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ABSTRACT

The effects of divergence on low-frequency Rossby wave propagation are examined by using the two-
dimensional Wentzel–Kramers–Brillouin (WKB) method and ray tracing in the framework of a linear
barotropic dynamic system. The WKB analysis shows that the divergent wind decreases Rossby wave
frequency (for wave propagation northward in the Northern Hemisphere). Ray tracing shows that the
divergent wind increases the zonal group velocity and thus accelerates the zonal propagation of Rossby
waves. It also appears that divergence tends to feed energy into relatively high wavenumber waves, so that
these waves can propagate farther downstream. The present theory also provides an estimate of a phase
angle between the vorticity and divergence centers. In a fully developed Rossby wave, vorticity and diver-
gence display a �/2 phase difference, which is consistent with the observed upper-level structure of a mature
extratropical cyclone. It is shown that these theoretical results compare well with observations.

1. Introduction

Waves are one of the most prevalent phenomena in
the atmosphere. During the propagation of atmo-
spheric waves, the transport of the wave momentum
and heat has a dramatic impact on the evolution of
atmospheric circulation. Three atmospheric phenom-
ena including the quasi-biennial oscillation (QBO) in
the tropical stratosphere, stratospheric sudden warming
(SSW) in the polar region, and the significant strength-
ening and speeding up of the upper-level jet stream
have been successfully explained by wave propagation
mechanisms. Lindzen and Holton (1968) studied the
QBO in the tropical stratosphere using the theory of
upward-propagating gravity waves and wave breaking.
Matsuno (1971) explained the SSW as the interaction
between an upward-propagating planetary wave and
the mean flow at the wave’s critical layer. Gao et al.

(1990) explained the significant strengthening and
speeding up of the upper-level jet stream using the gen-
eralized Eliassen–Palm (E–P) flux theory.

The aforementioned scientific findings are mainly
supported by the propagation theories associated with
gravity waves, planetary waves, and transient waves. It
is well known that low-frequency waves have an impor-
tant impact on weather and climate. There have been
numerous observational and analysis studies on low-
frequency phenomena. Wallace and Gutzler (1981)
analyzed teleconnections using geopotential height
data and verified existence of the North Pacific Oscil-
lation (NPO) and the North Atlantic Oscillation
(NAO). Madden and Julian (1971, 1972) found a low-
frequency oscillation (LFO) with a 45–50-day period by
analyzing wind and surface pressure fields in the tropics
with a spectral method. Many studies showed that the
LFO not only propagated along the equator but also
possessed a northward component. Wallace and Black-
mon (1983) discussed the causes of the LFO and
showed that the low-frequency variation is similar to a
two-dimensional Rossby wave train. Kiladis and Weick-
mann (1992, 1997) investigated the Rossby wave re-
sponse (on various time scales) to tropical convection
using outgoing longwave radiation (OLR) and National
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Centers for Environmental Prediction’s (NCEP’s) glob-
al analyses.

As shown in many previous works, the properties of
2D Rossby wave propagation can be studied by em-
ploying the nondivergent barotropic vorticity equation,
linearized about a basic flow. Early studies were fo-
cused on differences between various basic flows. Ben-
nett and Young (1971) considered a basic flow of con-
stant latitudinal shear. Boyd (1978, 1982) investigated
the effects of latitudinal shears on equatorial and global
Rossby waves, respectively. Hoskins and Karoly (1981)
developed a theory for Rossby wave propagation in a
slowly varying zonally symmetric basic flow. Branstator
(1983), Karoly (1983), and Hoskins and Ambrizzi
(1993) examined Rossby wave propagation with zonally
asymmetric basic flows. In particular, Branstator (1983)
used a basic state that varies both in latitude and lon-
gitude, while Hoskins and Ambrizzi (1993) considered
a basic state of a climatological 300-hPa December–
February (DJF) time-mean flow. Some closed-form so-
lutions were obtained from these studies using the
Wentzel–Kramers–Brillouin (WKB) method, and these
provide most of our present understanding of 2D
Rossby wave propagation. The results from these clas-
sic studies will be reviewed in section 3.

It has long been recognized, ever since Rossby
(1939), that the nondivergent vorticity equation does
not properly take into account the adjustment of pres-
sure and wind fields. Rossby (1945) and Yeh (1949)
derived a Rossby wave dispersion relation that included
divergence effects. This well-known result is included in
many standard dynamics textbooks, for example,
Kundu (1990). Cressman (1958) also investigated the
effect of divergence on long atmospheric waves from a
numerical weather prediction point of view. The most
detailed study of the impact of tropical divergence on
Rossby wave propagation was conducted by Sardesh-
mukh and Hoskins (1988). They concluded that the ad-
vection of vorticity by the divergent component of the
horizontal flow is a significant term in the large-scale
vorticity balance, and should not be ignored when in-
vestigating the effect of tropical heating on the circula-
tion in middle latitudes. This study used a numerical
approach to integrate the divergent barotropic vorticity
equation because a closed-form solution was lacking.
Though important insight was gained from the study, it
did not investigate the Rossby wave ray-tracing prob-
lem.

Recently renewed interest in the interaction of trop-
ics and extratropics has rekindled curiosity about
Rossby wave propagation, as indicated by this new
wave of investigations, particularly in the context of
tropical western Pacific disturbances and high-impact

weather systems across the Pacific basin (e.g., Ferranti
et al. 1990; Chang and Yu 1999; Chang 2005; Hoskins
and Hodges 2002; Klein et al. 2002; Hakim 2003; Par-
sons et al. 2006). One of the issues related to the con-
nection of the North American weather system and
Rossby wave packet propagation is the accurate pre-
diction of the wave propagation path and the life cycle
of tropical and extratropical storms. Despite the afore-
mentioned studies, Rossby wave ray tracing for tropical
and extratropical transitions (ET) is still missing. No
doubt divergence will play an important role in the de-
velopment and propagation of tropical disturbances
into extratropical regions. The classic Rossby wave ray-
tracing studies by Hoskins and Karoly (1981), Bransta-
tor (1983), Karoly (1983), and Hoskins and Ambrizzi
(1993) have provided crucial insight into the Rossby
wave propagation problem. However, their studies can
be extended further by including divergence effects.

The propagation of the low-frequency wave has an
important impact on the anomaly of the atmospheric
circulation, which motivates us to further study this
phenomenon. In this work, the effect of divergence on
the development of the low-frequency Rossby waves is
studied by analyzing the divergent barotropic vorticity
equation. In section 2, we first conduct some observa-
tional analyses. These observations show possible
Rossby wave trains with quite different paths and life
cycles. We then conduct a review of some Rossby wave
propagation theories and results from previous studies
(section 3). In section 4, we consider the effect of di-
vergence in the barotropic vorticity equation, and solve
it by means of the WKB method. The effects of diver-
gence on the WKB solutions are discussed. In section 5,
we apply ray-tracing diagnostics to NCEP–National
Center for Atmospheric Research (NCAR) reanalysis
data and compare the results with observations. Our
conclusions are given in section 6.

2. Observations of tropical and extratropical
disturbance propagation in the Pacific Ocean
basin

Because the tropical western Pacific Ocean is a large
pool of warm water, it is a favorable location for the
generation of atmospheric disturbances. Some of these
disturbances develop into tropical cyclones, travel
northwestward (steered by the tropical easterlies), and
make landfall on many Southeast Asian countries (dur-
ing typhoon season, typically from August to October).
These storms often cause major casualties and property
damage in that part of the world. Another group of
these disturbances form various wave packets, which
travel northeastward (quickly caught by the midlatitude
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westerlies). These wave packets have been extensively
studied as packets of Rossby waves (Sardeshmukh and
Hoskins 1988; Chang and Yu 1999; Hakim 2003; Chang
2005; and many others). The downstream development
of these disturbances has a crucial impact on the
weather and climate systems over the North American
continent (typically during the fall and winter seasons).
Figure 1 is a time–longitudinal diagram of 250-hPa me-
ridional wind (m s�1) from 0000 UTC 5 October 2003
to 1200 UTC 31 October 2003 (the figure is available
online at http://www.cdc.noaa.gov). The dashed diago-
nal lines highlight eastward-moving upper-tropospheric
wave packets that originated over eastern Asia (circled
area). These wave trains were responsible for three ma-
jor weather events that occurred over the west coast of
the North American continent during the above-men-
tioned time: the British Columbia, Canada, flood of the
century; the 1-day record flooding in Seattle, Washing-
ton; and an outbreak of California wildfires. All three
events were poorly forecasted (Parsons et al. 2006).

Several crucial issues to consider related to the fore-
cast of northeastward-propagating Rossby wave trains
are the following: What is the exact propagation path
for these disturbances traveling along the Rossby
wave? Will these disturbances develop into mature ex-
tratropical cyclones? How long will these disturbances
travel; that is, do they typically dissipate in the middle
of the Pacific, or do they cross the entire Pacific basin
and eventually make landfall on the west coast of North
America? Figures 2a–c are National Oceanic and At-
mospheric Administration (NOAA)/Climate Predic-
tion Center (CPC) Morphing Technique (CMORPH)
satellite global precipitation estimates for 1 December
2005, 7 January 2006, and 26 Feburary 2006, respec-
tively. We can see that in the Pacific Ocean basin, many
of the disturbances/storms are triggered in the tropical
western Pacific warm-pool area. These storms then
propagate to the northeast, but with different paths.
Figure 2a displays a wave train of storms that takes a
more zonal path (indicated by the dashed line), directly

FIG. 1. Time–longitudinal diagram of 250-hPa meridional wind (m s�1) from 0000 UTC 5 Oct 2003–
1200 UTC 31 Oct 2003 (available online at http://www.cdc.noaa.gov). The diagonal dashed lines highlight
eastward-moving upper-tropospheric wave packets that originated over eastern Asia (circled area).
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aiming toward the northwest coast of the United States.
Figure 2b shows a streamline of storm precipitation that
possesses a propagation path with a slightly more me-
ridional component than that in Fig. 2a. The anticipated

downstream landfall of this storm system would be on
the coastal region of Canada and Alaska. Figure 2c
shows two branches of storm propagation: one branch
(the lower dashed line) is very similar to the wave train

FIG. 2. CMORPH global satellite precipitation estimates (mm day�1) for (a) 1 Dec 2005, (b) 7 Jan 2006, and (c) 26 Feb 2006.
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pattern in Fig. 2a and in a relatively zonal path; the
other branch (the upper dashed line) displays a stream-
line of storm precipitation (similar to that in Fig. 2b),
but with a dominant meridional propagation compo-
nent. The second branch of the storm is most likely to
propagate into the North Pacific Ocean and dissipate
before reaching the polar region.

From these observational analyses, we can see that
tropical weather disturbances are likely the source for
tropical and extratropical wave packets. These distur-
bances typically form as a train of Rossby waves and
propagate to the northeast. However, these Rossby
wave packets can take different paths, from predomi-
nantly zonal to predominantly meridional, as they
propagate northeastward. Furthermore, some of these
Rossby wave trains may make entire trips across the
Pacific Ocean, while others may dissipate in the middle
of the Pacific basin. In the following sections, we will
explore the possible dynamics that control this variety
of Rossby wave propagation patterns.

3. A review of theories about barotropic Rossby
wave propagation

The propagation of barotropic Rossby waves has
been extensively studied by Hoskins and Karoly (1981),
Branstator (1983), Karoly (1983), Hoskins and Am-
brizzi (1993), and many others. These classic works are
nicely reviewed in James (1994). In this section, we will
briefly recapitulate some aspects of these theories.

We begin with the nondivergent barotropic vorticity
equation, linearized about a basic state that is a func-
tion of latitude only, that is, �(x, y) � �(y) � ��(x, y).
This linearized vorticity equation is of the form:

�

�t
��2��� � u

�

�x
��2��� �

���

�x �� �
�2u

�y2� � 0,

�3.1�

where the overbar denotes a basic state, the prime de-
notes a departure from the basic state, and u � �	�/	y.

Dropping the prime from the perturbation variable
for notational simplicity, we look for a wave solution
for (3.1),

� � Aei�, �3.2�

where A is the wave amplitude and 
 � kx � ly � �t is
the wave phase. The local wavenumbers and frequency
can be defined, with respect to this wave phase, as

k �
��

�x
, l �

��

�y
, and � � �

��

�t
. �3.3�

The above definitions lead to the following wavenum-
ber and frequency relations:

�k

�y
�

�l

�x
,

�k

�t
� �

��

�x
, and

�l

�t
� �

��

�y
. �3.4�

One can derive the dispersion relation for Rossby
waves by substituting the wave solution (3.2) into (3.1),

� � uk �
� � �2u��y2

K2 k, �3.5�

where K2 � k2 � l2. The two components of the group
velocity for steady wave packets are the wavenumber
derivatives of the dispersion relation, that is, 	�/	k and
	�/	l, and are, respectively,

Cgx � u �
k2 � l2

K4 �* and Cgy �
2kl

K4 �*, �3.6�

where * �  � 	2u/	y2, and subscripts gx and gy de-
note x and y components of the group velocity. The
tendency equation for wave frequency following the
wave packet can be derived from relations (3.4) and
(3.5),

Dg�

Dt
�

��

�t
� Cgx

��

�x
� Cgy

��

�y
� 0, �3.7�

where Dg /Dt � 	/	t � Cgx	/	x � Cgy	/	y denotes a de-
rivative following a wave packet. Equation (3.7) sug-
gests that the wave packet conserves its frequency dur-
ing its propagation. This is an important dynamical re-
sult. If the Rossby wave excited by a heat source is
quasi-stationary at the beginning, the quasi-stationary
property will be kept during the course of the energy
dispersion. This explains why the 30–60-day low-
frequency oscillation forced by tropical deep convec-
tions usually has a fixed shape, which presents a quasi-
stationary property.

For the quasi-stationary wave (i.e., � � 0), the two
components of the group velocity are

Cgx �
2k2

K2 u and Cgy �
2kl

K2 u, �3.8�

where u � K�2( � 	2u/	y2) � 0 has been used. Thus,
the magnitude of the group velocity is

|Cg | � 2u cos�, �3.9�

where � � arctan(Cgy /Cgx) � arctan(l/k). It can be seen
from (3.9) that, if the quasi-stationary Rossby wave
packet propagates exactly east–west, the magnitude of
group velocity |Cg | is just twice as large as the zonal
basic flow u. When the wave packet approaches the
meridional propagation, the group velocity decreases
dramatically.
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The similar tendency equations describing the evolu-
tion of wavenumbers following the wave packet may be
expressed as

Dgk

Dt
�

�k

�t
� Cgx

�k

�x
� Cgy

�k

�y
� 0 and �3.10�

Dgl

Dt
�

�l

�t
� Cgx

�l

�x
� Cgy

�l

�y
�

k

K2

��*
�y

� k
�u

�y
. �3.11�

As is apparent from these relations, the wave packet
conserves its zonal wavenumber during its propagation
because the dispersion relation is independent of x. On
the other hand, because the basic flow u varies in the y
direction, the meridional wavenumber is not conserved.

Because of the quasi-stationarity of the waves repre-
senting the low-frequency variations, the magnitude of
their meridional wavenumber l can be estimated by
substituting � � 0 into Eq. (3.5), namely,

l � ���� �
�2u

�y2��u � k2�1	2

. �3.12�

If the solution of l to (3.12) is imaginary, the meridional
propagation is not possible. Even for a purely zonal
disturbance, l only equals 0, rather than an imaginary
value. Meanwhile, it should be noted that  is always
positive and its magnitude is generally larger than 	2u/
	y2 in the Northern Hemisphere. Therefore, there is no
meridional propagation of Rossby waves when u � 0.
This explains why those barotropic Rossby waves that
are driven by heating near the equator, where the east-
erly winds prevail, are in the mid- to upper troposphere.

Defining Ks � [( � 	2u/	y2)/u]1/2, Eq. (3.12) can be
rewritten as

l � � �Ks
2 � k2. �3.13�

We now consider a simple analytical case. Assume that
the zonal basic flow linearly varies with y, namely, u �
u0y, where u0 is a positive constant. If k � Ks, the
positive and negative roots of (3.13) correspond to the
propagations of Rossby waves into the Northern and
the Southern Hemispheres, respectively. When the
wave propagates toward the lower latitudes, Ks will in-
crease because u decreases. At some latitude where the
westerly wind switches to the easterly wind, Ks becomes
extremely large so that l becomes increasingly large
according to Eq. (3.13). This latitude where ku � �(� �
0 in the present case) is the “critical latitude” (Dickin-
son 1968; Adams 1986). The meridional scale of the
Rossby waves becomes extremely small (for extremely
large l). Thus, the equatorward-propagating ray will be
more meridionally directed. It can be inferred from Eq.
(3.9) that the group velocity Cg becomes very small.

Therefore, as such a latitude is approached, the wave
packet propagates extremely slowly in a nearly merid-
ional direction. Indeed, the wave packet will, according
to this linear, inviscid theory, reach the critical latitude
only in infinite time, effectively being absorbed. Thus,
the critical latitude acts as a “black hole” on the Rossby
wave. Nonlinear effects, not discussed here, can cause
partial reflection (Tung 1979; Haberman 1972, 1976).

For the poleward-propagating ray, the wave packet
moves into an environment where Ks become smaller
because u increases. As Ks becomes small, the wave
packet adjusts itself by acquiring a small l, that is, by
extending more in the meridional direction. The ray
will take a more zonal direction. Eventually, at a lati-
tude where Ks � k, l becomes 0. As such a latitude is
approached, the meridional wavenumber continues to
decrease and then gradually becomes negative accord-
ing to (3.13). At this latitude, the ray is reflected back
into the lower latitudes. This depicts the great circle
track theory regarding the propagation of the two-
dimensional Rossby wave packet (Longuet-Higgins
1964; Hoskins and Karoly 1981). Note that this great
circle wave track theory permits the propagation of
Rossby waves through the equatorial easterly for
C � 0, where C is a phase velocity. However, for C � 0,
their meridional propagation can only occur in the
westerly region.

4. The propagation of barotropic Rossby waves
with divergence

In this section, we extend the classic theories (from
the previous section) on barotropic Rossby wave
propagation, with a consideration of divergence effect.
For a barotropic flow on the  plane, the vorticity equa-
tion takes the form

�


�t
� u

�


�x
� �

�


�y
� �� � �� f � 
�D, �4.1�

where � is the vertical component of relative vorticity
and D is the horizontal divergence.

Partition wind components, vertical vorticity, and
horizontal divergence into basic states and perturba-
tions

u�x, y� � u�y� � u��x, y�,

��x, y� � ���x, y�,


 � 
 � 
�, and

D � D � D�, �4.2�

where the overbar, again, denotes a basic state and the
prime represents departure from the basic state. On
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substituting (4.2) into (4.1), one obtains the linearized
perturbation vorticity equation

�
�

�t
� u

�
�

�x
� �� �

�2u

�y2��� � �� f � 
�D�. �4.3�

The perturbation winds can be divided into rotational
and divergent parts, that is, �� � ��� � ���, ��� � k � ��,
and ��� � ��, where � and � are perturbation stream-
function and velocity potential, respectively. Under this
partition, Eq. (4.3) becomes

�
�

�t
� u

�
�

�x
� �� �

�2u

�y2����

� �� f � 
�D� � �� �
�2u

�y2����. �4.4�

Equation (4.4) states that the local change of perturba-
tion vorticity is determined by the basic-state flow, ba-
sic-state vorticity,  factor, rotational wind and diver-
gence, as well as divergent wind.

With the assumption that the basic state varies very
slowly, we look for a solution to (4.4) in the WKB forms

� � A�X, Y, T �e i��1�kX�lY��T��, �4.5�

� � �A�X, Y, T �e i��1�kX�lY��T����, �4.6�

where (X, Y, T) � �(x, y, t) represents slow time and
spatial scales, in which case |� | � 1, � is the phase
difference between velocity potential and streamfunc-
tion, and � is the ratio of the amplitude of velocity
potential to that of streamfunction. Using (4.5) and
(4.6), it is easily verified that

��� �
��

�X
, ��� �

��

�Y
, 
� � �2�, and D� � �2�,

�4.7�

where �2 � (	2/	X2 � 	2/ 	Y2) is a Laplacian operator.
Because this study is to examine the propagation of
Rossby waves rather than wave instability, the fre-
quency � is supposed to be real and positive.

Substituting (4.5), (4.6), and (4.7) into (4.4), the ze-
roth-order equation (when k and l are large) is

i�� � uk��k2 � l2� � ik�� �
�2u

�Y2�
� ��f �

�u

�Y��k2 � l2��cos� � i sin��

� �l�� �
�2u

�Y2��i cos� � sin��. �4.8�

The dispersion relation and the phase difference equa-
tion for the low-frequency Rossby wave can be ob-
tained by separating real and imaginary parts in (4.8).
In doing so, one can obtain

� � uk �
�� � �2u��Y2�

k2 � l2 �k �
�l

cos��, �4.9�

cot� �
� � �2u��Y2

f � �u��Y

l

k2 � l2 . �4.10�

It can be seen that the frequency � closely depends on
the zonal basic flow,  factor, meridional gradient of
the basic absolute vorticity, phase difference, wave-
numbers, and divergent wind. The phase difference � is
a function of local wavenumbers, basic absolute vortic-
ity, and meridional gradient of basic absolute vorticity.
In the absence of divergent wind (i.e., � � 0), Eq. (4.9)
reduces to the classic dispersion relation for two-
dimensional Rossby waves [Eq. (3.5)]. Using a quasi-
stationary approximation (� � 0) in (3.5) and substi-
tuting the result into (4.10), one can conclude that for
nondivergent approximation � � 0, cot� is extremely
large, so that � → 0. This means that if there is no
divergence involved in the barotropic vorticity equa-
tion, there will not be an issue of phase difference,
which is certainly the idealized case for the classic
Rossby wave propagation theory (Hoskins and Karoly
1981; Branstator 1983; Karoly 1983; Hoskins and Am-
brizzi 1993).

The term ��l( � 	2u/	Y2)/[(k2 � l2) cos�] in (4.9)
represents a contribution of divergence to the wave fre-
quency. If both l and  � 	2u/	Y2 are positive for �
located in the first quadrant, the divergent wind will
increase the periods of Rossby waves. The stronger the
divergence, the longer the wave period becomes. When
the values of f � 	u/	Y,  � 	2u/	Y2, and l are positive,
it follows from (4.10) that the range of phase difference
varies from 0 to �/2, namely, 0 � � � �/2, which can be
interpreted physically that at upper levels, the diver-
gence center lies somewhere in front of the trough line
and the convergence center lies somewhere behind the
trough line.

The components of the group velocity can be easily
derived from (4.9),

Cgx �
��

�k
� u �

� � �2u��Y2

�k2 � l2�2 �k2 � l2 � 2�kl cos��,

�4.11�

Cgy �
��

�l
�

� � �2u��Y2

�k2 � l2�2 �2kl � � cos��l2 � k2��,

�4.12�
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which differ from those given by Hoskins and Karoly
[1981, their Eq. (3.6)] because of the additional terms
related to the divergence. But again, when the diver-
gent flow is neglected (by taking � � 0), (4.11) and
(4.12) reduce to their (3.6). The term 2�kl cos�( �
	2u/	Y2)/(k2 � l2)2 in (4.11) indicates that the divergent
wind would increase the zonal group velocity and ac-
celerate the zonal propagation of Rossby waves if � ∈
(0, �/2), k � 0, l � 0, and  � 	2u/	Y2 � 0. The term
�(l2 � k2) cos�( � 	2u/	Y2)/(k2 � l2)2 in (4.12) im-
plies that for  � 	2u/	Y2 � 0, l � k, and � ∈ (0, �/2),
the divergent wind will increase the meridional group
velocity and is favorable for the meridional propagation
of Rossby waves. However, when Rossby wave energy
is dispersed to the midlatitudes, l is usually smaller than
k and the divergent wind tends to retard the meridional
propagation of Rossby waves.

Denoting m � [l2 � (f � 	u/	Y)2(k2 � l2)2/( �
	2u/	Y2)2]1/2, the two components of the group velocity
can be expressed as

Cgx �
��

�k
� u �

�� � �2u	�Y2�

�k2 � l2�2 �k2 � l2 �
2�l2k

m �,

�4.13�

Cgy �
��

�l
�

�� � �2u	�Y2�

�k2 � l2�2 �2kl �
�l�l2 � k2�

m �.

�4.14�

Following Yang and Hoskins (1996) and Karoly (1983),
it is clear from (4.13) and (4.14) that when the Rossby
wave meets the reflection latitude, that is, l → 0, Cgy is
close to zero. At such a line, the Rossby wave zonally
propagates at the group velocity of Cgx � u � ( �
	2u/	Y2)/k2 and the Rossby wave turns, moving south-
ward in the meridional direction. At the critical lati-
tude, l → �, Cgy also tends to be zero, which indicates
that Rossby wave energy is trapped in the meridional
direction, and Rossby waves propagate with the basic
flow speed (Cgx � u). At the reflection and critical
latitudes, the divergent wind does not influence on the
group velocity.

5. Ray-tracing diagnostics of Rossby wave
propagation with a realistic zonal flow

The ray shows the path along which the Rossby wave
energy is dispersed. Given the analytic expressions for
the 2D group velocity in (4.11)–(4.12), or alternatively
in (4.13)–(4.14), the ray equations can be written

dx

dt
� Cgx,

dy

dt
� Cgy. �5.1�

When this pair of equations is integrated, a parameter-
ized curve [x(t), y(t)] is obtained. This curve is the ray of
Rossby wave propagation.

Because (4.9) and (4.10) are independent of x and t,
� and k are constant along a ray path, as described in
(3.7) and (3.10). However, l varies along the ray path
because (4.9) and (4.10) do depend on y. The variation
of l is easily obtained by requiring that the local rela-
tions (4.9) and (4.10) are satisfied. The ray path is com-
puted by integrating the differential Eqs. (5.1) for a
given initial position (x0, y0), �, �, and k. To simplify the
analysis of the influence of divergent wind on the
Rossby wave propagation, we only consider Rossby
waves that propagate out of the tropics. In this case, as
discussed in the previous sections, the meridional wave-
number is positive so that the wave propagates pole-
ward.

The basic flow used in this computation is a climato-
logical 300-hPa zonal-mean flow for DJF based on
NCEP–NCAR reanalysis monthly data for the period
of 1997–98 (Fig. 3). This basic-state zonal flow displays
weak easterlies in the vicinity of the equator, strong
westerlies in the midlatitudes of both hemispheres, and
weak westerlies near the poles. The initial position is
chosen as 15°N, 115°E, where the west Pacific warm
pool is located. Low-frequency Rossby waves are most
likely generated in response to the deep tropical con-
vection in this region. For all cases presented below, the
rays are truncated just prior to reaching turning points.
These are the locations where Rossby wave packets are
trapped and reflect equatorward.

a. Ray tracing for planetary- and synoptic-scale
Rossby waves in the Pacific Ocean basin

Two sets of waves are selected to represent plan-
etary- and synoptic-scale wave motions in the atmo-
sphere. The planetary waves are represented by zonal
wavenumbers 3 and 4, equivalent to zonal wavelengths
of about 9000–12 500 km. The synoptic waves possess
zonal wavenumbers 5 and 6, and they correspond to
zonal wavelengths of about 6000–7500 km.

To evaluate the effects of divergence on the Rossby
wave ray tracing, we also select a set of � parameters,
denoting different strengths of divergent winds relative
to their rotational counterparts. In the midlatitude, the
observations typically show that vorticity is about 10
times as large as divergence. Therefore, in the following
experiments, the � parameters are set to 0.1, 0.05, and
0 to mimic a relatively strong divergence, a medium-
strength divergence, and a pure nondivergent flow, re-
spectively.

Figure 4a shows the rays of low-frequency Rossby
waves with divergent wind for the periods of 30 days.
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We choose � � 0.1 for this case, which means that the
amplitude of vorticity is 10 times as large as that of
divergence. For the period of 30 days, all low-frequency
Rossby waves propagate toward the northeast. The
paths of different waves are segments of different great
arcs, similar to that in Hoskins and Karoly (1981).
These waves all have a tendency to propagate toward
the northwestern coast of the United States. In particu-
lar, the high-wavenumber (synoptic scale) waves are
more “energetic” than the low-wavenumber (planetary
scale) waves, in the sense that they propagate farther.

However, for � � 0.05, the rays shown in Fig. 4b have
some significantly different features from those in Fig.
4a. All of those waves reach higher latitudes, except for
the wave with zonal wavenumber 6, which is trapped in
the middle of the Pacific. Although all these rays are
segments of different great arcs, these waves possess
stronger meridional components than those in Fig. 4a,
and target the coasts of Canada and Alaska. For ex-
ample, the Rossby wave with k � 5 propagates faster
than other waves after 30 days, reaching 58°N. The
same wave in Fig. 4a, with stronger divergent winds,
reaches only 50°N.

In the absence of divergent wind (Fig. 4c) for � � 0,
although Rossby waves also propagate toward the
northeast, the ray paths show an even stronger merid-
ional component. For example, for k � 3 and 4, non-
divergent Rossby waves propagate farther to the north
and the ray paths are more meridionally oriented than
the divergent Rossby waves. The ray paths for k � 5
and 6 are very short, and they are trapped around the
ET region. This implies (in reference to Fig. 4a) that
without strong divergent effects, the synoptic-scale
waves do not have enough strength to travel very far

from their source region. The planetary-scale waves, on
the other hand, can easily pass the ET region, regard-
less of the divergent effects.

The effect of divergence on the long-period Rossby
wave is shown in Fig. 5 (with � � 0.1). For the 60-day
period, the Rossby waves with zonal wavenumbers 3, 4,
and 5 display approximately the same propagation
paths (Fig. 4a) as those for the 30-day period. The only
exception is for the wave with zonal wavenumber 6,
which was trapped prematurely in the middle of the
Pacific and stopped at 37°N. This implies that the di-
vergence has a stronger effect on the high-wavenumber
waves for longer period. The waves propagating toward
the high latitudes and farther east reach 50°, 45°, and
40°N, for k � 5, 4, and 3, respectively.

In comparing all three cases, one can see that diver-
gence tends to enforce the zonal component of group
velocity and reduce the meridional group velocity. For
synoptic-scale waves, without divergence, they tend to
be trapped close to their source region. Divergence ap-
peared to provide some additional energy for these
high-wavenumber waves to pass over the low- to
middle-latitude “barrier,” where they were often
trapped. For example, when � � 0.05 (Fig. 4b), wave-
number 5 is “released” from its trap (cf. with Fig. 4c).
By further increasing the � value, wavenumber 6 may
also be released (Fig. 4a). All these results are consis-
tent with (4.11) and (4.12). According to (4.11) and
(4.12), � always increases Cgx, and tends to decrease Cgy

when k � l. Without a divergence effect, for relatively
high-zonal-wavenumber waves, both Cgx and Cgy tend
to be smaller [due to a larger denominator in (4.11) and
(4.12)] than low-zonal-wavenumber waves. When di-
vergence is added, the increased value in Cgx and Cgy

FIG. 3. Zonal-mean zonal flow at 300 hPa averaged over DJF 1997–98.

MAY 2008 L U A N D B O Y D 1687



may overcome the decreasing effect resulting from high
zonal wavenumbers.

While the present theory for divergent Rossby wave
propagation is self-consistent as analyzed above, how
does it compare to observations? The observational
analyses in section 2 identified three different Rossby
wave tracks in the Pacific Ocean basin. Our calculations
for three different divergent forcing scenarios result in
Rossby wave ray paths that explain those observations
quite reasonably. Other observational evidence is also
in favor of the present theoretical results. For example,

Kiladis and Weickmann (1992) investigated the re-
sponse of waves to tropical convection during a North-
ern Hemisphere winter by analyzing outgoing longwave
radiation (OLR) and NCEP’s global analyses. They
found that for the 30–70-day oscillations, the upper-
level circulation signals are zonally elongated, with
dominant low zonal wavenumbers (0–2). For the 14–
30-day oscillation, smaller-scale signals of wavenum-
bers 5 and 6 are important. By comparing Figs. 4a and
5, we do see the zonally elongated trajectory of Rossby
waves in this divergent theory. In addition, relatively

FIG. 4. The ray paths of Rossby waves for a period of 30 days, with (a) a strong divergent
wind (� � 0.1), (b) a medium-strength divergent wind (� � 0.05), and (c) no divergent wind
(� � 0.0). The source is at 15°N, 115°E. The waves travel through a basic flow of the DJF zonal
flow. The numbers denote zonal wavenumbers.
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speaking, the 60-day period (Fig. 5) gave more weight
to the lower-wavenumber waves (3–4) propagating
downstream, while for the 30-day period (Fig. 4a) the
higher-wavenumber waves (5–6) had a strong presence
in the propagating wave packet. These results are all in
agreement with the observational study by Kiladis and
Weickmann (1992), at least in a qualitative sense.

In contrast, the results for the nondivergent theory
(Fig. 4c) do not agree with the cited observations. This
indicates that the present divergent theory improves
the classic nondivergent theory, and qualitatively ex-
plains the available observations.

b. Upper-level vorticity and divergence coupling

One of the important issues when divergence is in-
cluded in the barotropic vorticity system is how vortic-
ity and divergence are coupled. The classic baroclinic
model indicates that the surface cyclonic center is typi-
cally associated with flow convergence, but the upper-
level convergence/divergence flows are not collocated
with trough/ridge centers. The upper-level trough is
typically tilted to the west of a surface low center. In
other words, there exists a phase difference between
convergence/divergence and the trough/ridge region at
upper levels. As analyzed in the previous section, the
present theory predicts a phase between the divergence
and vorticity in a range of (0, �/2). It is interesting to
note that although the present divergent barotropic
theory cannot capture the vertical structure of baro-
clinic waves, it does reasonably describe the horizontal
structure of these waves at free atmosphere (no surface
friction or an Ekman effect). In this section, we exam-
ine how this phase is evolving and developing along the
ray path. Given constant zonal wavenumbers and the
structure of basic zonal flow, the phase can be calcu-
lated using (4.10). Because the meridional wavenumber
l changes with time, the calculated phase is a function of
time as well.

Figure 6 summarizes the phase difference in terms of
the zonal wavenumber k and as a function of time,
restricted to l � 0 (poleward propagation). At an initial
stage, the phase differences decrease. After 1 or 2 days,
the phase differences begin to increase and approach
�/2. The synoptic-scale waves (zonal wavenumbers 5
and 6) reach a �/2 phase locking in about 2 days. It
takes 3 days for wavenumber 4 to have the phase dif-
ference saturated at the value of �/2. The planetary-
scale wave (wavenumber 3) evolves very slowly (5
days) toward �/2 phase locking. These results all seem
physically reasonable. First, they suggest that the vor-
ticity center lags behind the divergence center by �/2
phase at upper levels. Second, for synoptic-scale waves,
it is faster for divergence and vorticity to be locked in
phase; for planetary waves, this phase locking takes a
much longer time to develop. Physically, this may be
interpreted as the synoptic-scale waves needing to re-
spond to convective heating relatively quickly, on ac-
count of their shorter life span of a few days. The plan-
etary-scale waves, on the other hand, respond to con-
vective heating relatively slowly because of their longer
life span.

While these results are consistent with the classic
baroclinic theory, they are also in agreement with the
observational study by Kiladis and Weickmann (1992).
The cited study found that for three scale oscillations:
30–70, 14–30, and 6–14-day oscillations, OLR anoma-
lies (a divergence/convergence center) peak prior to the
upper-level circulation anomalies (a vorticity center) in
all three time scales.

6. Conclusions

In this study, the effect of divergence on Rossby wave
propagation is examined. A two-dimensional WKB
analysis and the ray-tracing technique are used. This
problem is treated within a linear, divergent barotropic

FIG. 5. Same as in Fig. 4, except for a period of 60 days, and with a strong divergent wind
(� � 0.1).
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dynamic framework. The results generalize and extend
the classic theories for Rossby wave propagation.

The WKB analysis shows that Rossby wave fre-
quency is determined by a combination of basic-state
flow, meridional gradient of basic absolute vorticity,
local wavenumbers, and two parameters coupling vor-
ticity and divergence. The first parameter measures the
degree of divergent flow relative to rotational flow. The
second parameter is the phase difference between vor-
ticity and divergence. An analytic expression for the
phase difference is also derived from the WKB analysis.
This parameter is dependent on local wavenumbers,
absolute vorticity, and its meridional gradient. With
these analytic results, 2D group velocity can be derived,
and thus the ray equations can be defined and inte-
grated.

The contribution of divergent wind is to increase the
period of the Rossby wave (for l � 0, i.e., wave propa-
gation northward in the Northern Hemisphere). Ray-
tracing analysis has provided further insights into the
effect of divergence on the group velocity and the path
of energy propagation. Divergent wind enlarges the
zonal group velocity component and accelerates the
zonal propagation of Rossby waves if the phase differ-
ence � falls into (0, �/2). For l � k, divergent wind plays
a role in reducing the meridional component of group
velocity and slows meridional energy propagation. In-
tegration of the ray equations with a realistic DJF basic
flow shows that the path of propagation of low-
frequency Rossby waves with divergent wind is a
smooth arc. For planetary-scale waves, the weaker the
divergent wind, the stronger of the meridional propa-

gation and the higher the latitudes that the waves reach;
for synoptic-scale waves, the stronger the divergent
wind, the larger the potential for these waves to propa-
gate downstream. The phase difference between vor-
ticity and divergence is close to �/2 at an upper level of
atmosphere when Rossby waves propagate into middle
latitudes, which is consistent with the realistic situation.

Finally, the theoretical results obtained in this inves-
tigation may have some practical significance for the
improvement of forecasting the high-impact weather
systems that pose a threat to the west coast of North
America (discussed in section 2). In particular, the di-
agnosis of divergent winds in the tropical and extratrop-
ical storms in the Pacific basin may provide forecast
guidance for the strength and tracks of these storms.
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