
ing included in D operator for each DJF mean basic state is such that
the least damped eigenmode of B is damped with an e-folding time-
scale of 20 days. See text for further details.

Winter of AC

1982/83
1983/84
1984/85
1985/86
1986/87
1987/88
1988/89

0.32
0.08

20.25
20.17

0.33
0.46
0.08

1989/90
1990/91
1991/92
1992/93
1993/94
1994/95

0.45
0.22
0.24
0.50
0.18
0.59

Q to be white in two other norms; rotational kinetic
energy and vorticity. The state variable in the rotational
kinetic energy norm is (1/2) n(n 1 1)C j, where n isÏ
the total wavenumber. The trace of the covariance matrix
is then the volume-integrated rotational eddy kinetic
energy. The state vector in the vorticity norm is n(n 1
1)C j. The trace of the covariance matrix is now the
volume-integrated eddy enstrophy. As before, the scal-
ing constant « is chosen so that the maximum rotational
eddy kinetic energy of the solution matches observa-
tions in each case.

The 400-mb rotational eddy kinetic energy maps for
Q 5 «I in the rotational kinetic energy and vorticity

norms are shown in Figs. 14a and 14b, respectively. The
map for Q 5 «I in the streamfunction norm was shown
in Fig. 2b. The gross features of the solution in the
vorticity norm are similar to those in the other two
norms, but there are significant differences, which are
magnified further when comparing streamfunction var-
iances (not shown). These differences arise mainly be-
cause, relative to the streamfunction norm, assuming Q
5 «I in the vorticity norm amounts to forcing the larger
scales (small n) much more strongly, resulting in a so-
lution that is dominated by planetary-scale low-fre-
quency disturbances. On the other hand, as is clear from
comparing Fig. 14a with Fig. 2b, the solutions are nearly
identical in the rotational kinetic energy and stream-
function norms. In fact, the solution of the FDR is re-
markably insensitive to the norm chosen as long as the
largest spatial scales are not forced too strongly relative
to the synoptic scales of interest here.

There is clearly some arbitrariness in the specification
of Q in (7a), raising the question of which choice is
most appropriate. One answer is a Q that is most con-
sistent with the observed C0, which may be estimated
by specifying B and C0 in (5). NSP refer to this as the
‘‘backward’’ application of the FDR. Note that the Q
thus obtained is guaranteed to be symmetric, but not
positive definite; if so, it may need to be truncated to
retain only its positive definite part (see NSP; Penland
and Matrosova 1994). We have obtained a truncated
positive definite Q using observed covariances of band-
pass-filtered streamfunction at 400 and 800 mb in (5).
Before truncation, about 30% of the eigenvalues of Q
were negative, although with magnitudes more than an
order of magnitude smaller than the largest positive ei-
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FIG. 13. Observed (left) and simulated (right) anomalous DJF mean 400-mb bandpass streamfunction variance for three selected winters.
Fields are truncated to T12 resolution. Contour interval is 3 3 1012 m4 s22; values less than 23 3 1012 m4 s22 are shaded. Anomalies are
computed relative to the 13-winter mean (DJF 1982/83–1994/95). Pattern anomaly correlation (AC) between observed and simulated fields
is indicated.
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FIG. 14. Simulated DJF mean 400-mb bandpass rotational kinetic
energy computed from FDR with stochastic forcing that is spatially
white in (a) the kinetic energy and (b) the vorticity norms. Contour
interval is 15 m2 s22, values greater than 90 m2 s22 are shaded.

FIG. 15. (a) Map of stochastic forcing variance at 400 mb (the
diagonal elements of Q displayed in grid space). Q computed using
observed bandpass streamfunction covariance matrix (C0) via the
backward FDR, and truncated to be positive definite. Contour interval
is 2 3 107 m4 s23; values greater than 8 3 107 m4 s23 are shaded.
(b) Streamfunction variance calculated from solution of the FDR
using this Q. Contour interval is 1 3 1013 m4 s22; values greater than
6 3 1012 m4 s22 are shaded.

FIG. 16. Tr(C0) (solid circles) and leading eigenvalue of C0 (solid
squares) as a function of damping timescale 1/a of the D operator.
Leading eigenvalue of the covariance matrix expressed as percent
variance explained by the first eigenvector. C0 is calculated by solving
the FDR (7a) with the scaling parameter « chosen so that TrQ 5 I.

genvalues. Figure 15a shows the diagonal elements of
the truncated Q in grid space. There is some geograph-
ical structure to the forcing, especially over North Amer-
ica. If we use this Q instead of «I to solve the forward
FDR (7a), the C0 produced (Fig. 15b) is somewhat im-
proved, but otherwise rather similar, to the solution ob-
tained previously (Fig. 1b).2 The Atlantic storm track
is now stronger than the Pacific storm track, in accor-
dance with observations. This is consistent with the re-
gion of localized forcing over North America just up-
stream of the Atlantic storm track (Fig. 15a). Since some
knowledge of the observed forcing has been assumed
in generating Fig. 15b, the improved agreement of Fig.
15b with Fig. 1a is perhaps not surprising. What is re-
markable in our view is the extent to which even Fig.
1b, which was generated without any knowledge of the
observed forcing, compares well with Fig. 1a.

b. Sensitivity to D

The damping D 5 2aI in (4) must be strong enough
to ensure that B is stable. In the limit a → `, B is a
diagonal matrix with diagonal elements 2a, so the FDR
yields C0 5 «I/(2a). Conversely, when a is such that

→ 0, where is the damping rate of the leastmax maxl lr r

damped mode of B, the resulting eddy statistics tend to
be dominated by structures nearly identical to those of
the phase-quadrature components of the least damped
mode of B. This may be understood by writing the so-
lution C0 of the FDR (7) in the form

21 21 T*[«E (E ) ]ijT*C 5 EHE , with H 5 2 , (19)0 ij l 1 l*i j

where E is the matrix of the eigenvectors of B (or L,
since the addition of a linear damping 2aI does not
change the eigenvectors) and l are the eigenvalues of
B [see appendix C in Penland and Sardeshmukh (1995)].

2 The C0 computed using the Q from the backward FDR is not
identical to the observed C0, because of the truncation that is nec-
essary to make Q positive definite.

Now if B were normal, the eigenvector matrix E would
be orthogonal. The trace of C0 would then be identical
to the trace of H, which is proportional to the sum of
the reciprocals of the real parts of l. Therefore, in the
limit → 0, the variance would be dominated by themaxlr

least damped mode. The argument as stated is not strict-
ly valid if B is non-normal, but it is easy to see that in
the limit → 0, the least damped mode of B wouldmaxlr

dominate the solution (i.e., the two leading eigenvectors
of C0 would have structures nearly identical to those of
the phase-quadrature components of the least damped
mode of B, and together explain most of the variance).

Figure 16 summarizes the sensitivity of the solution
to a, expressed in terms of the damping timescale 1/a.
Since B is unstable for 1/a . 23.5 days, only damping
timescales in the range of 0–23 days are considered.
For 1/a → 23.5 days, → 0, and as expected frommaxlr

the discussion above, the variance of the solution (TrC0)
is large, and the two leading EOFs (eigenvectors of C0)
explain most of the variance. Similar behavior was ob-
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tained in the study of DelSole and Farrell (1995). As
1/a is decreased from 23 days, the fraction of variance
explained by the leading eigenvector reduces. For 1/a
less than 15 days, the leading eigenvector explains less
than ten percent of the variance. Therefore, unless a is
specified such that the least damped mode of B is nearly
neutral ( → 0), that least damped mode has no spe-maxlr

cial significance in our solution.
Maps of the diagonal elements of C0 in grid space—

that is, streamfunction variance maps such as Fig. 1b—
show some sensitivity to the value of a. For small a,
the maps essentially show the amplitude of the least
damped mode, which is somewhat higher in the Atlantic
storm track than in the Pacific storm track. Given that
the structure of the most unstable (or least damped)
eigenmodes of non-normal dynamical systems can be
sensitive to small variations in model parameters, basic
state, and resolution [e.g., see Borges and Sardeshmukh
(1995) for a barotropic example] it seems sensible to
specify an a large enough that no single structure dom-
inates the solution. For a between 1/20 day21 and 1/5
day21, the gross characteristics of the solution change
little (not shown). There is, however, a tendency for the
variance to become more localized in the region of
strongest temperature gradients as a is increased. Qual-
itatively, this means that the simulated Pacific storm
track becomes stronger than the Atlantic storm track as
a is increased. For large a, the solution essentially be-
comes a local balance between stochastic forcing and
dissipation. The value a 5 1/10 day21 used in most of
our calculations is between these two extremes.

7. Discussion and conclusions

In this paper we have attempted to explain the ob-
served structure of the Northern Hemisphere wintertime
synoptic-scale variability, given the structure of the
planetary-scale background flow. We have used an ex-
tremely simple dynamical model for this purpose. We
conjecture that synoptic eddy evolution, on average, can
be viewed as stochastically forced disturbances evolving
on a baroclinically stable background flow, so that the
eddy statistics are identical to those of the multivariate
first-order linear Markov process (4). We then use well-
known results from the extensively developed theory of
Markov processes to determine those statistics through
(7).

To keep the theory simple and as free as possible of
arbitrary adjustable parameters, the deterministic part B
of the Markov process is specified to be a linearized
two-level quasigeostrophic model L of extratropical syn-
optic eddies, plus a uniform damping D 5 2aI. The
two-level QG model is chosen because it is the simplest
model incorporating the basic baroclinic dynamics of
extratropical synoptic eddy development; the uniform
damping D because it represents the simplest possible
accounting of nonlinear saturation effects. The stochas-
tic forcing part of the Markov model is kept simple by

specifying it as geographically incoherent white noise
with covariance Q 5 «I. Our Markov model (4) is thus
completely defined by the nondivergent part of the back-
ground flow at two levels (400 and 800 mb), three ‘‘stan-
dard’’ model damping parameters (representing low-
level Rayleigh damping, midtropospheric thermal
damping, and biharmonic diffusion), one static stability
parameter, and a and «. The value of a actually specified
in most of the calculations (1/10 day21) is small enough
to be within the range of uncertainty of the standard
model damping parameters, so a need not necessarily
be viewed as an additional parameter. Although we did
not explore this in detail, we could have obtained similar
results by setting a to zero and making minor adjust-
ments to the other damping parameters. In that case, B
would have been identical to L, and the only extra pa-
rameter needed to define our Markov model would have
been «. This parameter is essentially a scaling constant,
chosen to match observed amplitudes with simulated
amplitudes given by a linear theory. It has no effect on
the predicted patterns.

It is important to recognize that (4) is only one out
of an infinite number of first-order linear Markov models
that are applicable to this problem. In particular, we did
not determine the dynamical operator B empirically, as
done for example by Penland and Sardeshmukh (1995)
and DelSole (1996). These authors determined B as the
solution of (6) with specified observed (or model-gen-
erated) covariances C0 and Ct . We also did not deter-
mine D (and thence B) by actually regressing the ob-
served nonlinear and forcing terms against x̃ in (3). It
is possible that B obtained through either of these ap-
proaches would give better results than shown here.
However, for an N-dimensional Markov process, we
would then have N 2 model parameters in B, instead of
the 2 1 4 1 N (needed to describe the background flow)
of our model, and so the ‘‘explaining power’’ of such
an empirical model would be correspondingly lower.
Another very important reason for choosing B 5 L 2
aI is that the eigenstructures of B and L are the same,
and so the deterministic dynamics B of our model are
the well-understood quasigeostrophic dynamics of syn-
optic eddies. The only difference is that the eddies are
now damped.

Despite these drastic simplifications, our model per-
forms well. It simulates most of the major features of
the wintertime climatological storm tracks such as the
geographical distributions and intensities of the eddy
variances, lagged covariances, rotational kinetic energy,
and vorticity and heat fluxes (Figs. 1–5). It simulates
not only the aggregate statistics of the eddies as revealed
in these measures, but also the statistical structure of
the eddies themselves (Figs. 6–7). Indeed (4) used as a
forecast model for the individual observed eddies easily
outperforms a persistence forecast model (Figs. 9–10).
The model is also able to simulate correctly the change
in the relative strengths of the Pacific and Atlantic storm
tracks from January to April (Fig. 11), and is able to
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capture some of the interannual variability of the win-
tertime storm tracks (Fig. 12). We stress again that it is
able to do all this given only the planetary-scale back-
ground flow plus a few damping and scaling parameters.
The results are relatively insensitive to the values of
those damping parameters, except when they are such
that the least damped mode of B is almost neutral (Fig
16). They are also relatively insensitive to the specifi-
cation of the space in which the stochastic forcing is
assumed to be white, as long as the forcing does not
excite the largest planetary scales of the flow much more
strongly than other scales.

Even a cursory comparison of Figs. 1a and 1b sug-
gests the power of this simple theory. The idea that
synoptic eddies behave on average as stochastically
forced eddies evolving on a baroclinically stable back-
ground flow clearly goes a long way toward explaining
the general structure of observed storm tracks. In our
model the eddies are being forced uniformly everywhere
on the hemisphere, on all scales. The reason they grow
near the Pacific and Atlantic jets into recognizable
weather systems is that they can efficiently draw upon
the potential (and to a lesser extent, the kinetic) energy
available in those jets (Fig. 8). No exponential instability
needs to be invoked. As discussed in the introduction,
this is entirely consistent with the view of Farrell and
his collaborators.

Whether the climatological mean state of the atmo-
sphere is actually exponentially unstable, and whether
such instability is important for synoptic-scale tropo-
spheric motions, are in our view still open questions.
The most unstable eigenmode of the climatological DJF
mean flow is only weakly unstable in our model, with
an e-folding timescale of 23.5 days. We believe this to
be more a result of the relative smoothness of that flow
than of our particular choice of dissipation constants.
Hall and Sardeshmukh (1998) have recently investigated
the stability of the observed long-term mean northern
winter flow in a T31, 10-level primitive equation model,
and found that it is stable for an average damping time-
scale of 1 day in the layer 1000–800 mb. This is con-
sistent with the 2.5-day Rayleigh damping specified in
the lower half, and no or weak damping in the upper
half, of our T31, two-level QG model. The 2.5-day
damping is also consistent with the range of observed
values and with theoretical considerations of Ekman-
layer dynamics. The momentum budget study of Klinker
and Sardeshmukh (1992) suggests a damping timescale
of about 5 days for the column average, that is, about
2.5 days for the lower half of the atmosphere. Energy
budget studies such as that of Peixoto and Oort (1992,
their Table 14.1) suggest a kinetic energy damping
timescale of 3.5 days in the wintertime Northern Hemi-
sphere as a whole. This is a gross number, but is perhaps
reliable and interesting for that very reason. One may
translate it into a column-average momentum damping
timescale of 7 days over the hemisphere, not inconsis-
tent with the 5 days found by Klinker and Sardeshmukh

in midlatitudes. The theoretical considerations of Pier-
rehumbert and Swanson (1995, p. 425) suggest that if
boundary layer friction is represented as a Rayleigh drag
applied over a depth D (say 2 km), the appropriate
damping timescale to specify should be approximately
t 5 D/( f 0de), where de is the Ekman depth (;200 m)
and f 0 is the Coriolis parameter. According to this, t
should be about 1 day for the 1000–800-mb layer in
midlatitudes, which again translates into 2.5 days for
the layer 1000–500 mb.

The extra 10-day damping a in our model is relatively
weak. Note that even if one views it as a crude repre-
sentation of neglected nonlinear terms, those nonlinear
terms need not be associated with the nonlinear satu-
ration of exponential instability. Eddies growing
through stable interactions with the mean flow (as in
Fig. 8) could certainly reach large amplitude and evolve
nonlinearly thereafter, an effect that is not included in
our linear L operator.

In any event, regardless of the baroclinic instability
or otherwise of the long-term mean flow, our results
show that it is not necessary to invoke it in order to
model the statistics of observed synoptic eddies. The
energy balance in our model is between the stochastic
forcing and stable baroclinic and barotropic energy ex-
traction from the sheared flow on the one hand, and
eddy dissipation on the other. As suggested by Fig. 1,
of the three energy sources available to the eddies, they
draw most heavily upon the available potential energy
source. The stochastic source is of secondary impor-
tance.

It is interesting to contrast our results with those of
DelSole (1996). He attempted to fit a Markov model to
the variability simulated in a two-layer nonlinear qua-
sigeostrophic channel model with zonally symmetric
forcing and boundary conditions, but had mixed results.
Given that he was only attempting to explain the vari-
ability of his two-layer model and not of the observed
atmosphere as we have done, his aim was less ambitious,
and therefore his relative lack of success all the more
puzzling. One possible explanation is that we have con-
sidered zonally varying background states, and he did
not. Eddies growing in our model can leave the baro-
clinically active regions and decay by barotropic pro-
cesses as shown in Figs. 6 and 7. In DelSole’s model,
eddies grow on a zonally symmetric basic state and are
confined to a reentrant channel, and hence never enter
a region unfavorable for eddy growth. Nonlinear pro-
cesses may then be considerably more important in halt-
ing the growth of eddies in his model. Another differ-
ence is that DelSole was trying to explain all of the
variability in his model, not just synoptic-scale vari-
ability.

Our model has some notable deficiencies. It does not
simulate the northeastward extension of the wintertime
Pacific storm track into North America (Fig. 1). In gen-
eral it produces too strongly tilted eddies in the Pacific
and Atlantic storm tracks (Figs. 6–7), and thus too
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strong vorticity fluxes (Fig. 3). It also does not capture
the midwinter minimum of the Pacific storm track. And
finally, although it is able to simulate the anomalous
storm tracks of some individual winters (such as DJF
1994/95, see Fig. 13), its general skill is poor in this
regard (Table 1).

Some of these failures, especially the poor simulation
of the eastern edge of both the climatological Pacific
storm track (Fig. 1) and its interannual variability (Fig.
13), are probably due to the simplicity of our two-level
quasigeostrophic L operator. The inability of the model
to capture the Pacific midwinter minimum may also
reflect inadequacies of L. It would certainly be worth-
while to repeat these calculations with a multilevel prim-
itive equation model to see if these deficiencies can be
remedied.

It is important to remember, however, that our model
does not consist of L alone, but also of D and Q; and
low-frequency variations of the storm tracks may also
be associated with low-frequency variability of D and
Q. We have stressed that their detailed specification is
secondary, indeed that they may be characterized by
just two constants a and «. Incorporating more com-
plicated formulations of D and Q could lead to better
simulations of the annual and interannual variability of
the storm tracks. Lacking any theoretical guidance in
this direction, however, we prefer to leave D and Q as
simple as possible. In section 5b, we allowed a to be
flow dependent in an attempt to simulate the interannual
variability of the storm tracks. This was done to avoid
the resonant behavior of the FDR when B is almost
exactly neutral. We could have circumvented this prob-
lem by choosing a larger a, say 1/7 day21. Instead, we
chose a such that the least damped mode of B always
decayed with a timescale of 20 days. Calculations for
the three winters shown in Fig. 13, when repeated with
a fixed at 1/7 day21, gave very similar results (not
shown). This suggests that the simulated interannual
variations of the storm tracks (Figs. 12 and 13) are
associated mainly with variations of L, not of D or Q.

It is interesting that the model (7) can capture so much
of the interannual variability of the storm tracks by in-
voking only interannual changes of B but not of Q—
that is, by assuming that the symmetric part of BC0

remains the same from year to year. This suggests an
adjustment between the mean flow (represented in B)
and the synoptic eddy statistics (represented in C0) on
interannual timescales, which could be viewed as per-
haps the broadest possible manifestation of an ‘‘index
cycle’’ in the atmosphere. Even so, the simulations in
Fig. 13 are clearly far from perfect. The poor correla-
tions in Table 1 further drive home the point that there
is much more to the interannual variability of storm
tracks than a simple generalized index cycle. Perhaps
the variations of Q, which certainly exist, cannot be
ignored in even the simplest theory. As suggested by
Fig. 11, specifying some variation in the magnitude of
Q would help us simulate the Pacific midwinter mini-

mum better. We have not pursued such variations here
because we do not have any dynamical theory of them.

Notwithstanding the caveats concerning the simplic-
ity of our B operator and the simplicity and constancy
of our Q operator, we believe, for reasons discussed in
section 2, that the failure of our model to simulate the
anomalous storm tracks for individual winters points to
a more fundamental problem: that a significant part of
the interannual variability of seasonal-mean storm
tracks is not parameterizable in terms of seasonal-mean
flow anomalies. To that extent, we believe that repeating
our calculations with bigger and better L operators might
lead to diminishing returns, given the already reasonably
good results reported here.

In summary, we have presented a simple model of
extratropical storm tracks in which the storm tracks arise
from stochastically forced disturbances reaching rela-
tively large amplitudes in certain preferred regions of
the atmosphere through stable energy interactions with
the local background flow. The model successfully ex-
plains many observed aspects of the climatological win-
tertime Pacific and Atlantic storm tracks. It is also suc-
cessful in explaining some aspects of their annual cycle
and interannual variability. It can sometimes predict the
anomalous storm tracks for individual seasons; its gen-
eral ability is however poor in this regard. This failure
could be viewed as exposing the inadequacies of the
theory. Alternatively, it could be viewed as highlighting
the existence of a portion of the seasonal storm-track
variability that is unrelated to that of the seasonal flow,
and is therefore unparameterizable in terms of the sea-
sonal flow.
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