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Relaxation Times for Magnetization Reversal in a High Coercivity Magnetic Thin Film

N. D. Rizzo,* T. J. Silva, and A. B. Kos
Electromagnetic Technology Division, National Institute of Standards and Technology, Boulder, Colorado 80303

(Received 17 March 1999)

We used a magneto-optical Kerr effect microscope to measure 180± magnetization reversal in a
high coercivity CoCr10Ta4 thin film subjected to nanosecond field pulses. Exponential magnetization
decay occurs for pulse duration tp , 10 ns followed by logarithmic decay for tp . 10 ns, indicating
a crossover from nonequilibrium magnetization relaxation at short tp to metastable equilibrium and
thermal relaxation for longer tp . We conclude that the nonequilibrium magnetization relaxation time
�tn� and that the average relaxation time of microscopic thermal fluctuations �t0� is tn � t0 � 5 ns.

PACS numbers: 75.40.Gb, 75.50.Ss, 75.50.Vv
The time required for 180± magnetization reversal has
recently received renewed interest primarily because of its
relevance to the data storage industry [1,2]. A 180± mag-
netic reversal is initiated typically in one of two ways: ei-
ther we apply a magnetic field so that the energy barrier
to reversal remains finite and reversal occurs by thermally
assisted hopping or we apply a large enough field so that
reversal is energetically favored independent of thermal ef-
fects. In the latter case, the magnetic reversal proceeds
with some nonequilibrium or “dynamic” relaxation time
tn that has been measured to be on the order of nanosec-
onds or less in exchange coupled materials with uniform,
uniaxial anisotropy [3–6]. Calculations using the Landau-
Lifshitz-Gilbert (LLG) equation have yielded a value of
tn in good agreement with the experimental results for the
simple case of coherent rotation of the magnetization [4,6].
In the case of a finite energy barrier EB, reversal occurs
with the scaled relaxation time given by the Arrhenius-
Néel law, tth � t0 exp�EB�kbT �, where t0 is the average
relaxation time in response to a thermal fluctuation [7].
Brown calculated t0 for a single-domain Stoner-Wohlfarth
particle to be in the range 10 ps , t0 , 1 ns [8], the ex-
act magnitude depending upon several parameters, such as
applied field H and magnetic damping constant a, which
reflects the decay rate of coherent magnetic precession.
Experimental determination of t0 has also been limited to
simple systems, such as single-crystal Ni, that exhibit ex-
ponential magnetization decay (indicating a single energy
barrier), in which case t0 was determined to be on the or-
der of several nanoseconds [9].

For a more complex system containing a large num-
ber of interacting magnetic reversal volumes and a wide
distribution of energy barriers—such as high coercivity
magnetic recording media with weak exchange coupling
and random anisotropy—the magnetic relaxation times
(tn and t0) cannot be calculated analytically, but instead
must be determined using complex micromagnetic simula-
tions [10]. Experimental determination of these relaxation
times for such complex systems have been ambiguous
[11–13], in part because the broad distribution of energy
barriers has prevented the clear separation of nonequilib-
rium reversal and thermally assisted reversal.
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In this Letter, we report on the first unambiguous mea-
surement of tn and t0 for a magnetic thin film containing a
broad distribution of interacting energy barriers. We used
a magneto-optical microscope to measure 180± magnetiza-
tion reversal in a high coercivity CoCr10Ta4 magnetic film
after exposing the film to nanosecond field pulses. We
observed a magnetization response to step changes in H
consisting of exponential decay for pulse duration tp ,

10 ns followed by logarithmic decay for tp . 10 ns. This
change in response indicates a crossover from nonequilib-
rium magnetization relaxation at short tp , to metastable
equilibrium and thermal relaxation for longer tp . There-
fore, the initial magnetization response is well described
by nonequilibrium statistical mechanics, where exponen-
tial relaxation of macroscopic parameters is expected in
a linear regime [14]. The nonequilibrium relaxation time
was measured to be tn � 5 ns in this linear regime before
magnetic saturation occurs. We apply Onsager’s regres-
sion hypothesis [15] to conclude that the average magneti-
zation relaxation time for microscopic thermal fluctuations
is t0 � tn � 5 ns.

A coplanar waveguide was used to generate high mag-
netic fields of nanosecond duration. Uniform magnetic
fields are produced directly above the center conductor
of the waveguide when a current pulse passes through.
The field magnitude scales inversely with center conduc-
tor width. For the measurements described here, the width
was 10.6 mm.

A CoCr10Ta4 film of thickness d � 25 nm along
with a Cr underlayer of the same thickness was sputter
deposited onto the region directly over the center conductor
of the dielectric-coated coplanar waveguide. We mea-
sured a codeposited sample of the film using an alternating
gradient magnetometer and determined the remanent
magnetization to be Mr � 490 kA�m �490 emu�cm3�
and the remanent coercivity for a field pulse duration of
1 s to be Hcr �1s� � 83 kA�m (1040 Oe).

A high voltage pulse generator (200 V maximum) was
used to send nanosecond current pulses (2–300 ns pulse
duration) through the waveguide and produce in-plane
magnetic field pulses as large as 150 kA�m (1875 Oe).
The rise time and fall time of the pulse generator was
© 1999 The American Physical Society
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approximately 2 ns, so that a minimum pulse duration
of approximately 2 ns was possible using FWHM as
definition of pulse duration. The waveguide field was
calculated assuming a uniform current density through
the center conductor using the Biot-Savart law. The
amplitude and duration of the waveguide pulse were
recorded using a high speed oscilloscope.

The waveguide field pulse was combined with an
external dc bias field provided by Helmholtz coils. The
bias field made larger applied field amplitudes possible
without risking damage to the waveguide and did not
affect the measurement results [16]. The bias field
amplitude was a constant 66 kA�m (825 Oe) for the
duration of the waveguide pulse.

The switching caused by a given field pulse was
quantified using a wide-field magneto-optical Kerr effect
(MOKE) microscope which was optimized for detecting
longitudinal MOKE at a wavelength of 545 nm. For each
data point, the film was saturated in the positive x direc-
tion using the external Helmholtz coils. Then, a digital
image of the remanent state of the film was acquired using
a 16-bit CCD camera. Next, the dc bias field was applied
and a current pulse was delivered to the waveguide,
producing a field in the negative x direction. Finally, a
second image of the film was acquired and electronically
subtracted from the first image to obtain the relative
change in magneto-optic contrast. This difference image
was averaged over a 6 mm 3 120 mm area to determine
the average change in the remanent magnetization of
the film.

We examined the time dependence of the magnetization
response in a fixed field. The results are shown in Fig. 1,
where curves of remanent magnetization Mr �tp� for several
values of H are plotted against pulse duration tp with a
logarithmic time axis. (We use H to designate the total
field amplitude, which is the sum of the bias field and the
pulse field.) For low fields, the magnetization appears to
decrease logarithmically for increasing tp . However, as
the field increases, a kink in the magnetization response
begins to appear at tp � 10 ns. Finally, for the largest
fields, saturation occurs for tp , 10 ns, and the time
required for saturation decreases with increasing field
amplitude.

We verified that this kink is not an artifact of the 2 ns
rise time of the pulse generator or of the use of FWHM
in our definition of tp : the kink was also observed using
a 40 V pulse generator having a 500 ps rise time (see
Fig. 1). We interpret the kink in our data as indicating
a crossover in magnetization response at tp � 10 ns.

For tp . 10 ns, the magnetization decreases logarith-
mically with a maximum slope when Mr �tp� � 0. Such
behavior is characteristic of thermally assisted magneti-
zation reversal for a system containing a distribution of
energy barriers [17]. Furthermore, the logarithmic slope,
Sr � dMr �tp��d log�tp�, is also proportional to the ir-
reversible susceptibility, xirr � dMr �tp��dH, where xirr
was derived from the hysteresis curve for tp � 10 ns
FIG. 1. Normalized remanent magnetization Mr �tp� of the
CoCr10Ta4 thin film vs pulse duration tp for field values H �
82, 86, 90, 92, 94, 97, 102, 105, 108, 112 kA�m. The data
with open circles �H � 90 kA�m� were taken using a faster
pulse generator with a 500 ps rise time. The dotted lines are fits
of an exponential function for tp , 10 ns and of a logarithmic
function for tp . 10 ns. The data for the two lowest fields are
fit to a logarithmic function for all tp .

(Fig. 2). Changes in xirr for 10 , tp , 300 ns were in-
significant. This proportionality is a further signature of
thermal relaxation [17,18]. The ratio of Sr to xirr can
then be defined as the fluctuation field Hf , a fictitious
field that is a measure of the thermal energy affecting
the magnetization [18]. For 10 , tp , 300 ns, we find
Hf � 800 A�m (10 Oe).

For tp , 10 ns, the slope of the magnetization response
is distinctly enhanced and does not decrease until either
tp . 10 ns or Mr �tp� � 2Mr , at which point the mag-
netization is saturated by the applied field pulse. This
behavior is clear evidence for a crossover in magnetiza-
tion response from metastable equilibrium with thermal re-
laxation for tp . 10 ns, to nonequilibrium relaxation for
shorter pulse duration: the magnetization requires approxi-
mately 10 ns to come into equilibrium with the applied
field.

We fitted an exponential function to the data for
tp , 10 ns and a logarithmic function to the data for
tp . 10 ns. The data for the two lowest fields were
fit to a logarithmic function over the entire range of
tp since there was no significant change in slope for
tp , 10 ns and tp . 10 ns. The fitting results are also
shown in Fig. 1. The reduced x2 of the fits ranged
from 0.3 to 1.11, with the exception of the fit for
H � 105 kA�m, which had x2 � 4. The exponential fit
gives a characteristic relaxation time t for that particular
applied field amplitude H in the nonequilibrium regime.
The dependence of t on H is shown in Fig. 3. The
error bars designate 68% confidence limits and were
derived using constant x2 boundaries [19]. The linear
dependence of 1�t on H . 100 kA�m (1250 Oe) has
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FIG. 2. Comparison between the logarithmic slope of mag-
netization response Sr � dMr �tp��d log�tp� for 10 , tp ,
300 ns and the irreversible susceptibility xirr � dMr �tp��dH
for tp � 10 ns, both normalized to Mr and plotted vs applied
field H. Changes in xirr for 10 , tp , 300 ns were insignifi-
cant. Two separate measurements of xirr are shown and both
have been multiplied by a constant Hf � 800 A�m (10 Oe),
defined as the thermal fluctuation field.

also been observed for 180± magnetization reversal in
high coercivity particular tape recording media [1,11] and
even for low coercivity materials such as Ni80Fe20 [20].
The functional form fitted to the data is t � Sw��H 2

H0�, yielding a “switching speed” of Sw � 29.7 ms ? A ?

m21 �373 ns ? Oe�. A flat line was fitted to the data for
H , 100 kA�m (1250 Oe), yielding t � 5 ns. This low
field behavior has not been reported before in switching
speed studies of either hard or soft materials.

The exponential magnetization response to step changes
in field, along with the large number of interactions in the
film, strongly suggests that the macroscopic magnetization
behavior is well described by nonequilibrium statistical
mechanics. In this picture, the macroscopic magnetization
relaxation time tn is a constant of the material in a linear
response regime. The linearized equation of motion is
then given by dM�dt � 2�M 2 Ma��tn [14], where Ma

is the asymptotic value of the magnetization determined
by H, so that exponential magnetization decay occurs
with time constant t � tn.

The decrease in t at higher fields occurs because of
the nonlinearity introduced by saturation. In fields large
enough to cause saturation, the linear theory continues to
predict exponential decay to some value of Ma , 2Mr

that the system cannot reach. Saturation cuts off the ex-
ponential approach to Ma when M � 2Mr , with the re-
sult that the fitted exponential relaxation time t will be
shorter than the relaxation time of the linear theory tn.
If we take Ma � Mr 2 x �1��H 2 H0�, where x �1� is the
first coefficient in a Taylor series expansion of x about
H � Hcr , then one can show that in the nonlinear regime
t � �Mrtn���x�1��H 2 H0��. The full dependence of t
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FIG. 3. Inverse relaxation time 1�t vs applied field H as
determined from exponential fits to the magnetization response
for tp , 10 ns. For H . 100 kA�m (1250 Oe), the function
t � Sw��H 2 H0� is fitted to the data, yielding Sw � 30 ms ?
A ? m21 �373 ns ? Oe�. For H , 100 kA�m, a straight line
is fitted to the data, yielding t � 5 ns. Inset: 1�t vs H
as determined by exponential fits to simulated data that
was generated assuming exponential magnetization relaxation
combined with saturation effects.

on H was also reproduced through a numerical simula-
tion, where exponential functions were fit to magnetiza-
tion decay data that was generated using the exponential
relaxation of the linear theory and imposing the cutoff of
decay at saturation (Fig. 3, inset).

Knowledge of the macroscopic nonequilibrium magne-
tization relaxation in a linear regime also gives information
on the relaxation of microscopic thermal fluctuations while
in equilibrium. Onsager’s regression hypothesis (ORH)
(proven by the fluctuation-dissipation theorem [21]) states
that, on average, the relaxation (or regression) of micro-
scopic thermal fluctuations while in equilibrium must obey
the same equations that govern the macroscopic relaxation
of a nonequilibrium state toward equilibrium (in the limit
of linear response) [15,22]. By simple application of ORH,
we conclude that the average relaxation time in response
to thermal fluctuations �t0� is the same as the magneti-
zation relaxation time to equilibrium after an instanta-
neous change in H �tn�. Therefore, we also conclude
that t0 � tn � 5 ns. This result then explains the sharp-
ness of the transition for tp , 10 ns: faster reversal of M
cannot occur, whether it is thermally assisted or dynamic
in nature (due to H alone), insofar as linear response
applies.

Effects such as an inverse dependence of t on H and
a transition from thermal to dynamic relaxation have been
observed for more homogeneous, exchange-coupled mag-
netic systems where a single energy barrier description
was appropriate [1,20,23]. Such phenomena were ade-
quately explained in terms of viscous motion of domain
walls. We have observed correlated regions of reversed
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magnetization along the direction of H in our Kerr im-
ages, suggestive of domainlike structures. The correlation
length has an approximate maximum at Mr �tp� � 0 and
decreases as saturation is approached, which suggests that
the magnetization reverses by dipole-induced growth of
the correlated regions along the direction of H [24].

We propose a microscopic picture of reversal by
analogy to viscous domain wall motion to explain the ob-
served macroscopic magnetization response. We assume
that a reversed region nucleates and grows predominantly
along the applied field direction until it collides with
a pinning site in an average distance l. The average
equilibrium size of the reversed region depends linearly
on applied field, or l � xl�H 2 H0�. The growth
of the region occurs with a velocity n � m�H 2 H0�,
where m is the growth mobility and H0 is the nucle-
ation field, by analogy with domain wall motion [25].
Exponential response is derived by assuming a ran-
dom distribution of pinning sites, such that collision
with a pinning site occurs with a probability per unit
length 1�l, defining a Poisson point process of rate
1�l. The probability of a nucleated region expanding
a distance x before being pinned when far from satu-
ration is then exp�2x�l�, from which it can be shown
that M�t� � Mr �1 2 �2l�ls� 1 �2l�ls� exp�2nt�l��,
where ls is the value of l at saturation and the factor of 2
results from growth in both the positive and negative field
directions. Therefore, the exponential relaxation time
t � l�n � xl�m is independent of H until saturation
occurs. As H increases further, l � ls, but n continues
to increase so that t � ls�n � ls�m�H 2 H0�.

We estimate ls � 1.4 mm, derived from the average
correlation length along the applied field direction for
the Kerr images at Mr �tp� � 0 and in the nonequilib-
rium regime �tp , 10 ns�. Using Sw � ls�m, we cal-
culate m � 0.047 m2 ? s21 ? A21 �3.8 m ? s21 ? Oe21�,
compared with m � 0.2 m2 ? s21 ? A21 ? �16 m ? s21 ?

Oe21�, a value recently obtained with a NiFe alloy [20].
We can also estimate the damping constant a. The

approximate reversal time for coherent spin rotation is
tLLG � a�gm0�H 2 H0� [26]. The velocity of do-
main growth is then n � a�tLLG � agm0�H 2 H0��a,
where a is the domain wall width. Therefore, we have
a � agm0�m [27], where g is the gyromagnetic ra-
tio and m0 the permeability of free space. If we use
the minimum length of a 180± magnetic transition as
an estimate for a � Mrd�2pHcr � 20 nm [28], we ob-
tain a � 0.095 compared with a � 0.02, measured for
single-crystal CoCrTa by ferromagnetic resonance [29].

In summary, we find that after a step change in H, the
magnetization relaxes exponentially with a time constant
tn � 5 ns in a linear regime, which also implies (using
ORH) that the average relaxation time for thermal fluc-
tuations is t0 � 5 ns. The statistical nature of the mi-
croscopic magnetization reversal results in the observed
macroscopic exponential magnetization response. Micro-
scopic reversal occurs through the nucleation, growth, and
random pinning of reversed regions of magnetization. The
finite length of the reversed regions, coupled with their fi-
nite velocity of growth, results in a macroscopic reversal
time �tn� that is proportional to, but much larger than, the
microscopic reversal time �tLLG� given by LLG dynamics.
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