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On the Use of Relaxation Parameters in Hybrid

Smoothers

Ulrike Meier Yang∗

Abstract

The use of relaxation parameters in hybrid smoothers within algebraic
multigrid (AMG) is analyzed both theoretically and practically. Relaxation
parameters that are optimal under the assumptions of the theory are deter-
mined. The implementation of a procedure to automatically determine outer
relaxation parameters for symmetric positive definite smoothers is described.
Numerical results are presented, which show significant improvements over
AMG with undamped hybrid smoothers.

1 Introduction

With the advent of large high performance computers with large number of pro-
cessors, it has become necessary to design parallel algorithms of all sorts. Par-
ticular emphasis has been placed on the development of scalable algorithms, such
as multigrid methods. With this in mind, the parallelization of algebraic multi-
grid, a method that can be applied to a linear system, Ax = b, without additional
knowledge, such as the underlying finite elements or a grid, has become very impor-
tant. Algebraic multigrid (AMG) proceeds by determining a subset of the original
degrees of freedom through a coarsening algorithm, a restriction operator that trans-
fers vectors from the fine space to the coarse space, and an interpolation operator
that transfers vectors from the coarser space to the finer space. One important
component of AMG is the smoother. A good smoother will reduce the oscillatory
error components, whereas the “smooth” error is transferred to the coarser grids.
Although the classical approach of AMG focused mainly on the Gauß-Seidel method
[7], the use of other iterative solvers as smoothers has been considered [3, 2].

Gauß-Seidel has proven to be an effective smoother for many problems, however
its main disadvantage is its sequential nature. On the other hand, highly parallel
smoothers such as Jacobi or block-Jacobi often fail, unless an appropriate smooth-
ing parameter is used, and even then their convergence is often slow. Additionally,
the user is faced with the challenge on how to choose an appropriate smoothing pa-
rameter. Many efforts to parallelize Gauß-Seidel have been made. Possible variants
include the use of multi-coloring techniques [1] or hybrid schemes [6]. Multi-coloring
techniques are a nuisance to implement and can be inefficient, if too many colors
are involved (which is most likely to happen on the coarser levels of AMG). Hybrid
schemes use an iterative method, e.g. Gauß-Seidel on each processor, but update
in a Jacobi-like approach across boundaries. They are equivalent to block Jacobi
methods that use one or more iterations of a smoother within each block instead of a
direct solve. Clearly, this approach is very suitable for parallel processing, however,
just like the block Jacobi method, it often requires a suitable smoothing parameter
for convergence.
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In this paper, we investigate the use of relaxation parameters in hybrid smoothers.
There are two types of relaxation parameters: the smoothing parameter, mentioned
above, which will be denoted the outer relaxation parameter, ωJ ; and the so-called
inner relaxation parameters, ωi, which occur, if we smooth locally, on processor i,
using SOR or its symmetric variant, SSOR. For both cases, the question is how to
determine good parameters. Additionally, since one deals with a new system on
each level of AMG, the development of an automatic procedure to determine such
parameters is important. Since the outer relaxation parameter affects the matrix
across all processors, it appears that this parameter would be more crucial in im-
proving convergence (or leading to convergence in cases of divergence). Therefore
our main focus will be on the determination of an optimal ωJ . However, this paper
also contains some results on the use of inner relaxation parameters.

In Section 2, we give some basic definitions. In Sections 3 through 5 we present
conditions, under which the smoothing properties are fulfilled. Section 4 focuses
specifically on the outer relaxation parameters and presents the determination of
optimal parameters. Section 5 analyzes the use of inner relaxation parameters.
Section 6 describes a procedure to determine outer relaxation parameters automat-
ically, and in Section 7, we present numerical results that show that this approach
can lead to significant improvements or even convergence in cases, for which AMG
with an undamped hybrid smoother does not converge.

2 Definitions

Since our goal is to solve the linear system Ax = b on a parallel computer with p
processors, we partition the linear system as follows:

A =









A11 . . A1p

. . . .

. . . .
Ap1 . . App

















x1

.

.
xp









=









b1
.
.
bp









. (1)

A general definition of a smoother based on a splitting Q− (Q−A) of A is

Qun+1 = b+ (Q−A)un (2)

where Q can be any nonsingular matrix. For example, with Gauß-Seidel Q = D−L,
where D is the diagonal matrix with the diagonal of A and −L the strict lower
triangular part of A, while for Jacobi Q = D. Since we are interested in parallel
smoothers, we will only consider splittings of the form

Q =









Q1

Q2

.
Qp









. (3)

This is equivalent to performing any iterative solver such as Gauß-Seidel or block
Gauß-Seidel, etc, locally on each processor, but updating the unknowns that are
located on the neighbor processors only after each iteration step. Specific examples
for hybrid smoothers are hybrid Gauß-Seidel with Qk = Dk − Lk, or hybrid sym-
metric Gauß-Seidel with Qk = (Dk − Lk)D

−1
k (Dk − LT

k ), where Dk is the diagonal
matrix with the diagonal of Akk and Lk the strictly lower triangular part of −Akk.

As mentioned in the previous section, there are two types of relaxation pa-
rameters, the outer relaxation parameter ωJ , and the inner relaxation parameters
ωi, i = 1, ..., p. Therefore consider the following smoothing matrix with outer relax-
ation parameter ωJ
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Q =
1

ωJ
Q̃ =

1

ωJ









Q̃1

.
.

Q̃p









. (4)

Inner relaxation parameters, ωk, k = 1, ..., p occur in hybrid SOR with Q defined
as above and

Q̃k =
1

ωk
Dk − Lk (5)

as well as the corresponding symmetric variant, hybrid SSOR, with

Q̃k =
ωk

2− ωk
(
1

ωk
Dk − Lk)D

−1
k (

1

ωk
Dk − LT

k ). (6)

Further notations needed include the smallest eigenvalue of a matrix A, λmin(A),
and the spectral radius of A, ρ(A), which is defined as the absolute largest eigenvalue
of A.

3 Smoothing Properties

Denote by A(m) the operator on the m-th level of AMG, P (m) the interpolation
operator that interpolates from the m + 1st level to the mth level, and R(m) the
restriction operator, that transfers from the mth to the m + 1st level, which in
general, if A(m) is symmetric, is defined as R(m) = (P (m))T .

Then the coarse grid correction operator is given by

T (m) = I − P (m)(A(m+1))−1R(m)A(m).

We define the smoothing operator on the mth level of AMG as

G(m) = I − (Q(m))−1A(m),

whereQ(m) is the matrix defined by the relaxation processQ(m)un+1 = bm+(Q(m)−
A(m))un.

Important conditions for convergence of algebraic multigrid methods are the
smoothing properties

‖G(m)em‖21 ≤ ‖em‖21 − σ1‖em‖22, σ1 > 0, for any em, (7)

‖G(m)em‖21 ≤ ‖em‖21 − σ2‖G(m)em‖22, σ2 > 0, for any em, (8)

with the following norms

‖x‖1 = (xTA(m)x)
1

2 , ‖x‖2 = (xT (A(m))T (D(m))−1A(m)x)
1

2 , (9)

where D(m) is the diagonal part of A(m). Here (7) refers to postsmoothing, (8) to
presmoothing. In conjunction with the approximation property

‖T (m)em‖21 ≤ β‖em‖22, for any em, (10)

either (7) or (8) imply two-level convergence with the convergence factor bounded
above by

√
1− δ1 for (7) and by 1/

√
1 + δ2 for (8), with δ1 = σ1/β and δ2 = σ2/β.

This shows that larger σ1 and σ2 will lead to better smoothing and ultimately better
convergence. For a more detailed discussion on convergence see [7, 9].

Obviously, the approximation property is determined by the choice of interpo-
lation and restriction, and therefore of no concern for us in this context, in which
we only focus on smoothing.
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Now according to [7], (7) and (8) are equivalent to the following inequalities,
which are somewhat easier to deal with (for simplicity, the indicesm will be omitted
in the remainder of the paper)

σ1e
TQTD−1Qe ≤ eT (QT +Q−A)e, (11)

σ2e
T (Q−A)TD−1(Q−A)e ≤ eT (QT +Q−A)e. (12)

If A is a symmetric positive definite matrix, then the matrix Q + QT − A is
symmetric positive definite if and only if A = Q− (Q−A) is a splitting that leads
to a convergent iterative method, i.e. ρ(I −Q−1A) < 1, see [10]. Using this fact it
is easy to show that both smoothing properties can always be fulfilled.

Proposition 1 Assume A and D are symmetric positive definite and Q is a matrix,
for which ρ(I −Q−1A) < 1. If

σ1 ≤
λmin(Q+QT −A)

ρ(QTD−1Q)
, (13)

then the first smoothing property (11) holds. If

σ2 ≤
λmin(Q+QT −A)

ρ((Q−A)TD−1(Q−A)) , (14)

then the second smoothing property (12) is fulfilled.

Proof:

Since ρ(I −Q−1A) < 1, Q+QT − A is symmetric positive definite, and conse-
quently λmin(Q+QT −A) > 0. The matrices QTD−1Q and (Q−A)TD−1(Q−A)
are symmetric positive semidefinite and thus have real nonnegative eigenvalues.
Therefore the following inequality holds for any e with Qe 6= 0

eT (Q+QT −A)e
eTQTD−1Qe

=
eT (Q+QT −A)e

eT e

eT e

eTQTD−1Qe

≥ λmin(Q+QT −A)
ρ(QTD−1Q)

≥ σ1 > 0.

Note that if Qe = 0, (11) holds for any σ1. Analogously, for σ2: for any vector e
with (Q−A)e 6= 0

eT (Q+QT −A)e
eT (Q−A)TD−1(Q−A)e =

eT (Q+QT −A)e
eT e

eT e

eT (Q−A)TD−1(Q−A)e

≥ λmin(Q+QT −A)
ρ((Q−A)TD−1(Q−A)) ≥ σ2 > 0.

Note that if (Q−A)e = 0, (12) holds for any σ2.

q.e.d.

Thus, if the underlying iterative scheme is convergent, the smoothing properties
are fulfilled. Further, it is easy to come up with a sample vector e, for which the
properties are not fulfilled, if the method does not converge. The proposition also
explains, why hybrid smoothers fail: for many problems, as can be seen in Section
7, ρ(I −Q−1A) > 1, or, equivalently, ρ(Q−1A) > 2.

However, the estimated bounds for σ1 and σ2 are not very useful if one wants to
determine good relaxation parameters. Therefore, we investigate symmetric positive
definite Q and derive more meaningful bounds for σ1 and σ2. Note that the best
values for σ1 and σ2 in all theorems are obtained when they are taken to be equal
to their upper limit. Smaller values provide less sharp bounds.
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Theorem 2 Assume that A, Q and D are symmetric positive definite and

ρ(Q−1A) < 2.

Assume

σ1 ≤
2− ρ(Q−1A)

ρ(D−1Q)
, (15)

then the smoothing property

σ1e
TQTD−1Qe ≤ eT (Q+QT −A)e

is fulfilled.

Proof: Assume e 6= 0. Note that for e = 0 the smoothing property is fulfilled
for any σ1. Since Q is symmetric positive definite, and since for any positive definite
matrix C, ρ(CA) = ρ(C

1

2AC
1

2 ),

eT (QT +Q−A)e
eTQTD−1Qe

=
eTQ

1

2 (2I −Q− 1

2AQ−
1

2 )Q
1

2 e

eTQe

eTQe

eTQ
1

2 (Q
1

2D−1Q
1

2 )Q
1

2 e

≥ 2− ρ(Q− 1

2AQ−
1

2 )

ρ(Q
1

2D−1Q
1

2 )

=
2− ρ(Q−1A)

ρ(D−1Q)
> 0,

because ρ(Q−1A) < 2. Thus if σ1 is chosen as in (15), (11) is fulfilled.

q.e.d.

A similar result is obtained for the second smoothing property (12).

Theorem 3 Assume that A, Q and D are symmetric positive definite and

ρ(Q−1A) < 2.

Assume that

σ2 ≤
2− ρ(Q−1A)

ρ(D−1Q)[ρ(I −Q−1A)]2
. (16)

Then the smoothing property

σ2e
T (Q−A)TD−1(Q−A)e ≤ eT (Q+QT −A)e

is fulfilled.

Proof: Assume (Q−A)e 6= 0. Note that for (Q−A)e = 0 the smoothing prop-

erty is fulfilled for any σ2. First let us consider ρ((I −Q−
1

2AQ−
1

2 )TQ
1

2D−1Q
1

2 (I −
Q−

1

2AQ−
1

2 )). Also, ‖.‖ denotes here the spectral norm or 2-norm.

ρ((I −Q− 1

2AQ−
1

2 )Q
1

2D−1Q
1

2 (I −Q− 1

2AQ−
1

2 )) = ‖D− 1

2Q
1

2 (I −Q− 1

2AQ−
1

2 )‖2

≤ ‖D− 1

2Q
1

2 ‖2‖I −Q− 1

2AQ−
1

2 ‖2

= ρ(Q
1

2D−1Q
1

2 )[ρ(I −Q− 1

2AQ−
1

2 )]2

= ρ(D−1Q)[ρ(I −Q−1A)]2.
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Using this result, we get

eT (QT +Q−A)e
eT (A−Q)TD−1(A−Q)e

=
eTQ

1

2 (2I −Q− 1

2AQ−
1

2 )Q
1

2 e

eTQ
1

2 (I −Q− 1

2AQ−
1

2 )Q
1

2D−1Q
1

2 (I −Q− 1

2AQ−
1

2 )Q
1

2 e

≥ 2− ρ(Q− 1

2AQ−
1

2 )

ρ((I −Q− 1

2AQ−
1

2 )TQ
1

2D−1Q
1

2 (I −Q− 1

2AQ−
1

2 ))

≥ 2− ρ(Q−1A)

ρ(D−1Q)[ρ(I −Q−1A)]2
> 0,

because ρ(Q−1A) < 2.

q.e.d.

4 Determination of an Optimal Outer Relaxation

Parameter

In this section, outer relaxation parameters are determined that are optimal in the
sense that they maximize the upper bounds for σ1 and σ2 that have been derived
in the previous section. Since the conditions derived in the previous section are just
sufficient conditions for satisfying the smoothing properties, this does not prove
optimality in the absolute sense. Nevertheless, there is empirical evidence that the
use of this theory leads to very good results in practice, as can be seen in Section 7.

Using (4), (15) can be expressed as

σ1 ≤
ωJ (2− ωJρ(Q̃−1A))

max
1≤k≤p

ρ(D−1
k Q̃k)

,

and (16) as

σ2 ≤
ωJ (2− ωJρ(Q̃−1A))

max
1≤k≤p

ρ(D−1
k Q̃k)[ρ(I − ωJQ̃−1A)]2

.

Since σ1 and σ2 are positive, one obtains the following condition for ωJ :

0 < ωJ <
2

ρ(Q̃−1A)
.

Note that in the case of inner relaxation parameters ωk, for 1 ≤ k ≤ p, the value of
ωJ depends on the choice of these parameters.

In order to maximize the upper bound for σ1 in (11), one must choose

ωJ =
1

ρ(Q̃−1A)
, (17)

which leads to

σ1 ≤
1

ρ(D−1Q̃)ρ(Q̃−1A)
.

Consider now the second smoothing inequality (12). Note that since ωJ > 0 and

both Q and A are symmetric positive definite, so are Q̃ and Q̃−
1

2AQ̃−
1

2 . Therefore

ρ(I − ωJQ̃−1A) = ρ(I − ωJQ̃−
1

2AQ̃−
1

2 )

=















1− ωJλmin(Q̃
−1A) for 0 < ωJ <

2

ρ(Q̃−1A) + λmin(Q̃−1A)

|1− ωJρ(Q̃−1A)| for ωJ ≥
2

ρ(Q̃−1A) + λmin(Q̃−1A)
.

6



The optimal ωJ can now be determined by maximizing

ψ(ω) =



















ω(2− ωρ(Q̃−1A))

(1− ωλmin(Q̃−1A))2
for 0 < ωJ <

2

ρ(Q̃−1A) + λmin(Q̃−1A)
ω(2− ωρ(Q̃−1A))

(1− ωρ(Q̃−1A))2
for ωJ ≥

2

ρ(Q̃−1A) + λmin(Q̃−1A)
.

with respect to ω.
The solution to maximizing the first term is

ωJ =
1

ρ(Q̃−1A)− λmin(Q̃−1A)
. (18)

The second term is decreasing in the considered range, consequently it is maximal
for

ω =
2

λmin(Q̃−1A) + ρ(Q̃−1A)
. (19)

For ρ(Q̃−1A) > 3λmin(Q̃
−1A), (18) is larger than (19) and maximizes ψ(ω) in the

considered range. It leads to

σ2 ≤
1

ρ(D−1Q̃)(ρ(Q̃−1A)− 2λmin(Q̃−1A))
.

Since in general for finite element problems λmin(Q̃
−1A) is small compared to the

largest eigenvalue, the best choice for the first smoothing property (17) is also a
good choice for the second smoothing property with

σ2 ≤
ρ(Q̃−1A)

ρ(D−1Q̃)(ρ(Q̃−1A)− λmin(Q̃−1A))2
.

If ρ(Q̃−1A) < 3λmin(Q̃
−1A), ψ(ω) is maximal for (19) with

σ2 ≤
4λmin(Q̃

−1A)

ρ(D−1Q̃)(ρ(Q̃−1A)− λmin(Q̃−1A))2
.

Clearly if

4λmin(Q̃
−1A) < ρ(Q̃−1A),

(17) is a better choice for ωJ than (19). Note that (19) minimizes ρ(I − ωQ̃−1A)
and leads therefore to the fastest convergent splitting, but does not necessarily lead
to the best smoother!

5 Analysis of the Inner Relaxation Parameter

Inner relaxation parameters occur when one uses SOR or SSOR locally on each
processor. Determining a best choice for the inner relaxation parameter in SSOR
is a very difficult task. Even in the case of only one processor, one needs to analyze
the following complicated functions

φ1(ω) =
ω(2− ω)(2− ω(2− ω)ρ(Q̃(ω)−1A))

ρ(D−1Q̃(ω))
,

φ2(ω) =
ω(2− ω)(2− ω(2− ω)ρ(Q̃(ω)−1A))

ρ(D−1Q̃(ω))(ρ(I − ω(2− ω)Q̃(ω)−1A))2
.
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Although there are some interesting results on the choice of relaxation parameters
for SSOR as an iterative solver in [10], these results do not transfer to smoothers,
and applying the same techniques to analyze the parameter gives nonconclusive
results. However, one can derive some interesting results for SOR and hybrid SOR.

Lemma 4 Assume A is symmetric positive definite, Q = 1
ω
D − L, where D is the

diagonal and −L the lower triangular part of A, and 0 < ω < 2. Assume also that

σ1 ≤
(2− ω)ω

(1 + ωγ−)(1 + ωγ+)
, (20)

where

γ− = ‖D−1L‖,
γ+ = ‖D−1LT ‖,

and ‖.‖ denotes any vector induced matrix norm. Then

σ1e
TQTD−1Qe ≤ eT (QT +Q−A)e.

The upper bound for σ1 is maximal, if

ω =

√

(2γ+ + 1)(2γ− + 1)− 1

γ+ + γ− + 2γ−γ+
≤ 1.

Proof:

Since Q = 1
ω
D − L,

Q+QT −A =
2

ω
D − L− LT −D + L+ LT = (

2

ω
− 1)D

Now

eTQTD−1Qe ≤ ρ(D−1QTD−1Q)eTDe

and

ρ(D−1QTD−1Q) ≤ ‖D−1QT ‖ ‖D−1Q‖

= ‖ 1
ω
I −D−1LT ‖‖ 1

ω
I −D−1L‖

≤ 1

ω2
(1 + ωγ+)(1 + ωγ−).

This leads to the following inequality for σ1

σ1 ≤ ψ1(ω) =
(2− ω)ω

(1 + ωγ−)(1 + ωγ+)
.

Now,

dψ1(ω)

dω
=

2− 2ω − (γ− + γ+ + 2γ−γ+)ω2

(1 + ωγ−)2(1 + ωγ+)2
,

which vanishes for

ω1 =
−

√

(2γ+ + 1)(2γ− + 1)− 1

γ+ + γ− + 2γ−γ+
< 0
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and

ω2 =

√

(2γ+ + 1)(2γ− + 1)− 1

γ+ + γ− + 2γ−γ+
.

Since

d2ψ1(ω2)

dω2
= − 2

√

(2γ+ + 1)(2γ− + 1)

(1 + ω2γ−)2(1 + ω2γ+)2
< 0,

and the relative minimum ω1 is outside of (0,2), ω2 is the maximum of ψ1(ω) in
(0,2). Since

γ+ + γ− + 2γ+γ− =
1

2
((2γ+ + 1)(2γ− + 1)− 1),

it is easy to show that ω2 ≤ 1.

q.e.d.

This result is interesting, since it shows that the best ω in the context of (20)
does not lead to overrelaxation, as is the case when SOR is used as an iterative
solver, but to underrelaxation. In the special case γ+ = γ− = γ, one obtains
ω = 1

1+γ
< 1.

Note that Ruge and Stüben [7] suggest the norm

‖A‖v = max
1≤i≤n







1

vi

n
∑

j=1

vj |aij |







where v is a vector with positive elements vi. This choice leads to

γ− = max
k







1

vkakk

∑

j<k

vk|akj |







,

γ+ = max
k







1

vkakk

∑

j>k

vk|akj |







,

which can be easily computed in practice.
Using a similar argument, one can show that the second smoothing property

(12) is also fulfilled for SOR.

Lemma 5 Assume A is symmetric positive definite, Q = 1
ω
D − L, where D is the

diagonal and −L the lower triangular part of A, and 0 < ω < 2. Assume also that

σ2 ≤
(2− ω)ω

(|1− ω|+ ωγ−)(|1− ω|+ ωγ+)
,

where γ+ and γ− are defined as in Lemma 4. Then

σ2e
T (Q−A)TD−1(Q−A)e ≤ eT (Q+QT −A)e.

For

γ− >
1

2
, γ+ >

γ−

2γ− − 1
, (21)

the upper bound for σ2 is maximal if

ω =

√

(2γ+ − 1)(2γ− − 1)− 1

2γ+γ− − γ− − γ+
≤ 1. (22)

For all other cases the maximal upper bound for σ2 is obtained by setting ω = 1.
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The proof is similar to the proof of Lemma 4. The inequality for σ2 is determined
in a similar way as was done for σ1 in Lemma 4. In order to determine the best ω,
one needs to examine the continuous function

ψ2(ω) =















(2− ω)ω
(1 + ω(γ− − 1))(1 + ω(γ+ − 1))

for 0 < ω ≤ 1

(2− ω)ω
(ω(γ− + 1)− 1)(ω(γ+ + 1)− 1)

for 1 ≤ ω < 2.

If 2γ+γ− ≤ γ+ + γ−, it turns out that this function is increasing in (0,1) and
decreasing in (1,2), which shows that the optimal ω is 1. Only in the special case
2γ+γ− > γ+ + γ−, which is equivalent to (21), is the absolute maximum in (0,1)
as given by (22) and can be obtained by straightforward differentiation of ψ2(ω).

In this case, it appears that the use of a relaxation parameter is, in general,
not beneficial. Only if condition (21) is fulfilled, which implies a matrix that is not
diagonally dominant, should underrelaxation lead to better convergence.

In the following theorem, the SOR hybrid method is investigated.

Theorem 6 Assume that A is symmetric positive definite, DB the block diagonal
matrix with diagonal blocks Akk, Q = 1

ωJ
Q̃ as defined in (4), Q̃k = 1

ωk

Dk−Lk with

0 < ωk < 2 for k = 1, ..., p and 0 < ωJ ≤ 1
ρ(D−1

B
A)
. Assume also that

σ1 ≤ ωJ min
1≤k≤p

(2− ωk)ωk
(1 + ωkγ

+
k )(1 + ωkγ

−
k )

with

γ+
k = ‖D−1

k LTk ‖,
γ−k = ‖D−1

k Lk‖,

where ‖.‖ denotes any matrix norm, induced by a vector norm. Then the smoothing
property

σ1e
TQTD−1Qe ≤ eT (Q+QT −A)e

is fulfilled.

Proof:

The proof requires the application of Lemma 4 to the diagonal blocks of A,
which leads to

eTk (Q̃
T
k + Q̃k −Akk)ek ≥

(2− ωk)ωi
(1 + ωkγ

−
k )(1 + ωkγ

+
k )
eTk Q̃

T
kD

−1
k Q̃kek.

Now

eTAe ≤ ρ(D−1
B A)eTDBe ≤

1

ωJ
eTDBe

using the assumption ωJ ≤ 1
ρ(D−1

B
A)

. We thus obtain

eT (QT +Q−A)e =
1

ωJ

p
∑

k=1

eTi (
2

ωk
Dk − Lk − LT

k )ek − eTAe

=
1

ωJ

p
∑

k=1

(
2

ωk
− 1)eTkDkek +

1

ωJ
eTDBe− eTAe
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≥ 1

ωJ

p
∑

i=1

eTk (Q̃
T
k + Q̃k −Akk)ek + (

1

ωJ
− ρ(D−1

B A))eTDBe

≥ 1

ωJ

p
∑

k=1

(2− ωk)ωk
(1 + ωkγ

−
k )(1 + ωkγ

+
k )
eTi Q̃

T
kD

−1
k Q̃kek

≥ ωJ min
1≤k≤p

(2− ωk)ωk
(1 + ωkγ

−
k )(1 + ωkγ

+
k )
eTQTD−1Qe

≥ σ1e
TQTD−1Qe.

q.e.d.

This shows that a good choice of inner relaxation parameters should improve
the hybrid SOR method, but even more crucial is a good choice of ωJ for (11) to be
fulfilled. The best choice under the assumptions of this theorem is ωJ = 1/ρ(D−1

B A).
It is possible to obtain a good estimate of ρ(D−1

B A) using the procedure described in
the next section. However, this approach would be very expensive and is therefore
not practical, since it requires solving a linear system on each processor in each CG
iteration step.

6 Practical Determination of the Outer Relaxation

Parameter

The result on the optimal outer relaxation parameter obtained in Section 4 is only
useful if it can be applied in practice. It is very important to get good estimates
for ρ(Q̃−1A). This can be achieved by applying k steps of preconditioned conjugate
gradient to Ax = b with the preconditioner Q̃. Note that Q̃ needs to be symmetric
positive definite. The preconditioning step is here just the application of one sweep
of the smoother, which is fairly inexpensive. Due to the relationship of the conjugate
gradient method and the Lanczos method [5], one can derive the tridiagonal Lanczos
matrix Tk from the parameters obtained within CG as can be found e.g. in [8]. Since
the eigenvalues of Tk approach the eigenvalues of Q̃−1A with increasing k, one can
estimate the eigenvalues of Tk. This can be done using the Gershgorin estimate or,
since Tk is very small, using an eigenvalue solver for tridiagonal systems (such as
the QR algorithm or bisection [5]). It is possible to get good estimates with this
procedure with a fairly small number of CG iterations, e.g. k = 10 or k = 15. The
use of this procedure increases the setup time of AMG. However, for problems that
require a good smoothing parameter, the resulting decrease in number of iterations
and solve time far outweighs this increase in setup time, as can be seen in the next
section. Note that in some cases conjugate gradient has found to be unstable and
it might be better to use a stable implementation of the preconditioned Lanczos
algorithm. We used conjugate gradient, since it was immediately available to us,
and we observed no instabilities in our experiments.

7 Numerical Results

The methods described in the previous sections are applied to various very large
3-dimensional elasticity problems composed of 3 concentric spherical shells. An
octant of this domain is shown in Figure 1. The outer shells are composed of
steel, the inner shell is composed of lucite. We consider problems without and with
slide surface boundary conditions. In the case of slide surface boundary conditions
the steel and lucite spheres are allowed to slide tangentially relative to each other.
Adding the slide surface boundary conditions leads to an indefinite problem. It is,
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Figure 1: Finite element discretization of a sphere using quadrilateral elements.

however, possible to reduce the system to a positive definite system through the
elimination of a subset of equations [4]. In our experiments we use the reduced
system. The problems were run on the ASCI White Computer at LLNL. Two
different problem sizes are considered: the smaller problem is 497,664 elements and
is run on 32 processors; the larger problem consists of almost 4 million elements and
is run using 256 processors. Since the considered problem has multiple degrees of
freedom per grid point, we use AMG for problems derived from systems of partial
differential equations, employing the function, or “unknown”, approach [7]. This
approach coarsens each physical variable separately and interpolates only within
variables of the same type. The smoothers are symmetric Gauß-Seidel with ωJ = 1
and the ωJ as given in (17), which is obtained using at most 10 CG-iterations.
We are able to use a nodal hybrid Gauß-Seidel, i.e. a block Gauß-Seidel method
with 3x3 blocks, due to the structure of the problem. Unfortunately, the nodal
structure is destroyed after the first level, so use of a nodal smoother beyond the
finest level does not make sense. ωJ was here estimated with 15 CG-iterations, since
10 CG-iterations turned out to be not good enough. We also consider hybrid SSOR.
Since we have no procedure to determine the best inner relaxation parameters, we
present results for uniform ω = 0.75, 0.5 and 0.25 for the moderate size problem
and use ω = 0.5 for the large problem. In all these experiments, AMG is used as
a preconditioner for CG. Therefore, in order to not destroy the symmetry of the
problem, only symmetric smoothers are used.

Table 1 gives the estimates of the outer relaxation weights that have been used
for the larger elasticity problems. The fact that the relaxation parameters on the
finer levels are smaller than 0.5, and thus ρ(Q̃−1A) > 2 indicates that hybrid (block)
Gauß-Seidel is not a convergent iterative scheme for these problems. Table 2 con-
tains the notations used for Tables 3 through 6. Q̃ denotes the symmetric Gauß-
Seidel matrix, and Q̃B denotes the nodal or 3x3 block Gauß-Seidel matrix.

For moderate size problems, Table 3 shows a fairly small improvement of scaled
smoothers over unscaled smoothers. However, for large problems, Table 4 shows
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without slide surfaces with slide surfaces
level ωJ level ωJ level ωJ level ωJ
1 0.425 12 0.588 1 0.465 12 0.588
2 0.458 13 0.585 2 0.462 13 0.584
3 0.480 14 0.591 3 0.453 14 0.605
4 0.460 15 0.614 4 0.453 15 0.612
5 0.498 16 0.604 5 0.502 16 0.627
6 0.555 17 0.603 6 0.556 17 0.639
7 0.585 18 0.601 7 0.580 18 0.613
8 0.567 19 0.587 8 0.588 19 0.620
9 0.585 9 0.583
10 0.570 nodal: 10 0.585 nodal:
11 0.572 1 0.397 11 0.575 1 0.419

Table 1: Relaxation parameters for an elasticity problem, 3,981,312 elements, 256
procs

a significant improvement for scaled smoothers. Overall, the best time achieved is
about 10 times as fast as the original test (which uses hybrid Gauß-Seidel without
any relaxation parameter). Interestingly enough, it turns out that for this problem,
the use of the nodal smoother does not improve convergence; apparently point
smoothers are sufficient to smooth the error.

Table 5 shows this changes when we include slide surfaces. On the moderate
size problem, using hybrid SGS without any smoothing parameter converges in 390
iterations, whereas scaled SGS converges about 3 times as fast. It is interesting
that just applying the nodal smoother without any scaling parameter entails a
similar number of iterations, showing that for this problem a nodal smoother is
more suitable. Scaling the nodal smoother leads to a further improvement of another
factor of about 2.3. Scaling the point smoother improves this result only slightly.
Reducing the number of sweeps increases the number of iterations, but decreases
the time per iteration. The best result is about 7 times faster than the original
solver.

The larger problem with slide surfaces diverges without any relaxation parame-
ters, even when a nodal smoother is used on the finest level (Table 6). Scaled SGS
converges within 192 iterations, but convergence is twice as fast when a scaled nodal
smoother is used on the finest level. The overall fastest (with regard to time) com-
bination solves this very large problem, which diverges when unscaled smoothers
are employed, in about 5 minutes.

The results in Tables 3 through 6 show that a good inner relaxation parameter
for hybrid SSOR is 0.5. Overall, underrelaxation, i.e. choosing an inner relaxation
parameter smaller than 1, beats hybrid SGS, which is equivalent to hybrid SSOR
ω = 1. Overrelaxation (ω > 1), which is not presented here, leads to a further
decrease in performance.

8 Conclusions

The use of relaxation parameters for hybrid smoothers is analyzed. Both outer
as well as inner parameters are considered. Analysis of the inner SOR relaxation
parameter shows that, in most cases, underrelaxation (i.e. ω < 1) is preferred
to overrelaxation. An outer relaxation parameter for symmetric positive definite
matrices and splittings is determined that is optimal under the assumptions of the
theory, and an automatic procedure to determine it is implemented. Numerical
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Smoother Description
G hybrid symmetric Gauß-Seidel (SGS)
S, ω hybrid SSOR, ωk = ω for k = 1, ..., p
SG scaled hybrid SGS, ωJ = 1

ρ̃(Q̃−1A)

N hybrid nodal (3x3 blocks) SGS
SN scaled hybrid nodal SGS, ωJ = 1

ρ̃(Q̃−1

B
A)

<S1>/<S2> <S1> used only on finest level,
<S2> used on coarser levels

Table 2: Smoother notations

Smoother no. of no. of setup solve total
sweeps its time time time

G 2 74 15 266 281
S, 0.75 2 63 15 233 248
S, 0.5 2 45 15 164 179
S, 0.25 2 54 15 197 212
SG 2 42 25 157 182
N/G 2 59 16 223 240
SN/G 2 39 22 148 170
SN/G 1 47 22 108 130
SN/SG 2 41 28 161 189
SN/SG 1 50 28 119 148

Table 3: Elasticity problem without slide surfaces, 497,664 elements, 32 procs, n =
1,545,483

Smoother no. of no. of setup solve total
sweeps its time time time

G 2 484 25 2097 2122
S, 0.5 2 67 25 301 326
SG 2 61 38 270 308
N/G 2 562 25 2477 2502
SN/G 2 57 32 258 290
SN/G 1 67 32 184 216
SN/SG 2 60 41 276 317
SN/SG 1 71 41 196 237

Table 4: Elasticity problem without slide surfaces, 3,981,312 elements, 256 procs, n
= 12,152,595
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Smoother no. of no. of setup solve total
sweeps its time time time

G 2 390 15 1427 1443
S, 0.75 2 201 15 750 765
S, 0.5 2 149 15 555 570
S, 0.25 2 185 15 696 711
SG 2 135 26 517 543
N/G 2 142 17 547 564
SN/G 2 63 23 245 268
SN/SG 2 60 31 237 267
SN/SG 1 74 31 181 212

Table 5: Elasticity problem with slide surfaces, 497,664 elements, 32 procs, n =
1,587,825

Smoother no. of no. of setup solve total
sweeps its time time time

G 2 fail 23 - -
S, 0.5 2 342 23 1375 1399
SG 2 192 37 767 804
N/G 2 fail 27 - -
SN/G 2 146 29 600 630
SN/SG 2 86 41 365 406
SN/SG 1 106 41 272 313

Table 6: Elasticity problem with slide surfaces, 3,981,312 elements, 256 procs, n =
12,320,217
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experiments show that for certain elasticity problems significant improvements can
be achieved using relaxation parameters.
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