ON MEASURING THE PROPERTIES OF THE ELECTRON CLOUD IN A HIGH-ENERGY ELECTRON-POSITRON MACHINE

K. HARKAY, ANL R. ROSENBERG, ANL

International Workshop on Two-Stream Instabilities in Particle Accel. and Storage Rings KEK, 2001 Sept 11-14

OUTLINE

- Introduction
- Retarding field analyzer (RFA)
- Electron cloud distributions: RFA (e+ and e- beams)
- Comparisons
 - Beam position monitors
 - Bessel Box analyzer (BBA)
- Calibration of RFA results
- Summary

ACKNOWLEDGEMENTS

M. Furman, M. Pivi, S. Heifets, R. Macek, J Galayda, and L. Loiacono, Loyola U.

INTRODUCTION

BACKGROUND

- In response to concerns about electron cloud effects, especially at the B-factories, studies were undertaken at APS beginning in 1998 to directly measure the cloud electrons with positron and electron beams
- Specialized electron detectors based on those first designed and utilized at APS are now widely implemented: PSR (LANL), BEPC (IHEP, P.R. China), KEK-B, SPS (CERN), AGS Booster (BNL)

GOAL OF STUDIES at APS

- Characterize electron cloud (EC) distribution for better prediction of machine conditions leading to collective instabilities and other cloudinduced effects
- Identify and provide realistic limits on key ingredients in models:
 - surface effects (photoelectron and secondary electron yield coefficient (δ_{SEY}), secondary electron (SE) distribution)
 - chamber geometry (antechamber, end absorbers)
 - machine parameters (bunch current, bunch spacing)

PAPERS

- K. Harkay, R. Rosenberg, Z. Guo, Q. Qin, Proc. of 2001 PAC.
- R. Rosenberg and K. Harkay, Proc. of 2001 PAC.
- R. Rosenberg and K. Harkay, Nucl. Instrum. Meth. A 453, 507 (2000).
- K. Harkay, Proc. of 1999 PAC, 123 (1999).
- K. Harkay and R. Rosenberg, Proc. of 1999 PAC, 1641 (1999).

INTRODUCTION (CONT)

MAJOR RESULTS

- Beam-induced multipacting (BIM) observed with **both** positron and electron beams
 - Cloud density rises exponentially over bunch train until saturation limit (thereafter rising linearly)
 - Amplification of cloud a strong function of bunch spacing (t_b) ; max at: e+ beam, $t_b = 20$ ns; e- beam, $t_b = 30$ ns
 - Amplification 20x less with electron beam
 - 20x rise in vacuum pressure with >1.5 mA/bunch (e+ beam, 100 mA)
 - Conditioning effect: cloud proportional to δ_{SEY}
- BIM condition observed at APS **not completely predicted** by simple formula of resonance condition
 - BIM (per ISR, 1977) involves bunch current and bunch spacing vs. electron time-of-flight across chamber
 - "Optimal" BIM condition proposed is also a function of SE energy distribution
- Comparison of APS data with LBNL model in good agreement, provided assumed values for δ_{SEY} and SE energy distribution carefully chosen (M. Furman and M. Pivi, *Proc. of 2001 PAC*)

From measurements of the electron cloud distribution at the wall (density and **energy**), we can draw assumptions of electron cloud production mechanisms and details of beam-cloud interaction.

FOCUS OF TALK: MEASURED ELECTRON CLOUD ENERGY DISTRIBUTION

APS RETARDING-FIELD ELECTRON ENERGY ANALYZER (RFA)

Cross-sectional view of vacuum chamber showing mounted detectors. Measured transmission through grids is ~80%.

R.A. Rosenberg and K.C. Harkay, NIM A 453, 507 (2000)

Theoretical transmission of a planar RFA

Retarding potential

- **Solid line** ideal case for a parallel, nondivergent, monoenergetic beam of energy U_0 .
- **Dashed line** transmission assuming the electrons originate from a point source from a parallel surface with an angular distribution, $P(\alpha)d\alpha = 2 \sin\alpha \cos\alpha d\alpha$, where α is the angle between the electrons and the surface normal.

Dotted line – transmission curve for a $\cos \alpha$ distribution.

- *Top* Monoenergetic electron beams directed along the axis of the analyzer for energies of 53 and 105 eV.
- **Bottom** Monoenergetic electrons (365, 1000 eV) scattered from an AI target. The inset shows the differentiated signal of the 365-eV beam near the transmission threshold.

ELECTRON CLOUD DISTRIBUTIONS: RFA

Collector current (norm) vs. retarding potential, e+ beam, 20 mA, 10 bunches, as a function of bunch spacing (units of λ_{rf} = 2.84 ns)

Electron energy distributions for e+ beam, 20 mA, 10 bunches, as a function of bunch spacing, t

$n(\lambda_{rf})$	t _b	K _{pk}	r _{pk}	t _{pk}	t _{se}	K _{se}
				$\left(\frac{r_{pk} + b + d}{v_e(K_{pk})}\right)$	$t_{b} - \left(\frac{r_{pk} + b}{v_{e}(K_{pk})}\right)$	$\left(\frac{b-r_{pk}}{ct_{SE}}\right)^2 \frac{E_0}{2}$
	(ns)	(eV)	(cm)	(ns)	(ns)	(eV)
2	5.68	200	0.9	5.6	1.2	35
3	8.52	100	1.3	8.6	1.5	10
4	11.36	65	1.6	11.3	2.0	4

Amplification at K_{nk} of Detected Cloud Distribution

Amplification of electron signal with bunch spacing

COMPARISONS OF ALTERNATE ELECTRON DETECTORS

COMPARISON OF ALTERNATE DETECTORS, ELECTRONS COLLIDING WITH WALL

type	pros	cons
Retarding field analyzer (RFA)	 Simple to construct Large transmission (80%) 	 Analysis of energy spectra complicated
Plates; beam position monitors (BPMs)	 Readily available 	 Biasing changes collection length SE emission from surface affects measure of true flux
Bessel box analyzer (BBA)	 Direct analysis of energy spectrum possible 	 Poor transmission; narrow angular acceptance

BPM measured signals: bench and in-situ

Signal produced from a BPM irradiated by 60 eV and 80 eV electrons as a function of bias voltage applied to the BPM.

In-situ BPM signals for e+ beam, 2 mA/bunch, 10 bunches, vary spacing ($\lambda_{rf} = 1, 10, 100$), as a function of BPM bias voltage. Bessel Box Analyzer (BBA) schematic and measured transmission:

Spectrum of 340-eV electrons scattered from an Al surface using the BBA. The inset shows a detailed scan of the elastically scattered electrons.

BBA vs RFA (differentiated) at two different detector locations; electron beam, 20 bunches, 2 mA/bunch, $\lambda_{rf} = 11$

CALIBRATION OF RFA RESULTS

ESTIMATE OF MAX CLOUD DENSITY e+ beam, cloud in saturation (> 30 bunches @ BIM spacing $\lambda_{rf} = 7$)

- Vacuum pressure 20x higher than standard 100-mA operation (23 bunches, 4 mA/bunch, 153-ns spacing)
- Electron cloud density at saturation:

$$\left< v_e \right>_{200eV} = 8.4x10^8 \text{ cm/s}$$

$$n_{e} = \frac{I_{c} \text{ flux rate}}{\langle v_{e} \rangle} = \frac{15x10^{-9}}{1.25} \left[\frac{C}{\text{s cm}^{2} \text{ mA}} \right] \frac{100}{1.6x10^{-19}} \left[\frac{\text{mAe} - }{C} \right] \frac{1}{8.4x10^{8}} \left[\frac{\text{s}}{\text{cm}} \right]$$
$$= 10^{4} \left[\frac{\text{e} - }{\text{cm}^{3}} \right]$$

K. HARKAY, ANL

SUMMARY

- Energy spectrum of electron cloud (EC) obtained from differentiated RFA signal
 - Detector energy response a function of incident angle; not included in analysis
 - Features in spectra reveal details of beam-cloud interaction
 - Energy tail indicative of how close cloud electrons drift to beam center
- Amplification of cloud electrons at specific energies observed
 - Bunch current and spacing "selects" cloud energy detected
 - Observed spectrum may depend on detector location
- Optimal beam-induced multipacting (BIM) condition for multiple bunches includes SE energy distribution peak (EC established)
 - SEs produced between bunch passages drift near beam
 - SEs kicked by beam to energy, K_i, near peak of $\delta_{SEY}(K_i)$
 - BIM resonance condition when drift times for low-energy SE plus high-energy kicked electron equal the bunch spacing
 - Optimal when EC fills chamber, resonance condition satisfied for 0<r
b for energies near peak of SE distrib.
- Positron beam
 - 10 bunches, 1 vs. 2 mA/bunch
 - Energy tail longest with 2 mA/bunch; vacuum pressure rise
 - Shorter tail (1 mA/bunch) = EC doesn't drift as close to beam
 - 2 mA/bunch, 2 bunches vs. 10 bunches
 - Nonlinear EC growth: 10x higher amplification with 10 bunches compared to 2 bunches (BIM, < 50 eV)

- Positron vs. electron beam
 - 10 bunches
 - 10x higher EC amplification for e+ beam compared to ebeam at optimal bunch spacing
 - Few high-energy (> 150 eV) cloud electrons with e- beam (cloud doesn't drift as close to beam)
 - 2 bunches
 - Cloud nearly identical for e+ and e- beams (accounting for surface conditioning)
- RFA vs. other detectors (electrons measured at wall)
 - RFA: drop in signal levels measured over time consistent with surface conditioning
 - BPM: difficult to interpret EC density and energy dependence for biased pickup
 - BBA: good theoretical energy resolution, but relatively small angular acceptance
- Alternate techniques

At wall

- Electron sweeper (per Macek, et al., at PSR)
- Time-resolved, fast, amplified RFAs (per Macek, et al.)
- Screened strip detectors in dipoles (per Cornelis, et al., SPS)
- In chamber volume
- Pair of striplines: separate proton beam- (v_z) and electron cloud- (v_{xy}) induced signals (per G. Lambertson)
- Measure attenuation at cyclotron resonance of rf wave transmitted through cloud in dipole (per S. Heifets)
- Measure cloud-induced tune shift (per F. Mills)