Evaluation of a Predictive Model for Upstream Fish Passage Through Culverts

Seth Coffman¹ and Mark Hudy² ¹USDA Forest Service SRS CATT ²USDA Forest Service Aquatic Ecology Unit - East

Resident Stream Fish Also Have Passage Needs

- Reproduction
- Colonize available habitat
- Seek thermal and chemical refuge
- Use available food sources

Effects of Culverts

Fragment:

- habitat
- populations

Disrupt:

gene flow

and

 recolonization dynamics after local extirpations

Passage Gates Passage requirements are: Jelocity LANgustion Dept Benavioral Always met Frequently met Infrequently met Never met

Flow Direction

CU19

Study Objectives

1. Develop predictive models for upstream fish passage through culverts

2. Validate those models in the field with biological data on fish movement

3. Modify and improve the models based on field data.

Predictive Models

Model A: Adult Salmonidae

Model B: Cyprinidae/YOY Salmonidae

Model C: Percidae and Cottidae

Field Measurements

Validating the Model

Study Area

Results

Movement Through Culverts

Summer: 3/10 impassable 10/14 passable Fall: 1/11 impassable 9/14 passable

Fall

ANOVA RESULTS

- **3 Levels:**
- Group (A, B, or C) Classification (Passable or Impassable) Section (FC or C)

ANOVA RESULTS

fall	Source of variation	df	F	P value
	group	2	15.69	<.0001
	class	1	0.64	0.4266
	section	1	9.52	0.0028
	group*class	2	1.74	0.1825
	group*section	2	2.61	0.0793
	class*section	1	2.55	0.1138
	group*class*section	2	0.22	0.8018

Group (A, B, or C) Classification (Passable or Impassable) Section (FC or C)

Predictive Model Development

pipe slope (%)

Conclusions

Greatest fish movement occurred at culverts with:

outlet drop < 4 inches
culvert slope < 2.0%
slope x length value < 82

Management Implications

Final models can be a tool for natural resource managers

Watershed prioritization

Native species conservation
Invasive species control

Acknowledgements

Fish & Aquatic Ecology Unit Dry River RD Lee RD

Greenbrier RD

Committee: Mr. M. Hudy Dr. K. Simon Dr. R. Harris

Field Crews: Aaron, Allison, Kyle, Jeremy, Arlis, Paul, Tom

Figure 33.