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Figure 5: Unconditional probabilities for 3 decisions for all possible studies using same algorithm as
proposed with δ = .0005 for non-inferiority hypotheses, given X > 1 and m = 17877.

Unconditional Probabilities of Procedure
We create designs for X = 1, . . . , 17 as above. Then since Pr[X ≤ 17|µx = .0004] ≥ .9995, we can
calculate the unconditional probabilities of the three decisions when applying designs following the
proposal (given X > 1). The results are in Figure 5.
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Figure 4: Probabilities for 3 decisions of proposed design (where δ = .0005 for the non-inferiority
hypotheses), given X = 2 and m = 17877. Gray lines are µ̂x = X/m (solid) and the 95% confidence
intervals.
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Figure 3: Proposed Design: Solid lines denote stop and find new treatment worse for SAE rate,
solid circles denote stop and find new treatment non-inferior with δ = .0005, open circles denote
inconclusive.

Combining Both Hypotheses
The proposal for these types of studies is the following. Stop early for inferiority of the new treatment
if any uncorrected exact ratio test of the data up until that point rejects, but we require Yn > 1.
Otherwise stop the study at the value n such that the conditional power at µx = X/m is greater
than 80% for all subsequent n and use the exact unconditional difference in proportions test with
δ = 0.0005. When X = 2 and m = 17877 the resulting design is shown in Figure 3. Figure 4 shows
the properties given X and m.

Notice that although µ̂x ≈ 0.0001, there is much greater power to test the difference test with δ =
0.0001 than the ratio test with δ = 2 even though the alternative hypothesis for both tests when µx =
.0001 is approximately µy > 0.0002. The reason for the difference is that µx is not known and the
probability of very small values for µx must be accounted for in both tests, and very small values of
µx more substantially affect the ratio than the difference. Further, the difference in risk of a SAE may
be more important from a public health point of view rather than the ratio of risks, since cases with
µx very small are the least important from the public health perspective. Thus, although the difference
test is much more difficult to calculate, the test based on the difference will often be preferred.

0 50000 100000 150000 200000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N

P
ow

er
 (

G
iv

en
 X

=
2)

delta=.0005
delta=.0001

Figure 2: Conditional power of rate difference non-inferiority tests, given X , m and µx = µy = X/m.

Noninferiority Hypothesis: Rate Difference Test
Second, we consider the exact unconditional test on the difference in proportions using the Berger-
Boos (1994) method as used in StatXact (StatXact 7 Procs). The difference test has similar non-
monotonic patterns in the conditional power as the ratio test. Also similarly, asymptotically there are
some values of δ which will give zero power even as n → ∞. Intuitively, as n goes to infinity then
µ̂y → µy, but we are still left with the uncertainty in µ̂x. Since we want to show the alternative that
µy < µx + δ, if µy is known then we could create a test where we reject if µy < Lx(X) + δ, where
Lx(X) is the lower one-sided 100(1 − αN )% confidence limit. Thus, if δ < µy − Lx(X) then the
power would not exceed αN as n → ∞. For the Gardon, et al (1997) data Lx(2) = 1.99 × 10−5 and
using µy = 2/17877 we need δ > 9.20× 10−5 to obtain a test where the power goes to one as n →∞.

Asymptotic result (proof not shown):

lim
n→∞CP (Ratio test|Xm, n, µy, ∆) =

{
0 if ∆ < ∆∗
1 if ∆ ≥ ∆∗

Where ∆∗ = 5.6 for our example. Specifically,

∆∗ = max
{

∆ : Xm = F−1
P

(
1− α,

mµy

∆

)}

where F−1
P is inverse Poisson distribution, i.e., F−1

P (q, ψ) = w is the smallest integer w such that
Pr[W ≤ w] ≥ q when W ∼ Poisson(ψ).
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Figure 1: Conditional power of rate ratio non-inferiority tests, given X = 2, m = 17877 and µx =
µy = X/m.

Non-inferiority Hypothesis: Rate Ratio Test
We consider first an exact rate ratio test for the non-inferiority hypothesis, treating the two groups as a
randomized trial and ignoring the issue of early stopping. Using this test, we calculate the conditional
power of the test when µx = µy = X/m.

In Figure 1 we see that for some ∆ the conditional power goes to zero as the sample size increases.

Statistical Framing of the Problem
Let X be the number of SAE out of m, from the historical control group (e.g., X = 2 out of m = 17877

on ivermectin alone) and Yn be the number of SAE out of the first n who get the new treatment
(ivermectin and albendazole). Assume X ∼ Binomial(m,µx) and Yn ∼ Binomial(n, µy)

Non-inferiority hypotheses: show that rate of SAE for new treatment is not worse (within some in-
difference zone). We consider 2 choices, the ratio test and the difference test.

Ratio Difference
Null : µy ≥ ∆µx Null : µy ≥ µx + δ

Alternative : µy < ∆µx Alternative : µy < µx + δ

Inferiority hypotheses: show that SAE for new treatment is worse.

Null : µy ≤ µx

Alternative : µy > µx

Desired Properties of Design:
1. The type I error of the inferiority hypotheses is less than or equal to αI = 0.05.
2. The type I error of the non-inferiority hypotheses is less than or equal to αN = 0.05.
3. The type II error of the non-inferiority hypotheses at µx = µy is less than or equal to β = .2.

Motivating Example
This poster describes the design of a study of a mass treatment program for the elimination of lym-
phatic filariasis (LF) using albendazole and ivermectin in areas that are co-endemic for Wuchereria
bancrofti, the parasite that causes LF in Africa, Onchocerca volulus and Loa loa which have had iver-
mectin mass treatment programs for onchocerciasis control for many years. The focus of the study
will be on whether the addition of albendazole to an existing ivermectin mass treatment program for
onchocerciasis control increases the rates of neurologic Loa loa related serious adverse events (SAE)
compared to ivermectin alone in areas that are endemic for W. bancrofti, O. volulus and L. loa. The
sample size calculations for this trial are non-standard because of the following reasons:

•Our primary interest is not in showing that one of the two treatments works better in fighting disease,
but in showing that the new treatment (combining albendazole and ivermectin) does not have higher
neurologic L. loa related SAE rates than the standard treatment (ivermectin alone). This is a non-
inferiority type of study on neurologic L. loa related SAE.

• Both treatments will not be applied concurrently. Instead the new treatment will be compared to
historical data on the standard treatment in the same population, which has already been collected.

• Since the primary endpoint is neurologic L. loa related SAE, we will want to plan for early stopping
in the study if the new treatment has a higher rate of neurologic Loa loa related SAE than the
standard.

For this example, the historical data are from Gardon, et al (1997) who observed a rate of 2/17877
(i.e., 1.12 per 10,000) of neurologic L. loa related SAE after receiving ivermectin alone.
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