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ABSTRACT

An algorithm is proposed for the computation of streamfunction and velocity potential from given
horizontal velocity vectors based on solving a minimization problem. To guarantee the uniqueness of the
solution and computational reliability of the algorithm, a Tikhonov regularization is applied. The solution
implies that the obtained streamfunction and velocity potential have minimal magnitude, while the given
velocity vectors can be accurately reconstructed from the computed streamfunction and velocity potential.
Because the formulation of the minimization problem allows for circumventing the explicit specification of
separate boundary conditions on the streamfunction and velocity potential, the algorithm is easily appli-
cable to irregular domains. By using an advanced minimization algorithm with the use of adjoint techniques,
the method is computationally efficient and suitable for problems with large dimensions. An example is
presented for coastal oceans to illustrate the practical application of the algorithm.

1. Introduction

Streamfunction and velocity potential are used ex-
tensively in meteorology and oceanography. In low lati-
tudes, geostrophic balance breaks down as the Coriolis
parameter becomes small, and streamfunction and ve-
locity potential are more suitable scalar variables for
depicting flow patterns than other variables, such as
pressure and geopotential heights, that are more suit-
able for large-scale flow patterns in middle latitudes
(e.g., Palmer 1952). Streamfunction and velocity poten-
tial are also more suitable for analyzing flow patterns
when spatial scales are smaller than the Rossby radius
of deformation. Recently, streamfunction and velocity

potential have attracted much attention for their use in
data assimilation. In a data assimilation algorithm, it is
necessary to model error self-correlations of velocity
components and cross correlations between velocity
components (e.g., Cohn 1997; Lorenc 1986). The an-
isotropy and inhomogeneity of the self-correlations and
large values of the cross correlations make them diffi-
cult to represent appropriately in a data assimilation
algorithm (Daley 1991, chapter 5; Lorenc et al. 2000).
In both the analysis of flow patterns and the estimation
of error correlations in data assimilation, it is thus fre-
quently desirable to compute streamfunction and ve-
locity potential from velocity vectors.

The computation of streamfunction and velocity po-
tential from velocity vectors can easily be carried out
over the global domain. However, for a limited domain,
the computation is complicated by boundaries, and the
methods currently used are based on various assump-
tions for handling boundary conditions (Sangster 1960;
Shukla and Saha 1974; Bijlsma et al. 1986; Lynch 1988;
also see section 2). More physically sound and compu-
tationally efficient methods are desirable for limited
domains.
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Most methods for the computation of streamfunction
and velocity potential have been applied to regular do-
mains, while there is an increasing need for complex
domains. Recently, the number of velocity measure-
ments from radars has been rapidly increasing. While
Doppler radar can provide nearly time-continuous
three-dimensional (3D) velocity measurements in the
atmosphere (National Research Council 2002), high-
frequency (HF) radar can measure the sea surface wa-
ter velocity (Puduan and Graber 1997). The radar-
measured velocity is generally available only in limited
irregular domains. In addition, an irregular domain is
unavoidable in a variety of other circumstances. For
example, in coastal oceans, irregular coastline shapes
and island distributions are ubiquitous. Similarly, when
streamfunction and velocity potential are computed us-
ing the height coordinate in the atmosphere, the com-
putational domain becomes irregular in the presence of
mountains. As far as we know, there are not yet stan-
dard methods for computing streamfunction and veloc-
ity potential for such complex domains.

In this paper, we propose a new algorithm for com-
puting streamfunction and velocity potential from hori-
zontal velocity vectors. This algorithm can easily be
implemented on irregular domains. Also, the algorithm
is computationally efficient and, thus, can be used for
problems with large dimensions.

The outline of this paper is as follows. Section 2 re-
views the theoretical and computational issues. In sec-
tion 3, the new algorithm is formulated. Computational
examples are presented in section 4. Finally, section 5
summarizes the features of the new algorithm.

2. The decomposition problem

According to the Helmholtz theorem, the horizontal
velocity vector v can be decomposed into nondivergent
and irrotational components,

v � v� � v� , �1�

where

v� � k � ��, v� � ��, �2�

� is the streamfunction, � the velocity potential, and �
the horizontal gradient vector. Taking the vertical com-
ponent of the curl of (1), we get

�2� � �, �3�

where � is the vertical component of the relative vor-
ticity. Similarly, taking the divergence of (2), we have

�2� � D, �4�

where D is the horizontal velocity divergence.

For the global domain, the periodic boundary condi-
tion allows the decomposition problem (1) to have a
unique solution and makes it straightforward to solve.
For a limited domain, however, the solution of the par-
titioning problem (1) is not unique, because equal and
opposite flows with zero vorticity and divergence can
be added to � and � without affecting the total velocity
(Gent and McWilliams 1983; Lynch 1989). For a given
velocity field in a limited domain, there could be an
infinite number of partitioning solutions. Additional
conditions are necessary for a unique partitioning solu-
tion.

There are two approaches in the literature for speci-
fying the partitioning uniquely for limited domains.
While Lynch (1989) proposes a three-component par-
titioning, most existing methods apply boundary condi-
tions to Poisson’s equations given by (3) and (4) to
obtain uniquely defined � and �. Here, we are con-
cerned with the latter one. There are two types of
boundary conditions for Poisson equations: the Di-
richlet type and the Neumann type. The Dirichlet type
requires specifying the values of � and � at the bound-
aries. The Neumann type requires specifying the nor-
mal derivatives of � and � at the boundary.

Various approximated boundary conditions have
been suggested, and the Poisson equations are then
solved for obtaining a determined solution for � and �.
For example, Sangster (1960) proposed the boundary
condition of the Dirichlet type: first, let � � 0 at the
boundary to solve (4) for �, and second the boundary
value of � is specified by integrating 	
�/
s � vn 	

�/
n. Lynch (1989) discussed as many as eight methods
for specifying the boundary condition, which can be the
Dirichlet or Neumann type, as well as their combina-
tion. Some physically sound methods are also used for
specifying the boundary conditions. One such method
is to minimize the divergent kinetic energy, which leads
to the boundary condition 
�/
n � n · v (e.g., Lynch
1989). One drawback of the above-mentioned methods
is that the velocity reconstructed from the computed �
and � may not well match the original velocity field. In
practice, these methods need to be refined. One
method to refine them is to use an iterative procedure
to adjust the solution, and this iterative method can
help in some cases as shown in Shukla and Saha (1974)
and Bijlsma et al. (1986). Though the iterative method
is a widely used method, it still has both numerical and
computational limitations. First, there is no guarantee
that the iteration will converge (Lynch 1988). Second, it
is computationally costly, since each iteration requires a
solution for the Poisson equations, and a large number
(say 60) of iterations are usually needed to obtain a
satisfactory result (Shukla and Saha 1974).
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While the above-described methods for approxi-
mately specifying boundary conditions have been ap-
plied to regular domains, it is more difficult to apply
them to irregular domains, especially to problems like
coastal oceans where islands are present. Watterson
(2001) recently proposed a method for computing
streamfunction and velocity potential for oceans. In this
method, it is assumed that � is a constant along a con-
tinuing coastline, which implies that the flow is nondi-
vergent along the coastline. As demonstrated by
Watterson (2001), this may be an acceptable approxi-
mation for basin scales in some cases. Unfortunately,
the nondivergence assumption becomes invalid for
those coastal regions where there exists pronounced
Ekman transport in association with upwelling/down-
welling, such as the U.S. and African west coasts. To
specify � and � at such boundaries is practically impos-
sible. For irregular domains with the presence of is-
lands, the specified boundary conditions can even be in
conflict and lead to the nonexistence of a solution. For
example, the approximation for specifying � by inte-
grating 
�/
s � �n can no longer be used. To circumvent
such difficulties, we herein propose a method that does
not require explicitly specifying boundary conditions,
while a unique decomposition is obtained.

3. Algorithm based on a Tikhonov regularization

The computation of velocity vectors from the stream-
function and velocity potential and the computation of
the streamfunction and velocity potential from velocity
vectors typically compose a pair of direct and inverse
problems (e.g., Kirsch 1996). The former is the direct
and well-posed problem, while the latter is the inverse
and ill-posed problem.

The above-described inverse problem actually is a
classic one in inverse problem theory (Tikhonov and
Arsenin 1977). It is known that Tikhonov’s regulariza-
tion is a reliable method to solve this type of inverse
problem. We propose here an algorithm based on
Tikhonov’s regularization.

To derive our proposed algorithm, we consider the
discrete form of (2). A traditional, centered, second-
order finite-difference approximation is adopted for
simplicity. This is equivalent to the well-known Ar-
akawa “C” grid (Arakawa and Lamb 1977). The ar-
rangement of variables is shown in Fig. 1. Since the
streamfunction is defined on the central grid points, the
discretization as in Fig. 1 is not the same as that typi-
cally used, in which the streamfunction is defined on the
corner grid points as given in Lynch (1988). The dis-
cretization in Fig. 1 offers some convenience in incor-
porating physical boundary conditions, such as those

due to coastlines, and the physical boundary condition
of zero normal velocity at the coastlines can be easily
incorporated.

We arrange u at the grid points into a vector u, then
u is a m(n � 1) vector. In the same way, we arrange �
at the grid points into a vector v, then v is a n(m � 1)
vector. Similarly, we have a (m � 1) (n � 1) vector �
arranging � at the grid points, and a (m � 1) (n � 1)
vector � arranging � at the grid points. By these defi-
nitions, the discrete form of (1) becomes a linear system
of the form

y � Ax, �5�

where

x � ��

�
�, y � �u

v�, �6�

x is an N vector [N � 2(m � 1) (n � 1)], y an M vector
[M � m(n � 1) � (m � 1)n], and A is an M by N matrix.
The matrix A depends on the discretization scheme.

The same form of equation as in (5) can still be used
for irregular domains, such as coastal oceans where
coastline and islands are present. As an example, con-
sider a single land area present in the domain as shown
by the shaded area in Fig. 1. In this case, given the
particular arrangement of the variables on the grid
points, we just need to mask out all the variables over
this land area; that is, all the variables on land are set to
zero, and then we do not need to change the dimensions
of x, y, and A.

Equation (5) can be used to reconstruct the velocity
vector y, but cannot be used directly to solve for x
inversely. This is because A is not a square matrix due
to the fact of M � N, and the inverse problem is un-

FIG. 1. Illustration of the Arakawa C grid. The shadowed area
represents a land area for coastal ocean problems.
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derdetermined. We may specify appropriate boundary
conditions to reduce the degrees of the freedom of x
(Lynch 1988, 1989). However, such appropriate bound-
ary conditions are difficult to prescribe as discussed in
section 2. Particularly, it is practically impossible to
specify appropriate boundary conditions for domains,
such as coastal oceans with the presence of separate
land areas.

Since it is practically impossible to invert (5) directly,
we have to seek an alternative method to solve this
inverse problem. One possible method is to seek a gen-
eralized solution. To seek a generalized solution, a
commonly used method is to determine the best fit in
the sense that one tries to minimize the objective func-
tional | |Ax 	 y | | with respect to x in terms of a defined
norm. When the Eulerian norm is used, the objective
functional has the quadratic form

J�x� �
1
2

�y 	 Ax�T�y 	 Ax�, �7�

where the superscript T stands for transpose. In addi-
tion, J(x) is half the error variance of the velocity that
is reconstructed from the computed � and �. When J(x)
is zero, the velocity vector can be perfectly recon-
structed from the computed � and �.

The minimum of (7) can be found analytically for
some cases. One case is when the boundary conditions
are given, the dimension of x is not larger than that of
y, plus the rank of A is equal to the dimension of x. In
this case, ATA is invertible. Let the derivative of J(x) be
zero; that is, �xJ(x) � 0. We immediately obtain the
solution that minimizes J(x):

x � �ATA�	1ATy, �8�

where AT is the transpose of A, also known as the ad-
joint of A. The solution (8) is then the Moore–Penrose
pseudoinverse or the left pseudoinverse, often denoted
by A�. When A is invertible, the solution is the same as
the one obtained by directly inverting (5). Another case
is for when the rank of A is equal to the dimension of y;
we then have the solution

x � AT�AAT�	1y, �9�

which is often referred to as the right pseudoinverse or
data-space inverse in geophysical applications. In this
case, the boundary condition may not necessarily be
specified explicitly.

However, we do not use (8) or (9) to solve our prob-
lems when x has a large dimension. To compute the
pseudoinverse of A requires a singular vector decom-
position of A. For a problem with a very large dimen-
sion, the pseudoinverse of A can be computed with

particular methods, such as those from the Arnoldi
Package software (ARPACK; e.g., Lehoucq et al.
1998), but the computational load is not acceptable
when a large number of singular vectors of A are nec-
essary. One may note that the singular vectors need
only be computed a single time, and then just used
repeatedly. This can reduce the computational cost, but
it requires significant computer memory to store the
singular vectors and thus is subject to the availability of
computer memory. In addition, the input of huge
datasets is not a good choice for parallel computers,
since the input and output can be a bottleneck in par-
allel computing. Further, for a problem with large di-
mensions, only a portion of the singular vectors of A
may be allowed to be computed. When only a limited
number of singular vectors are used, the accuracy of the
reconstructed velocity can be a concern.

We thus need to seek other alternative methods that
are suitable for problems with large dimensions, and
have no requirement of the explicit specification of
boundary conditions while guaranteeing the accuracy
of the reconstructed velocity.

We propose to use the Tikhonov regularization
method (Tikhonov and Arsenin 1977), which is a classic
method for solving an ill-posed inverse problem. With a
Tikhonov regularization, a regularization term is intro-
duced to the objective functional (7), and it has the
form

J��x� �
1
2

�y 	 Ax�T�y 	 Ax� � �
1
2

xTx

� J�x� � Jreg�x�, �10�

where the parameter  is a positive parameter, called
the regularization parameter, and J(x) is called
Tikhonov’s functional. The minimizer of J(x) can then
be interpreted as that obtained when the streamfunc-
tion and velocity potential tend to be the minimal mag-
nitude, while the reconstructed velocity field tends to
be the “best” fit to the original velocity. The regular-
ization term Jreg has a particular physical meaning; that
is, minimizing Jreg is equivalent to minimizing the op-
posing irrotational, nondivergent components of v� and
v� (Gent and McWilliams 1983; Lynch 1989). In fact,
these components are always excluded at the minimum
of J(x) as we will prove later. Due to the regularization
term, J(x) has a unique minimum x (see theorem 2.11
in Kirsch 1996).

After the regularization term is applied, the mini-
mum of the objective functional depends on the regu-
larization parameter . In fact,  causes an approxima-
tion in the sense that the minimum of J(x) is not nec-
essarily the minimum of J(x). We can illustrate this
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approximation by considering the case where u and v
can be perfectly reconstructed. In this case, J(x) is zero,
but J(x) may not be zero at the minimum of J(x).
Certainly, we do not expect to perfectly reconstruct u
and v, but it is necessary that J(x) has an acceptably
small value at the minimum x. Ideally, we should use
the optimal , at which point J(x) reaches the smallest
value. To find such an optimal , a complicated a pos-
teriori choice can be used, and such an optimal  can
always be found (Kirsch 1996, chapter 2). For our prob-
lem, however, it turns out that  has a broad range of
values that produce acceptably small values of J(x), and
thus a simple trial and error procedure can serve well in
finding an appropriate . We will discuss further the
determination of  by this trial and error procedure in
section 4, where the computational example is given.

The Tikhonov functional given in (10) can be reliably
and efficiently minimized with advanced minimization
algorithms and adjoint techniques. During the last two
decades, several minimization algorithms have been de-
veloped for solving problems with large dimensions.
The most frequently used algorithms include quasi-
Newton limited memory type algorithms and precondi-
tioned conjugate gradient algorithms (e.g., Nocedal and
Wright 1999).

When these two types of minimization algorithms are
applied to complicated problems, the adjoint technique
is necessary. Both types require the gradient of the
Tikhonov functional. By differentiating the Tikhonov
functional, we obtain the gradient

�xJ��x� � 	AT�y 	 Ax� � �x. �11�

Equation (11) shows that the gradient can be computed
by applying AT to (y 	 Ax), and it is noteworthy that
this operation incurs the same computational cost as
the computation of Ax.

Using the adjoint technique to compute the gradient
deserves more explanation. With a higher-order differ-
encing scheme and complex coastline and isolated is-
lands, it is almost impossible to express A explicitly.
What we know about A often comes only through a
computer program, such as a Fortran program, for com-
puting velocity from the streamfunction and velocity
potential. The adjoint AT can be developed directly
from the computer program (e.g., Navon et al. 1992).
As such, the adjoint technique offers multiple benefits.
First, the computed gradient is accurate to the com-
puter precision; second, the adjoint technique can be
applied to very sophisticated models; third, it is appli-
cable to problems with large dimensions, since A and its
adjoint matrix AT do not need to be stored, but only the
vector AT(y 	 Ax) needs to be retained; and fourth, the
computation can be efficient.

After having examined in detail the computational
aspects of the Tikhonov regularization-based algo-
rithm, we shall here discuss the properties of the solu-
tion obtained with the algorithm.

We have pointed out the problem of nonuniqueness.
The nonuniqueness implies that there exist nonzero
vectors e, which satisfy

Ae � 0. �12�

That is, A has a nontrivial null space. To make the
solution unique is essentially to make a choice to get a
determined e in the null space. We examine next this
determined e in the solution.

Let the null space of A be spanned by e1, e2, . . . , eK,
where K � 0 is the dimension of the null space. The
minimizer of (10) can always be decomposed as

x� � x� � �
k�1

K

ckek , �13�

where ck are constant coefficients and x� has no pro-
jection in the null space; that is,

ek
Tx� � 0. �14�

By replacing x into (11), we can then obtain ck � 0 at
the minimum, which satisfies �xJ(x) � 0 (see the ap-
pendix). Thus, the component on the null space is ex-
cluded in the solution due to the Tikhonov regulariza-
tion.

As discussed before, we know that the component on
the null space of A can arise from two aspects: first,
equal and opposite flows with zero vorticity and diver-
gence can be added to � and � without affecting the
total velocity (Gent and McWilliams 1983); and second,
necessary boundary conditions are not specified. Since
those equal and opposite flows are not physically mean-
ingful, it is reasonable to minimize them as in Lynch
(1989), and it is desirable to exclude them as in our
solution. The justification for the exclusion of the com-
ponent on the null space due to the unspecified bound-
ary conditions is a practical issue. It can be practically
justified if the obtained � and � can approximately sat-
isfy (5) and (6), and this is true when J(x) is approxi-
mately zero at the minimum.

Another relevant question is whether the solution is
related to the solution of (3) and (4) with the Dirichlet
and Neumann boundary conditions. Again, when J(x) is
approximately zero at the minimum, the solution ap-
proximately satisfies (5) and (6). Because of the
uniqueness of the decomposition, the normal deriva-
tives of the streamfunction and velocity potential in (5)
and (6) are thus approximately but uniquely deter-
mined at the boundaries. The solution with the deter-
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mined normal derivatives is thus related to the solution
of (3) and (4) with the Neumann condition at the
boundaries.

4. A computational example

The dataset used for demonstrating the proposed al-
gorithm is derived from a three-dimensional Regional
Ocean Modeling System (ROMS) (Shchepetkin and
McWilliams 1998, 2003; Marchesiello et al. 2001, 2003).
In this study, ROMS is implemented in a three-level
nested configuration. The first level covers the U.S.
west coast (USWC) ocean at 15-km resolution, the sec-
ond level covers the central California coastal (CCC)
ocean at 5-km resolution, and the third level fits the
Monterey Bay (MB) at 1.5-km resolution. All the of
three nesting levels have 20 vertical sigma layers. A
one-way nesting scheme is implemented (Blayo and
Debreu 1999). In this study, only the 1.5-km ROMS
output is used for the computation of streamfunction
and velocity potential.

The model domain is bounded by the coastline on the
eastern side, and the bathymetry shows a bay and can-
yon (Fig. 2). A curvilinear horizontal coordinate is

used, and thus the grid distribution is irregular to some
degree. There are 186 grid points alongshore, and 88
grid points cross shore. The streamfunction and veloc-
ity potential are analyzed at the physical height levels.
A masking technique is used to differentiate the land
and sea grid points.

The ROMS output used is from a data assimilation
exercise using August 2003 conditions when the Au-
tonomous Ocean Sampling Network (AOSN) Mon-
terey Field Experiment was implemented in the area
surrounding Monterey Bay, California (Chao et al.
2006, manuscript submitted to Deep-Sea Res.). The
surface forcing is derived from the output of the
Coupled Ocean/Atmospheric Model Prediction System
(COAMPS) (Hodur 1997) with a horizontal resolution
of 3 km.

To demonstrate the proposed method, we choose a
transition from an upwelling event to a relaxation pe-
riod, during which the velocity field underwent rapid
and complex changes. Figure 3 presents the sea surface
current and temperature at a depth of 10 m. The tem-
perature is shown here to illustrate the transition from
an upwelling event to a relaxation period. During the
upwelling period on 16 and 18 August, the nearshore

FIG. 2. The model domain and bathymetry (m). The contour interval is 250 m.
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FIG. 3. The evolution of temperature and velocity vectors at a depth of 10 m. Both 16 and 18 Aug are during the
upwelling event, while 20 and 22 Aug are during the relaxation.
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temperature is as cold as 10°–12°C. In association with
the upwelling, there is an equatorward current jet with
a width of about 50 km along the coastline. During the
relaxation period on 20 and 22 August, the temperature
becomes warmer near shore. Another prominent dif-
ference during the relaxation is that the equatorward
current jet is weakened substantially. Interestingly, a
few small-scale eddies form after the equatorward cur-
rent jet is weakened. In the area to the east of the jet,
there was a major anticyclonic eddy, which moved from
36°N on 18 August to 35.5°N on 22 August.

Figure 4 presents the streamfunctions and velocity
potentials derived from the velocity vectors in Fig. 3.
During the upwelling, the streamfunctions show a band
with lower values and a width of about 25 km along the
coastline. The lower values of the streamfunction are
consistent with the lower temperatures there. During
the relaxation, a well-defined small-scale eddy forms
between 36° and 35.5°N, and is well represented in the
streamfunction.

As is well known, Ekman transport drives upwelling.
During upwelling, Ekman transport drives near-surface
water off shore, and thus horizontal divergence domi-
nates near surface along the coastline. Consistent with
this dynamical scenario, the divergence is dominant
along the coastline during upwelling on 16 and 18 Au-
gust; that is, the velocity potential is lower along the
coastline. In contrast, during the relaxation on 20 and
22 August, the velocity potential is dominated by
higher centers, which correspond to convergence cen-
ters.

The velocity potential interestingly displays fine
structures along the coastline. We expect to find con-
vergence upstream of a headland. Such a convergence
center can be found at 37°N, and also at the tip of the
Monterey Peninsula on 16 and 18 August, when the
equatorward upwelling jet prevails. Thus, the computed
velocity potential can represent fine convergence struc-
tures related to the curvature of the coastline.

In summary, the computed streamfunction reason-
ably represents the upwelling pattern and the eddies
from meso- to small scale. The velocity potential rea-
sonably describes the divergence and convergence dur-
ing the upwelling and relaxation time. The small-scale
divergence and convergence centers related to the cur-
vature of the coastline are also well represented.

In section 2, we stated that the assumption of the
constant streamfunction along a coastline becomes in-
valid for upwelling regions because of strong conver-
gence and divergence. In Fig. 4, the streamfunction dis-
plays significant variations along the coastline. The
large gradient of the streamfunction along the coastline
corresponds to the centers of velocity potential, which

in turn correspond to the divergence and convergence
centers. The statement is supported by the computa-
tion.

Now let us examine the accuracy of the velocity vec-
tors reconstructed from the streamfunctions and veloc-
ity potentials. Figure 5 shows the difference between
the original velocity and the reconstructed velocity. The
differences are smaller than 0.005 m s	1. The overall
accuracy should be quite acceptable since the error is
less than 1% of the typical velocity. The spatial distri-
bution of the error is also satisfactory, since the error is
largest in the relatively intense current areas. The error
is especially small near the boundaries, which suggests
that the boundary condition is well controlled.

We have pointed out that the accuracy depends on
the regularization parameter. The smaller the Tik-
honov regularization parameter, the more accurate the
reconstructed velocity is. A larger Tikhonov regulariza-
tion parameter reduces the accuracy by making the re-
constructed velocity field smoother. In practice, the ve-
locity field tends to be noisy, and it may not be desir-
able to reconstruct the velocity field at a high accuracy.
The choice of the value of the regularization parameter
can be used as a trade-off between accuracy and
smoothness.

To determine a particular value of the regularization
parameter, we can follow a rule of thumb to make a
first guess, and then use a trial and error procedure to
refine it. The first guess of  can be estimated with the
formula of |v |2/100 |� |2, where |v | is the averaged ve-
locity over the domain and |� | is the averaged stream-
function over the domain. Such an  generally results in
errors in the reconstructed velocity of less than a few
percents. In our computation here, the regularization
parameter is 10	11. This number is obtained since |� | is
about 0.3 m s	1 and |� | is about 104 s	1. We have tested
the method with values of this parameter ranging from
10	10 to 10	12, and the results are qualitatively the
same, and the error is reduced by bout 1.5% as the
parameter decreases from 10	10 to 10	12. These results
suggest that a reasonable accuracy in the reconstructed
velocity vector can be achieved over a broad range of
regularization parameters.

5. Summary and discussion

A new method has been proposed to compute
streamfunction and velocity potential from velocity
vectors. This method is applicable to irregular domains.
Thus, it can be applied to coastal ocean problems with
complex coastlines and isolated islands, and limited
area atmospheric problems even in nonterrain-
following vertical coordinates, in which the horizontal
level may intersect mountains.
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FIG. 4. The computed streamfunction � and velocity potential � corresponding to the velocity vectors in Fig. 3 (104 s	1).
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Following inverse problem theory, the computation
of the streamfunction and velocity potential is trans-
formed into a minimization problem. The classic
Tikhonov regularization is introduced to guarantee the
uniqueness of the solution. In this minimization prob-
lem, explicit specification of the conditions at compu-
tational boundaries conditions is circumvented, and the
minimization problem implicitly determines these
boundary conditions. For physical boundary conditions,
such as those due to coastline, the specification can be
circumvented, but it can also still be specified. Since the
boundary conditions for irregular domains are difficult
to specify, the circumvention of the specification of the
boundary condition renders the algorithm especially
easy to apply to such domains. Another benefit that the
algorithm offers is that we do not need to know the
explicit form of the matrix A in (5), by which we com-
pute velocity vectors from streamfunction and velocity
potential, but we only need the matrix-vector product
Ax, that is, a method for computing u and v from �
and �.

The regularized minimization methodology not only

renders the algorithm applicable to irregular domains,
but also has powerful computational potential for large-
scale problems. The computational efficiency is ob-
tained by applying advanced minimization algorithms
and the adjoint technique. In this study, we use the
quasi-Newton limited memory method (Liu and No-
cedal 1989). Using the example described in section 4 as
a guide we estimate that a problem with on the order of
105 grid points can be solved in a few minutes on to-
day’s commonly available workstations. The computa-
tional efficiency and the technique of the implicit com-
putation of A allows the method to be applied to prob-
lems with dimensions larger than this example.
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APPENDIX

The Proof of ck � 0

The minimum x satisfies �xJ(x) � 0; that is,

	AT�y 	 Ax�� � �x� � 0. �A1�

Since Aek � 0, the substitution of (13) into (A1) gives

	AT�y 	 Ax�� � ��x� � �
k�1

K

ckek� � 0. �A2�

The inner product of ek with (A2) yields

	�Aek�T�y 	 Ax�� � �ek
Tx� � �ck � 0. �A3�

Since Aek � 0 and eT
kx� � 0, we obtain ck � 0.
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