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Referent: Prof. Dr. M. Feindt, Institut für Experimentelle Kernphysik

Korreferent: Priv.–Doz. Dr. W. Wagner, Institut für Experimentelle Kernphysik





Introduction

Understanding the world — This aim drives human kind since the beginning of
conscious thinking. Especially the nature of matter has been of major interest.
Nowadays, we have a complex image of the constitution of matter. Atoms con-
sist of electrons and nucleons. But even nucleons are not elementary. Their basic
constituents are called quarks [1]. Physicists developed a model describing the el-
ementary components of matter as well as the forces between them: the standard
model of elementary particle physics.

The substructure of matter is only visible in scattering experiments. In high energy
physics, these experiments are done at particle accelerators. The world’s highest-
energetic collider, the Tevatron, is hosted by the Fermi National Accelerator Lab-
oratory (FNAL), also called Fermilab, in the vicinity of Chicago. The proton–
antiproton collisions with a center–of–mass energy of

√
s = 1.96 TeV are recorded

by two multipurpose detectors, namely DØ and CDF II.

The heaviest of the standard–model quarks, the top quark, was discovered at the
Tevatron by the DØ and CDF collaborations in 1995 [2, 3]. Still, Tevatron is the only
facility able to produce top quarks. They are predominantly produced in top–antitop
quark pairs via the strong interaction. The standard model also allows production of
single top–quarks through the electroweak interaction. Single top–quark production
is one of the major interests of the Tevatron experiments, since it offers several
ways to probe the standard model and to provide indications of physics beyond the
standard model. The electroweak production mode involving a Wtb vertex features
the opportunity of a direct measurement of the |Vtb| element of the quark–mixing
matrix (named Cabbibo–Kobayashi–Maskawa or CKM matrix), since the production
cross section is proportional to |Vtb|2. Indirect measurements of |Vtb| have to assume
that the number of quark generations is three as implemented within the standard
model. With this assumption, the unitarity of the CKM matrix leads to |Vtb| ≈ 1.
If there are more than three quark families, |Vtb| could be significantly smaller than
one. Moreover, single top–quark production is an important background to the
search of a potential Higgs boson in the mass range of 90 GeV/c2 to 130 GeV/c2 in
the WH channel.

At the beginning of this analysis, no evidence for single top–quark production has
yet been observed. In Tevatron Run I, several limits on the single top–quark pro-
duction cross section were set by DØ [4, 5] and CDF [6, 7] which were outperformed
in Run II [8, 9]. For the current round of analyses using a set of collision data
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corresponding to an integrated luminosity of ≈ 1 fb−1, a sensitivity between 2σ and
3σ is expected.

At the Tevatron, two processes contribute significantly to the production of sin-
gle top–quarks: (1) production via t–channel, also called W–gluon fusion, and (2)
production via s–channel, known as well as W ∗ process. To distinguish the two
single top–quark production channels from the various backgrounds, we use neural
networks to combine many quantities into one discriminating variable. The out-
put distributions of simulated events are used to create templates which are fitted
to the output distribution of observed events to determine the cross section. We
pursue two different approaches: The first is a combined search of the production
modes via t– and s–channel with the assumption that the ratio of the cross sections
is as predicted by the standard model. The second is a separate search in which
the cross sections of t– and s–channel production are determined separately and
simultaneously.

One important improvement to previous searches for single top–quark production,
which was developed in the context of this thesis, is the extension of the standard
method of b–quark jet identification. The identification of b–quark jets is crucial
for top–quark physics, since the top quark decays with a branching fraction of al-
most 100% into a W boson and a b quark. The standard identification method of
reconstructing a secondary vertex mainly utilizes the long lifetime of b hadrons. To
further reject secondary vertices due to decaying c hadrons or false reconstruction,
the identification of b jets is extended by exploiting many characteristics of b hadrons
using a neural network.
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Chapter 1

Top Quarks within the Standard
Model

1.1 The Standard Model of Elementary Particle

Physics

The standard model of elementary particle physics is a quantum field theory that
describes the fundamental particles making up all matter as well as the fundamental
forces between them, namely strong, weak, and electromagnetic force. Gravitation
is not included in this model but described by general relativity. The elementary
particles comprise both fermions, particles with spin s = 1

2
, and bosons, particles

with spin s = 1.

In the standard model, all matter is composed of fermions. They obey the Pauli
exclusion principle which states that fermions cannot share the same quantum state
at the same time. To describe the state of elementary particles, quantum numbers
are used, e.g. the electromagnetic charge or the spin projection. The standard model
incorporates twelve different types of fermions arranged in three families, shown in
table 1.1. Hereof only particles of the first generation form all ordinary matter we
encounter in our natural environment; the higher–generation fermions can solely be
observed in high–energy interactions, since they decay into first–generation particles.

There are two different kinds of fermions: quarks and leptons. The standard
model contains six quarks which cannot be observed as free particles but only in
bound states named hadrons. Those bound states can either consist of three quarks
(baryons) or quark–antiquark pairs (mesons). Due to the Pauli exclusion principle,
it is necessary that quarks carry an additional quantum number [10, 11], so–called
color. Leptons, i.e. electron, muon, tau, and the corresponding neutrinos, do not
carry color charge. Each elementary particle has a corresponding antiparticle car-
rying opposite quantum numbers.

In the standard model, neutrinos are originally assumed to be massless. Due to
recent observations [12, 13, 14, 15], it is necessary to extend the standard model
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name category symbol el. charge [e] mass [MeV/c2]

electron lepton e -1 0.51
electron neutrino lepton νe 0 ≤ 2 · 10−6

up quark quark u +2
3

1.5 – 3.0
down quark quark d −1

3
3 – 7

muon lepton µ -1 105.66
muon neutrino lepton νµ 0 ≤ 0.190
charm quark quark c +2

3
(1.25 ± 0.09) · 103

strange quark quark s −1
3

95 ± 25
tau lepton τ -1 1777.0

tau neutrino lepton ντ 0 ≤ 18.2
top quark quark t +2

3
(174.2 ± 3.3) · 103

bottom quark quark b −1
3

(4.20 ± 0.09) · 103

Table 1.1: The elementary fermionic particles (spin s= 1
2
) with their electric charge in units of the

electron charge and their mass [16]. The top–quark mass is based on published results [17].

in such a way that neutrinos have non–zero masses. The neutrino masses cited in
table 1.1 are limits obtained from direct measurements. Cosmological constraints
force the sum of all neutrino masses to be in the order of a few eV [16], leading to
stricter limits on the masses of νµ and ντ .

The three standard model forces, electromagnetic, strong, and weak force, are math-
ematically described by gauge theories. Gauge theories are based on the idea that
symmetry transformations can be performed locally as well as globally. In general,
a physical system is described by Lagrangians. In a gauge theory, those Lagrangians
are invariant under gauge transformations, i.e. local change of variables. To guar-
antee the invariance of the Lagrangian, additional fields, the gauge fields, must be
introduced to compensate for the local change of variables. In quantum field theory,
the excitations of the gauge fields represent particles transmitting the forces, namely
the gauge bosons shown in table 1.2. According to the Noether theorem [18], each
symmetry meets a conserved current, eventually corresponding to charge conserva-
tion. This leads to the fact that only particles carrying the charge of a certain force
can interact via this specific force.

The gauge boson transmitting the electromagnetic force is the photon which couples
to the electric charge. Electromagnetic interactions are theoretically described by
Quantum Electro Dynamics (QED), predicting the photon as a massless, chargeless
boson to preserve the invariance under redefinition of the electrostatic potential. The
fact that the photon is massless leads to an infinite range of the electromagnetic force.
The experimental limits on the photon’s mass and electric charge are displayed in
table 1.2.

Strong interactions via gluon exchange are described by Quantum Chromo Dynamics
(QCD) [19, 20, 21]. The massless gluon does not only couple to color charge but
carries color itself, leading to gluon self–interactions. This explains that the strength
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of strong interactions decreases at short distances, a feature termed asymptotic
freedom, and that it increases at large distances, the so–called confinement, which
constrains quarks to immediate creation of colorless bound hadrons. Since gluons
must carry some charge and some anticharge, all possible color combinations would
lead to nine gluons. The color singlet is not physically significant, reducing the
number of transmitting gluons to eight.

To understand the weak interaction, it is crucial to introduce the idea of chirality.
Something is chiral if it cannot be superimposed on its mirror image. The term
chirality must not be confused with the notion helicity. Helicity is the projection of
a particle’s spin to its direction of motion, i.e. an observable which is only Lorentz
invariant for massless particles. A massive particle has both left– and right–handed
chiral components or in other words, its wave function ψ consists of a left–handed
chiral part ψL and right–handed chiral part ψR, ψ = ψL + ψR. This means for
example that a massive particle with positive helicity has a left–handed component.
For a massless (ultrarelativistic) particle, chirality equals (approximates) helicity,
since there is no frame of reference in which its helicity would change.

Weak interactions transmit via massive bosons, namely the electrically neutral Z
boson and the electrically chargedW± bosons, inducing limited range. TheW boson
only couples to the left–handed chiral component of the fermion wave function and
respectively to the right–handed component in case of antifermions. The Z boson
couples to both handednesses, even though with different strengths. The weak
force is the only standard model force to affect neutrinos. In weak interactions,
flavor change is possible by W boson exchange. Here, the quantum states of quarks
differ from the mass eigenstates. The transformation from one base into the other is
described by the Cabibbo–Kobayashi–Maskawa matrix (CKM matrix) (1.1) [22, 23].
By convention, the matrix is expressed as a 3 × 3 unitary matrix V which operates
on the quark mass eigenstates (d, s, and b), resulting in the weak eigenstates (d′, s′,
and b′).





d′

s′

b′



 =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 ·





d
s
b



 (1.1)

name symbol mediated force el. charge [e] mass [MeV/c2]

photon γ electromagnetic < 5 · 10−30 < 6 · 10−23

gluon g strong 0 0
Z boson Z0 weak 0 91.188 ± 0.002
W bosons W± weak ±1 80.403 ± 0.029

Table 1.2: The gauge bosons mediating the forces of the standard model. The electric charge and
the mass of the bosons are shown as given by reference [16]. The limit on the photon mass is
based on the magnetohydrodynamics of the solar wind. The limit on the photon’s electric charge
is obtained from astronomical time–of–flight methods.
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The coupling strength of two quarks q1 and q2 to a W boson is proportional to
the matrix element Vq1q2 which has to be determined experimentally. The current
90% confidence limits on the magnitude of the elements, assuming unitarity of the
CKM matrix, are [16]:





0.97383+0.00024
−0.00023 0.2272 ± 0.0010 (3.96 ± 0.09) · 10−3

0.2271 ± 0.0010 0.97296 ± 0.00024 (42.21+0.10
−0.80) · 10−3

(8.14+0.32
−0.64) · 10−3 (41.61+0.12

−0.78) · 10−3 0.999100+0.000034
−0.000004



 (1.2)

The weak interaction was unified with the electromagnetic interaction in the elec-
troweak theory by Glashow, Salam, and Weinberg [24, 25, 26]. Although these two
forces appear very different at low energies, the theory models them as two different
aspects of the same force. Above the unification energy, they would merge into a
single electroweak force. The difference between electromagnetic and weak force
appears due to the electroweak symmetry breaking. The most favored description
of this symmetry breaking is the Higgs mechanism [27, 28, 29, 30] which ascribes
masses to the originally massless gauge bosons, as well as quarks and leptons, by
coupling to a scalar quantum field. In this symmetry breaking, the photon remains
massless, while the W and Z bosons become massive. The quantum excitation of
the Higgs field is the Higgs boson, the only standard model particle not yet observed.

The interaction of two charged elementary particles via the exchange of a gauge
boson can be visualized using Feynman diagrams. Exemplarily, the electron–electron
scattering via exchange of a virtual photon is shown in figure 1.1. Each part of a
Feynman diagram can be translated into a mathematical expression to calculate the
transition amplitude M . Propagation of particles and antiparticles in space–time is
represented by lines; their coupling is visualized by vertices. The cross section of a
process, a measure of the probability of the interaction occurring, can be derived
from the transition amplitude by integrating over all initial and final states, the
phase space.

�


e�

e�

e�

e�

Figure 1.1: The incoming electrons are represented by the lines on the left hand side, the outgoing
electrons by the lines at the right hand side. Their coupling to the photon is visualized at the
vertices represented by the dots. The transmission of the force via a photon is described by its
propagator.
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Nevertheless, at the Tevatron, composed particles (protons and antiprotons) are
collided, making the calculation of a measurable cross section more complicated:
it has to be taken into account that the momentum of the proton (or antiproton)
is shared among all the elementary constituent particles, also called partons. The
proton consists of two u and one d quark, the antiproton of the respective antipar-
ticles. Those constituents, called valence quarks, are bound by virtual gluons which
can split into quark–antiquark pairs, the so–called sea quarks. Since the Feynman
rules apply to elementary particles, the fraction of momentum carried by those par-
tons is crucial to be known, being described by the Parton Distribution Function
(PDF) fi,p(xi, µ

2). This function depends on the scale µ describing the typical en-
ergy scale of the considered interaction. For top–quark physics, this scale is often
set to the top–quark mass µ = mtop. Figure 1.2 shows the CTEQ5L PDF [31] for
µ2 = (175 GeV)2. These PDFs have to be folded with the partonic cross sections to
calculate the measurable cross section in pp̄ collisions.

imomentum fraction x
-410 -310 -210 -110

)2 µ
 , i

 (
x

i
 f ix

0

1

2

3

4

5

imomentum fraction x
-410 -310 -210 -110

)2 µ
 , i

 (
x

i
 f ix

0

1

2

3

4

5

2=(175 GeV)2µCTEQ5L: 

val+seau

val+sead

seab

gluon

Figure 1.2: The CTEQ5L parton distribution function at µ2 = (175 GeV)2 [31].

1.2 The Top Quark

The top quark, the heaviest of the standard model quarks, was discovered in 1995 at
the Tevatron [2, 3]. Like every quark, it participates in both strong and electroweak
interactions, leading to a variety of production modes described in the next sections.
The main difference between the top quark and the rest of the standard model quarks
lies in its large mass, nearly as heavy as a gold nucleus. The current value of the top–
quark mass based on published results is mtop = 174.2±3.3 GeV/c2 [16, 17]; includ-
ing preliminary results, the average mass ismtop = 170.9±1.8 GeV/c2 [32]. Although
the top quark decays via the weak force, its predicted lifetime of τ ≈ 0.5 · 10−24 s is
shorter than the hadronization scale. Hence, the top quark is expected to decay be-
fore top–flavored hadrons can form. This provides the unique opportunity to study
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a bare quark which passes all its properties to its decay products, in almost 100%
of the cases a W boson and a b quark due the value of |Vtb| ≈ 1 (see limits on CKM
matrix elements (1.2)). A detailed review on top–quark physics in hadron collisions
can be found in reference [33].

1.2.1 Production of Top–Quark Pairs via Strong Interaction

In hadron collisions, top quarks are predominantly produced in pairs via the strong
interaction. In proton–antiproton collisions at the Tevatron, two production mech-
anisms are dominant: top–quark pair production via quark–antiquark annihilation
(figure 1.3(a)) and via gluon fusion (figure 1.3(b)).

�
g

q

�q

t

�t

(a)

�
g

g

g

t

�t

(b)

Figure 1.3: Leading–order Feynman diagrams of top–quark pair production: (a) quark–antiquark
annihilation and (b) gluon fusion.

For a top–quark mass of mtop = 175 GeV/c2, the production cross section at the
Tevatron with

√
s = 1.96 TeV is predicted to be σtt̄ = 6.70+0.71

−0.88 pb [34]. In next–to–
leading order calculations, the annihilation contributes about 85%, the gluon fusion
about 15% to the total cross section.

1.2.2 Production of Single Top–Quarks via Electroweak In-

teraction

Besides the production of top–quark pairs involving strong interactions, the produc-
tion of single top–quarks via electroweak interaction is predicted by the standard
model. Since electroweak top–quark production proceeds via a Wtb vertex, it pro-
vides the opportunity of a direct measurement of the CKM matrix element |Vtb|.
The three electroweak production modes in pp̄ collisions are distinguished by the
virtuality Q2 of the participating W boson, with Q2 = −q2 where q is the four–
momentum of the W boson. The two dominating production modes are named
according to the relevant Mandelstam variables involved in the transition matrix
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elements. In t–channel production, the produced virtual W boson is space–like
(q2 = t < 0), while it is time–like (q2 = s ≥ (mtop +mb)

2) in s–channel production.
The third production mode does not fit in this name scheme, since an on–shell (or
almost on–shell) W boson is produced in conjunction to the top quark.

�
W+

b

q

t

q0

(a)

�bW+
g

q

�b
t

q0

(b)

Figure 1.4: Single top–quark production in the t–channel at (a) leading order and (b) including
initial state gluon splitting. For antitop–quark production, the charge conjugate processes apply.

In t–channel top–quark production, also known as W–gluon fusion, a virtual space–
like W boson strikes a b sea–quark inside the proton or antiproton as shown by
the Feynman graphs in figure 1.4. The leading order 2 → 2 process is displayed in
figure 1.4(a). The most important next–to–leading order correction, illustrated in
figure 1.4(b), is a 2 → 3 process which takes into account that the b quark originally
stems from gluon splitting, leading to an additional b̄ quark in the event. Due to the
large mass difference between top and b quark, the b quark is taken as massless in
theoretical calculations, leading to a singularity if the b̄–quark’s direction of motion
is collinear to the gluon. This calculative problem can be canceled by introducing a
PDF for the b quark being part of the quark sea (as illustrated in figure 1.2), resulting
in the 2 → 2 process in figure 1.4(a) as the leading order process. For non–zero b–
quark masses, this collinear singularity is reflected in the tendency for the b̄ quark to
be produced at high rapidity and low transverse momentum [35, 36]. The predicted
cross section of W–gluon fusion at next–to–leading order at the Tevatron is σt =
1.98+0.28

−0.22 pb, assuming mtop = 175 GeV/c2. The cross section is taken from reference
[37]; the uncertainty was evaluated in reference [38] and includes uncertainties due
to the factorization scale (±4%), the choice of PDF parameterization (+11.3%

−8.1% ), and

the uncertainty in the top–quark mass (−6.9%
+7.5%). The mass of the b quark and the error

in αs play an insignificant role in the overall uncertainty for measurable quantities.

In s–channel production, two quarks annihilate into a highly virtual W boson which
produces a top (antitop) and a b̄ (b) quark. The leading order Feynman graph for
top–quark production is displayed in figure 1.5(a). An example of next–to–leading
order correction including initial state gluon splitting is shown in figure 1.5(b). This
production process has the same initial and final state as the 2 → 3 W–gluon fusion
production displayed in figure 1.4(b). In contrast to the t–channel process, where
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Figure 1.5: Single top–quark production in the s–channel at (a) leading order and (b) including
initial state gluon splitting. For antitop–quark production, the charge conjugate processes apply.

the tb̄ pair forms a color–octet state since it originates from a gluon, the top and the
b̄ quark form a color–singlet state in s–channel since both quarks stem from a W
boson. Therefore, both t– and s–channel are separately gauge invariant and cannot
interfere. At the Tevatron, the predicted cross section of s–channel production at
next–to–leading order is σs = 0.88+0.12

−0.11 pb for mtop = 175 GeV/c2 [37, 38]. Here,

the uncertainty includes ±2% due to the factorization scale, +4.7%
−3.9% due to the PDF

parameterization and −10.0%
+11.7% due to the uncertainty in the top–quark mass.

�
t

b

g

W�

t

Figure 1.6: Associated single top–quark production at leading order. For antitop–quark produc-
tion, the charge conjugate processes apply.

The leading order Feynman graph of associated single top–quark production, also
named Wt production, is shown in figure 1.6. The predicted cross section of this
production mode at the Tevatron for mtop = 175 GeV/c2 is σa = 0.094+0.015

−0.012 pb [39],
assuming

√
s = 2.0 TeV. Since this cross section is negligible, the further discussion

is restrained on t– and s–channel single top–quark production.

At the Large Hadron Collider (LHC) currently under construction at CERN in
Geneva (Switzerland), where proton–proton collisions at a center–of–mass energy of√
s = 14.0 TeV will take place, the situation will be different. The cross sections of

the single top–quark production mechanisms via t– and s–channel will differ for top–
quark and antitop–quark production. The predicted cross section for the production
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via t–channel is (156± 8) pb for top quarks and (91± 5) pb for antitop quarks. For
the s-channel production mode, the cross section will be (6.6±0.6) pb for top quarks
and (4.1 ± 0.4) pb for antitop quarks, both comparable to the uncertainties on the
t–channel production cross sections [37, 38]. The associated production will gain
importance at the LHC. The cross section for W−t and W+t̄ will be equal, leading
to a total cross section of 62+17

−4 pb [40].

The single top–quark production t– and s–channel processes illustrated in figures 1.4
and 1.5 are dominated by contributions from u and d quarks coupling to the W
boson. Contributions from s or c sea–quarks in the initial state are small, an effect
of only ≈ 6% for t–channel and ≈ 2% for s–channel production [41]. Besides the
presented Feynman graphs involving aWtb vertex, there are several other production
channels via Wtd or Wts vertices which are strongly suppressed due to tiny CKM
matrix elements.

In single top–quark production via t– and s–channel, the top quark is almost ex-
clusively created with negative helicity due to the left–handed structure of the Wtb
coupling. Since top quarks are not produced as ultrarelativistic particles, the chi-
rality eigenstates are not identical to the helicity eigenstates, leading to a small spin
asymmetry A↑↓ =

N↑−N↓

N↑+N↓
. The spin polarization is passed to the decay products,

since the top quark decays as a quasi free particle; i.e. in the top–quark rest frame,
the angular distributions of the decay products are sensitive to the spin polarization
of the top quark. According to reference [42], the angle θℓ~s between the charged
lepton ℓ from the W decay and the top–quark spin axis ~s has maximum analyzing
power. The angular distribution is given by

dN

d(cosθℓ~s)
=

1

2
(1 + A↑↓cosθℓ~s) . (1.3)

In reference [36], it is shown that the direction of the d–type quark provides the most
effective spin axis for all single–top quark production mechanisms. The direction of
the d–type quark is experimentally not known and has to be chosen by taking into
account the Feynman graphs shown in figures 1.4 and 1.5.

Looking at the leading order s–channel production mechanism in figure 1.5(a), it is
obvious that the d–type quark is in the initial state, i.e. stemming from either the
proton or the antiproton. Thus, the beam axis provides the ideal basis for analyzing
the spin polarization in s–channel events. In antitop–quark production, the initial
state contains a d quark, in most cases provided by the proton. In top–quark
production, respectively, the initial d̄ quark stems mostly from the antiproton; that
is why, in the top–quark rest frame, the top–quark spin is aligned with the antiproton
beam 98% of the time.

In t–channel production, the d–type quark can either be in the final state (77%
of the cases [36, 43]) or in the initial state (23% of the cases). However, in both
cases, the observed light–quark jet is a good basis to analyze the top–quark spin,
since the final state u–type quark tends to move in the same direction as the initial
state d–type quark. In the basis of the light–quark jet, the polarization of the top



10 Chapter 1. Top Quarks within the Standard Model

Background

Single top

cos θ

d
σ
/d

co
s
θ

(f
b
)

1.00.50.0-0.5-1.0

2.0

1.5

1.0

0.5

0.0

Figure 1.7: Angular distribution of the charged lepton in t–channel events at the Tevatron
(
√

s = 2 TeV) with respect to the light–quark jet. For comparison, the distribution of the main
background processes (W+jets and tt̄) is shown as well. The plot is taken from reference [43].

quark is 95%. As illustration, figure 1.7 shows a theoretical prediction of the angular
distribution (1.3) between the charged lepton and the light–quark jet in t–channel
events [43]. The suppression at cos θ ≈ 1 is due to a cut on the distance between
lepton ℓ and jet j, ∆Rℓj =

√

(ηℓ − ηj)2 + (φℓ − φj)2 > 0.7, which resembles the effect
of jet clustering and the isolation requirement of leptons employed in experimental
analyses.

1.3 Is Vtb ≃ 1?

The value of the CKM matrix element Vtb, related to the top–bottom charged cur-
rent, is often considered to be known to a very satisfactory precision (see table 1.2
for the current boundaries). However, this range is determined using a full set of
tree–level processes and relies on the unitarity of the 3 × 3 CKM matrix. The uni-
tary assumption is mainly supported by three experimental facts, namely the fact
that the first two rows are consistent with the unitary condition, the measurement
of the Bs–mixing frequency constrains the ratio |Vtd/Vts|, and the measurement of
R ≡ |Vtb|2/(|Vtd|2 + |Vts|2 + |Vtb|2) ≈ 1 implies a strong hierarchy between Vtb and
the other two matrix elements.

On the other hand, contrary to what has sometimes been argued, none of these
experimental facts are directly constraining Vtb. In fact, even its determination from
R comes simply from taking the square root of R, assuming the unitarity of the CKM
matrix. Since no measurement of the single–top–quark production cross section yet
exists, it is theoretically still possible that Vtb /≃1.

In reference [44], two minimal extensions of the standard model are discussed al-
lowing a value for Vtb considerably different from one. In the first model, the intro-
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duction of a new vector–like top singlet leads to a global rescaling of Vtd, Vts, and
Vtb leaving R unchanged. In the second model, a complete new forth generation is
added and the R measurement is used as a direct constraint.

A vector–like t′ quark: The introduction of one vector–like t′ quark with Q =
2/3 is the minimal way to implement a rescaling of all Vti entries:

Vti = V
(0)
ti cos θ (1.4)

with V
(0)
ti being the standard–model value. If this hypothetical iso–singlet quark has

a mass around the electroweak scale, it naturally mixes with its nearest neighbor,
i.e. the standard–model top quark. Since such an enlargement of the 3 × 3 CKM
matrix does not spoil the unitarity of the first two rows of the matrix, this extension
of the standard model introduces only two new parameters, namely the t–t′ mixing–
angle θ and the t′–quark mass mt′ . Additionally, flavor changing neutral currents
are implied whose non–observation constrains θ. A theoretical bound on Vtb is
found to be |Vtb| ≃ | cos θ| > 0.71, while the most stringent experimental constraint
is | cos θ| ≥ 0.91. A limit on the mass of the t′ quark has been measured to be
mt′ ≥ 256 GeV/c2 [45].

Fourth Generation: Another possible extension of the CKM structure of the
standard model is the addition of a fourth generation. In this case, the presence of
a b′ quark implies a unitary 4×4 matrix such that tree–level flavor changing neutral
currents in hadronic Z–boson decays are forbidden. The new CKM matrix elements
can be written as

Vui = cos θwV
(0)
ui (1.5)

Vci = cos θvV
(0)
ci − sin θwV

(0)
ui (1.6)

Vti = cos θuV
(0)
ti − sin θu sin θvV

(0)
ci − sin θu cos θv sin θwV

(0)
ui (1.7)

Vt′i = sin θuV
(0)
ti + cos θu sin θvV

(0)
ci + cos θu cos θv sin θwV

(0)
ui . (1.8)

Theoretical considerations as well as experimental results constrain the three pa-
rameters θu, θv, and θw to |θw| ≤ O(λ2), |θv| ≤ O(λ), and | cos θu| ≥ 0.93 with the
Wolfenstein parameter λ ≡ sin Θc ≃ 0.22. Theoretical limits on the values of Vti are
found to be |Vtd| ≤ 0.03, |Vts| ≤ 0.2, and |Vtb| ≥ 0.8, respectively.
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Chapter 2

The Experimental Design

The CDF II experiment is hosted by the Fermi National Accelerator Laboratory,
also known as FNAL or Fermilab. Fermilab is located in about 70 km distance
to Chicago in Batavia, Illinois (USA). An aerial view of the Fermilab accelerator
complex is given in figure 2.1.

Figure 2.1: Aerial view of the Fermilab facility. The course of the Tevatron ring is indicated by
the rear circular maintenance road.

Currently, the Tevatron is the accelerator with the highest center–of–mass energy√
s in operation. The first proton–antiproton collisions at

√
s = 1.80 TeV took

place in 1985. So–called Run I continued until 1996, leading to the discovery of the
top quark in 1995. Starting 1996, the accelerator complex was upgraded to increase
the initial luminosity and the center–of–mass energy. In 2001, Tevatron Run II
started colliding particles at

√
s = 1.96 TeV and is supposed to continue until 2009.
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Collisions at energies of this amount make high demands on the engineering of both
accelerator system and detectors, being described in the following sections.

2.1 Accelerating and Colliding the Particles

To generate protons and antiprotons finally colliding with a center–of–mass energy√
s = 1.96 TeV, a complex system of succeeding accelerators is realized at Fermilab.

A schematic overview of the accelerator chain is given in figure 2.2.

Figure 2.2: Schematic overview of the accelerator chain at Fermilab.

The first step in the accelerator system is the proton extraction using a source of
negatively charged hydrogen ions. The ion source is housed in an electrically charged
dome (−750 kV) which is part of the Cockcroft–Walton–type pre–accelerator. This
source converts hydrogen gas to H− ions which are accelerated to an energy of
750 keV while being guided by titanium electrodes from the charged dome to the
grounded wall. Those pre–accelerated ions are passed to the LINear ACcelerator
(LINAC) where they are accelerated to 400 MeV by radio frequency (RF) resonators.
At the end of the LINAC, after about 130 m, the negative hydrogen ions enter the
first synchrotron in the acceleration chain, the Booster, passing a carbon foil where
the electrons are stripped off. In this circular accelerator with a circumference of
about 475 m, the remaining protons are accelerated to 8 GeV before entering another
synchrotron with seven times the circumference, the Main Injector.

The Main Injector has several operation modes, depending on the status of the
acceleration process. For antiproton production, or “stacking” as it is called, one
proton batch from the Booster is injected and accelerated to 120 GeV. The more
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commonly used method is to inject two Booster batches and merge them together
during acceleration, called “slip–stacking”. The proton beam is extracted from the
Main Injector and sent to the Antiproton Source where it hits a nickel target. The
high–energetic protons striking the target produce a spray of all sorts of secondary
particles which are focused by a lithium lense. Using magnets acting as charge–mass
spectrometer, antiprotons with energies of approximately 8 GeV are collected out
of this spray and sent to the Debuncher. In this first synchrotron of the Antiproton
Source with a mean radius of 90 m, the antiproton bunches are rotated by radio
frequency manipulations. This is necessary because the protons striking the nickel
target are bunched, leading to bunched antiprotons. Those antiprotons have a large
spread in energy which is stochastically cooled [46, 47] in the Debuncher before
the antiprotons are sent to the second synchrotron of the Antiproton Source, the
Accumulator. In this synchrotron with a mean radius of 75 m, housed in the same
tunnel as the Debuncher, the antiprotons are stored at an energy of 8 GeV and
further cooled down, using both RF and stochastical cooling systems.

From the Antiproton Source, the antiprotons are sent to the Recycler which is lo-
cated along the ceiling of the Main Injector. The proposed purpose of the Recycler
was to recycle antiprotons from the Tevatron, cooling and storing them alongside
those from the Antiproton Source. Those plans have been abandoned due to early
problems in Run II. The Recycler now accepts transfers only from the Antiproton
Source and cools the antiprotons further than the Accumulator is capable. In ad-
dition to stochastical cooling, electron cooling is necessary for higher intensities.
Electron cooling works on the principle of momentum transfer between electrons
and antiprotons of the same average velocity [48]. The antiproton beam is overlaid
with a 4.3 MeV electron beam traveling about 20 m along the same path in the
Recycler [49]. Coulomb scattering leads to energy transfer from the antiprotons to
the co–streaming electrons until thermal equilibrium is attained. After cooling the
so–called “stash”, the antiprotons are mined into nine parcels, each split into four
bunches.

To prepare the final injection to the Tevatron main ring, i.e during the so–called
“shot setup”, seven bunches of 8 GeV protons are transferred from the Booster
to the Main Injector and accelerated to 150 GeV. After being coalesced to one
bunch, the protons are shot into the Tevatron ring. This procedure is repeated 36
times. After transferring all proton bunches to the Tevatron ring, four antiproton
bunches are extracted from the Recycler and accelerated to 150 GeV in the Main
Injector before they are shot into the Tevatron. This procedure is repeated nine
times, leading to a 36 × 36 bunch structure of the Tevatron beam.

The final acceleration stage is the Tevatron, a circular synchrotron with a circumfer-
ence of about 6 km. It is the world’s first superconducting synchrotron and the only
cryogenically cooled accelerator at Fermilab. The superconducting coils are made
of niobium/titanium alloy which needs to be kept at T ≈ 4 K. The advantage of
superconductive magnets is that they do not dissipate power, since the wires do not
have any electrical resistance.

The Tevatron accepts both 150 GeV protons and antiprotons from the Main Injector
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and accelerates them to 980 GeV. The beam is split into three trains, each contain-
ing 12 bunches with 396 ns separation. The bunch revolution time is approximately
21 µs. Empty spaces between the trains, the abort gaps of ≈ 2.6 µs, allow kicker
magnets to ramp up. Those kicker magnets are used to abort the beam by guiding
it into graphite beam dumps.

The Tevatron beam is brought to collision at two intersection points: B0, the location
of the CDF II experiment, and D0 where the DØ detector records the collisions.
Before the experiments start data taking, the beam needs some fine tuning. At
the intersection points, the beam is focused to smaller transverse size, called “low
β squeeze”, before collisions are initiated. To obtain a beam profile of maximum
quality, the beam halo is removed by moving stainless steal collimators close to the
beam, so–called “scraping”.

One important point for colliding beams is to keep the abort gaps clean. During
collisions, those are gradually filled with a direct current (DC) component of the
beam, since particles diffuse out of bunches and are no longer captured in RF buck-
ets. The DC component in the abort gaps is cleaned by shooting an low–energy
electron beam, called “electron lens”, into the gaps and thus excite the DC beam
particles to very large amplitudes until they are lost [50].

Once the beam is stable, the experiments ramp up the high voltage of the various
detector components and record data until the store (the period between Tevatron
beam initialization and abortion) ends. The typical duration of a store is several
hours; the longest store lasted more than 60 hours.

2.1.1 Luminosity

The instantaneous luminosity L is a measure of the ability of a collider to produce
collisions:

L = n · f · NpNp̄

4πσxσy

, (2.1)

where n is the number of bunches, f is the revolution frequency, Np (Np̄) is the
number of protons (antiprotons) per bunch, and σx and σy represent the average
transverse width of the bunches. L is measured in units of cm−2s−1, typifying a
particle flux. Integrating the instantaneous luminosity over time gives the so–called
integrated luminosity, Lint =

∫

Ldt, which is a measure of the amount of collected
data. To calculate the event rate of a certain physics process, the probability of the
process occurring is essential. This probability, the cross section σ, is usually given
in cm2. In particle physics, cross sections are preferably quoted in picobarn (pb),
where 1 pb = 10−36 cm2. For a particular cross section, the number of events N in
a given amount of data can be calculated by N = σ · Lint.

The maximum luminosity is reached at the beginning of a store because the number
of protons and antiprotons diminishes during collisions, leading to an exponential
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Figure 2.3: The initial luminosity in Run II as a function of time.

decrease in luminosity. Figure 2.3 shows the development of the initial luminosities
over time. At the beginning of Run II, the initial luminosities were rather small
but increased with improved understanding and handling of the accelerators. The
design luminosity of 270 · 1030 cm−2s−1 [51] was reached in Winter 2006/2007, the
current record luminosity is 292.3 · 1030 cm−2s−1.
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Figure 2.4: Evolution of the delivered and recorded integrated luminosity. The integrated lumi-
nosity delivered by the Tevatron is displayed in red, the integrated luminosity recorded by CDF is
shown in blue.

Figure 2.4 illustrates the development of Lint over time. Up to date (May 2007), the
Tevatron delivered about 2.6 fb−1 whereof CDF managed to record approximately
2.1 fb−1, leading to an average data taking efficiency of 82%. The Tevatron Run II
goal is to deliver an integrated luminosity between 4.4 fb−1 and 8.5 fb−1 until August



18 Chapter 2. The Experimental Design

2009 [51]. The data used in the analysis described in this thesis were taken from
February 2002 (store 955) until February 2006 (store 4666) and correspond to an
integrated luminosity of 955 pb−1.

2.2 The Collider Detector at Fermilab

The Collider Detector at Fermilab (CDF), located at intersection point B0, is an
azimuthally and forward-backward symmetric general purpose solenoid detector [52].
It combines precision charged particle tracking with fast projective calorimetry and
fine grained muon detection to record as much information as possible.

(a) (b)

Figure 2.5: (a) Schematic view of the CDF II detector with its different components. The inner
green and orange parts represent the tracking system and the red and blue ones the calorimeters.
The labels refer to the different components of the muon system. (b) The CDF II coordinate
system.

Figure 2.5(a) shows a cutaway view of the CDF II detector with its diverse compo-
nents. The tracking systems are contained in a superconducting solenoid made of
an aluminium–stabilized niobium/titanium conductor. This helium–cooled solenoid,
1.5 m in radius and 4.8 m in length, generates a 1.4 T magnetic field parallel to the
beam axis. Calorimetry and muon systems are arranged outside the solenoid.

The detector is described using a cylindrical coordinate system with the z axis along
the proton beam, azimuthal angle φ, and polar angle θ as displayed in figure 2.5(b).
The azimuthal angle is defined with respect to the outgoing radial direction, the
polar angle with respect to the proton beam direction. Usually the polar angle is
expressed through the pseudorapidity η = − ln(tan θ

2
), motivated by the fact that

production of relativistic particles is constant as a function of rapidity. Additionally,
the difference in η of two relativistic particles is independent of Lorentz boosts along
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the beam axis. The transverse energy and momentum of a particle are defined as
ET = E · sin θ and pT = p · sin θ, respectively.

2.2.1 Tracking System
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Figure 2.6: Longitudinal view of the CDF II tracking system and the plug calorimetry.

The CDF tracking system, installed close to the beam pipe, is surrounded by a 1.4 T
magnetic field bending the tracks of charged particles to helices. Hence, precise
measurement of particle momenta is possible. The tracking system, schematically
displayed in figure 2.6, consists of two main parts: a barrel shaped silicon microstrip
system and an open–cell drift chamber [53] that surrounds the silicon system. The
silicon detector comprises three subdetectors, namely the Silicon VerteX detector
(SVX II) [54], the Intermediate Silicon Layers (ISL) [55], and so–called Layer 00 [56].

Layer 00 is a radiation hard, single–sided silicon microstrip detector, directly at-
tached to the beam pipe. There are 12 sensors along the beam line for a total length
of 94 cm. To prevent gaps, the silicon sensors are arranged in two overlapping sub-
layers at radii r = 1.35 cm and r = 1.62 cm, covering |η| ≤ 4.0. The inner modules
are smaller than the outer ones as shown in the schematic overview in figure 2.7(a).
Due to the position nearby the beam pipe and hence close to the primary interaction
point, Layer 00 provides important contributions to high–quality track reconstruc-
tion. SVX II is built in three cylindrical barrels whereof each supports five layers of
double–sided silicon strip detectors with radii 2.5 < r < 10.7 cm. The silicon vertex
detector with a total length of 96 cm covers the region with |η| < 2. The sensors of
all SVX II layers feature strips parallel to the z axis on one side, providing detailed
measurement of the coordinates in the r–φ plane. The strips on the backside of the
sensors in layers 0, 1, and 3 (see schematic view in figure 2.7(b)) are rotated by 90◦
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(a) (b) (c)

Figure 2.7: Schematic overview of the components of the silicon microstrip detector: (a) Layer 00,
(b) SVX II, and (c) Intermediate Silicon Layers.

with respect to the axially aligned strips and hence combine the r–φ measurement
with precise determination of the z coordinate. To obtain unique three–dimensional
information, the strips on the backside of the sensors in the other two layers (layer
2 and layer 4), named small angle stereo (SAS) layers, are twisted by 1.2◦ with
respect to the axially aligned strips. The geometry of the 1.9 m long ISL, consisting
of double–sided SAS sensors, is schematically shown in figure 2.7(c). In the central
region (|η| < 1.0), a single ISL layer is placed at a radius of 22 cm. In the plug
region, 1.0 ≤ |η| ≤ 2.0, two layers of silicon are placed at radii of 20 cm and 29 cm.
This entire tracking system provides precise three-dimensional track reconstruction.
The impact parameter (the closest distance of approach of the particle trajectory to
the beam line) resolution of the combination of SVX II and ISL is 40 µm including
30 µm contribution from the beam width. The z0 resolution of SVX II and ISL is
70 µm.

The silicon microstrip system is surrounded by the central outer tracker (COT),
a 3.1 m long cylindrical drift chamber filled with a 50 : 50 mixture of argon and
ethane gas. The active volume of the COT covers the radial range from 43.4 cm
to 132.3 cm and the η range of |η| ≤ 1. The drift chamber provides 96 measure-
ment layers, organized into eight alternating axial and ±2◦ stereo angle superlayers.
The hit position resolution is approximately 140 µm, the momentum resolution
σ(pT)/p2

T = 0.0015 (GeV/c)−1. Furthermore, the COT provides dE/dx information
for the tracks.

2.2.2 Time–of–Flight

A Time–of–Flight (TOF) detector, based on plastic scintillators and fine-mesh pho-
tomultipliers, is installed in a few centimeters clearance just outside the COT. The
TOF resolution is ≈ 100 ps and it provides at least two standard deviation separa-
tion between K± and π± for momenta p < 1.6 GeV/c.
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2.2.3 Calorimetry

Outside the solenoid, scintillator–based calorimetry allows the measurement of the
particle and jet energies by fully absorbing all particles except muons and neutrinos.
The calorimeters are segmented into projective towers, each one covering a small
range in pseudorapidity and azimuth. The system consists of five units whose cover-
ages, depths, and energy resolutions are summarized in table 2.1: the Central Elec-
troMagnetic (CEM) [57] and Central HAdron (CHA) [58] calorimeters, covering the
η range up to |η| ≤ 1.1 (or |η| ≤ 0.9, respectively), the end–Wall HAdron calorimeter
(WHA) [58] and the end–Plug ElectroMagnetic (PEM)and HAdron (PHA) calorime-
ters [59], which complete a coverage of 2π in azimuth up to |η| ≤ 3.64.

The CEM, directly located outside the solenoid, is a sampling calorimeter consisting
of 31 layers of 5 mm thick polystyrene scintillator as the active medium, interspersed
with 3.2 mm thick lead, with a depth of 18 radiation lengths. The energy resolution
in the CEM is 13.5%/

√
E ⊕ 1.5%. The CHA is 32 layers deep, using acrylic scin-

tillator as active medium, interspersed with 2.5 cm steel absorber, corresponding
to 4.7 interaction lengths. Its energy resolution is 50%/

√
E ⊕ 3% for charged pions

that do not interact in the CEM.

Calorimeter η range Depth Energy Resolution

CEM |η| ≤ 1.1 18 X0 13.5%/
√
E ⊕ 1.5%

PEM 1.1 ≤ |η| ≤ 3.64 23.2 X0 16%/
√
E ⊕ 1%

CHA |η| ≤ 0.9 4.7 λI 50%/
√
E ⊕ 3%

WHA 0.9 ≤ |η| ≤ 1.3 4.7 λI 75%/
√
E ⊕ 4%

PHA 1.3 ≤ |η| ≤ 3.64 6.8 λI 80%/
√
E ⊕ 5%

Table 2.1: Overview of the η range, depth and energy resolution of the different calorimetry sys-
tems. The depth is quoted in radiation lengths X0 or hadronic interaction lengths λI , respectively.
The depths and energy resolutions are taken from reference [60].

2.2.4 Muon System

The muon system [61] is located outside the calorimetry to ensure that all particles
except for muons and neutrinos are already absorbed. Four systems of scintillators
and proportional chambers, filled with a 50 : 50 ratio of argon and ethane (bubbled
through ethanol), are used for detection of muons over the region |η| ≤ 1.5. The
Central MUon Detection (CMU) system [62], located around the outside of the
CHA, consists of four layers of planar drift chambers which cover |η| ≤ 0.6 and is
able to detect muons with a transverse momentum pT ≥ 1.4 GeV/c. The Central
Muon uPgrade (CMP) [63], forming a box around the central detector, consists of
a second set of four layers of drift chambers covered by scintillators (CSP). The
CMP is located outside the magnet return yoke, which constitutes another 0.6 m
of absorbing steel. It detects tracks of muons with pT ≥ 2.0 GeV/c in the same
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η range as the CMU. The Central Muon eXtension (CMX) [63] consists of conical
sections of drift tubes and scintillators (CSX) located at each end of the central
detector and extends the pseudorapidity coverage of the muon system from 0.6 to
1.0. The fourth muon system, the Barrel MUon detection system (BMU) consisting
of drift chambers and scintillators (BSU), is installed on top of the forward toroids
(not powered in Run II) and covers the pseudorapidity interval 1.0 ≤ |η| ≤ 1.5.

Table 2.2 summarizes the main properties of the different muon chambers.

CMU CMP CMX BMU

coverage |η| ≤ 0.6 |η| ≤ 0.6 0.6 ≤ |η| ≤ 1.0 1.0 ≤ |η| ≤ 1.5
chamber area [cm2] 6.35 × 2.68 2.54 × 15.24 2.54 × 15.24 2.54 × 8.38
chamber length [cm] 226 640 183 363
drift time [ns] 800 1500 1600 800
min. pT [GeV/c] 1.4 2.0 1.4 1.4 - 2.0

Table 2.2: Design parameters of the CDF II muon detectors.

2.3 The CDF Trigger System

Due to the bunch structure of the Tevatron beam, the bunch crossing rate is ap-
proximately 2.5 MHz (the original plan to upgrade the Tevatron to a crossing rate
of 7.6 MHz was not realized because of beam stability issues). Taking into account
the train structure, this is reduced to an effective crossing rate of 1.7 MHz. Since
it is impossible to record each collision, it is necessary to draw decisions whether a
specific event is worth to be recorded on an event–by–event basis. This is achieved
by the CDF three–level trigger system [64], illustrated in figure 2.8. The first two
trigger levels are realized by special–purpose hardware, whereas the third one is
implemented by software running on a Linux computer farm.

The first level (L1) finds physics objects based on a subset of the detector. Three
parallel systems examine each event: calorimeter trigger boards find calorimeter–
based objects, muon trigger cards identify muons and the eXtremely Fast Trigger
(XFT) reconstructs tracks in the COT and matches those tracks to energy depo-
sitions in calorimeter towers or hits in the muon chambers. Information from all
three systems is used independently to determine whether an event is passed to the
second trigger level (L2). The typical L1 accept rate up to date is 25 kHz.

The L2 trigger performs minimal event reconstruction using custom–designed hard-
ware consisting of several asynchronous subsystems. Besides calorimeter, track, and
muon based streams, L2 incorporates information from the CEntral Shower max-
imum detector (CES) and SVX II. The CES, a strip chamber which is placed in
the CEM at a depth corresponding to the average maximum of an electromagnetic
shower, provides additional information about photons and electrons. The Silicon
Vertex Trigger (SVT) [65] allows selection of tracks with a large impact parameter
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Figure 2.8: Functional block diagram of the CDF II data flow, quoting the initial design rates.

which is most important for b–Meson physics. L2 currently accepts about 600 events
per second which are passed to the third trigger level (L3).

The L3 trigger [66] is a processor–based filtering mechanism which has access to the
full event record, drawing its conclusions based on the event topology. Accepted
events are written to permanent storage media with approximately 100 Hz. To
facilitate the handling of the huge collected data volumes, the events passing all
three trigger levels are split into eight different data streams. The decision to which
stream an event belongs depends on the triggers an event has passed; e.g. all events
passing any of the high–pT lepton triggers end up in “stream B”.
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Chapter 3

Neural Networks

Neural Networks are an attempt to emulate the functionality of the human brain
with neurons connected among themselves. One successful approach are feed–
forward networks with nodes arranged in separate layers, illustrated in figure 3.1.
In this approach, each node has only connections from nodes of the preceding and
to nodes of the succeeding layer; there is no connection among nodes of the same
layer. I.e. information is only “fed forward” from one layer to the next until the
output layer is reached.

Input layer

Hidden layer

Output layer

Figure 3.1: General geometry of a three–layer neural network.

Basic functionalities of feed–forward networks as well as specific properties of the
NeuroBayes R© [67] neural network package utilized in this thesis are described in the
following sections.
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3.1 Functionality of NeuroBayesR©

NeuroBayes R© combines a three–layer feed–forward neural network with a complex
robust preprocessing. This preprocessing is performed before the input variables
are fed to the neural network. The neural network uses Bayesian regularization
techniques for the training process. The network infrastructure consists of one input
node for each input variable plus one bias node, an arbitrary number of hidden nodes,
and one output node which gives a continuous output in the interval [−1, 1].

The nodes of two consecutive layers are catenated with variable connections. For
each node j, a biased weighted sum of the values of the previous layer xi is calculated

aj(x) =
∑

i

ωijxi + µ0,j (3.1)

and passed to the transfer function which gives the output of the node. The bias
µ0,j implements the threshold of node j. The output of each node is determined by
a transformed sigmoid function

S(x) =
2

1 + e−a(x)
− 1 (3.2)

which gives an output of −1 for background and +1 for signal. As can be seen in
figure 3.2, the sigmoid function is only sensitive to a relatively small range around
zero. By this transformation, the interval [−∞,+∞] is mapped to the interval
[−1,+1]. For very large (x → ∞) or very small (x → −∞) values, a saturation
effect is reached. The bias mentioned above shifts the mean of the sum of the
weighted input data distribution

∑

i ωijxi to the linear part of the sigmoid function.
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Figure 3.2: The transformed sigmoid activation function S(a(x)) as given by equation 3.2.

The output of the neural network for the output node is calculated by

o = S(
M

∑

j=0

ωj · S(
d

∑

i=0

ωijxi + µ0,j)) (3.3)



3.1. Functionality of NeuroBayesR© 27

where d is the number of input nodes and M the number of hidden nodes. ωij

denotes the weights from the input to the hidden layer, ωj the weights from the
hidden layer to the output node. µ0,j is the weight that connects the bias node with
the hidden nodes.

3.1.1 The Training Process

The training of a neural network is done by minimizing the deviation between the
true output and the one calculated by using the actual weights. The error function
minimized in this neural network is the entropy error function

ED =
∑

i

log(
1

2
· (1 + Ti) · oi + ǫ), (3.4)

where the target value Ti is a binary number to classify event i as signal or back-
ground, oi represents the output as given by equation 3.3. ǫ is a small regularization
constant which is introduced in order to avoid numerical problems at the beginning
of the training. This constant is reduced in each training iteration and is zero after
just a few iterations.

The aim of the training of a neural network is to find the minimum in the mul-
tidimensional structure of the error function which may exhibit many peaks and
valleys. As this task can be difficult to solve, the training process is done by the
combined method of backpropagation and gradient descent, i.e. the change of each
weight ∆ωij is adjusted proportional to the current gradient of the error function
∆ωij = −η ∂ED

∂ωij
. The step width η is adapted individually for each weight during the

training. Since the target value is not known for hidden nodes, the error induced
by the current weights has to be propagated backwards from the output node by
applying the chain rule for partial derivatives.

The neural network is trained with regularization techniques to improve generaliza-
tion performance and to avoid overtraining. During the training process, the weights
are systematically reduced in addition to the variation calculated by the gradient
descent procedure. Thus, only recurring structures are intensified while the influ-
ence of statistical fluctuations is reduced by so–called weight decay. Connections
(and even nodes) that have become completely insignificant are pruned away. This
reduces the number of free parameters and hence improves the signal–to–noise ratio
by removing the cause of the noise, leading to an improved generalization ability.
For details of the above mentioned features see references [67, 68].

3.1.2 Preprocessing of the Variables

To find the optimal starting point for minimizing the error function, the input
variables are preprocessed. This preprocessing is done in a completely automatic
way. Equalizing the input variables and scaling them to be distributed between −1
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and 1 before passing the variables to the neural network reduces the influence of
extreme outliers. Those flattened distributions are then converted into Gaussian
distributions, centered at zero with standard deviation one. At the beginning of the
training, this avoids saturation of the nodes due to the above mentioned shape of the
activation function (see figure 3.2) and assures that also the inputs to the next layers
are distributed with mean zero and width one. To decorrelate the preprocessed
input variables, at first, their covariance matrix is calculated. Diagonalizing the
covariance matrix using Jacobi rotations [69] and dividing the rotated input vectors
by the square root of the corresponding eigenvalue transforms the covariance matrix
into a unit matrix.

The above mentioned transformation to a Gaussian distribution may be altered by
individual variable preprocessing like fitting a spline curve to the flattened distri-
bution. In addition, discrete variables can be treated as members of classes. The
preprocessing of those kinds of variables can also deal with a certain order of val-
ues, e.g. the number of tracks in a jet. The preprocessing is also able to deal with
variables that are only given for a subset of events by assigning the missing values
to a δ function.

3.1.3 Automatic Variable Selection

The significances of the training variables are determined automatically during the
preprocessing in NeuroBayesR©.

The correlation matrix of all preprocessed input variables is calculated including
the correlation of all variables to the target. One variable after the other is omitted
to determine the loss of total correlation to the target caused by its removal. The
variable with the smallest loss of correlation is discarded leading to an (n − 1)–
dimensional correlation matrix. The same procedure is repeated with the reduced
correlation matrix to find the least important of the (n− 1) remaining variables.

The significance of each variable is calculated by dividing the loss of correlation
induced by its removal at the relevant point of the successive procedure by the
square root of the sample size, i.e those significances are relative numbers in terms
of the reduced correlation matrices.

After the preprocessing process, it is possible to cut on the significance of the vari-
ables to incorporate only those that include relevant information that is not already
incorporated by other variables. The number of discarded variables is determined by
scanning the sorted list, starting with the least relevant one, until the first quantity
has a significance larger than the required minimum value.

3.1.4 Training Result

As already mentioned above, the network output of signal events piles up at +1,
while background events accumulate at outputs around −1. This is illustrated in
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Figure 3.3: Illustration of the training result. Figure (a) shows the output distributions for signal
and background events. Figure (b) shows the signal purity of each output bin and illustrates the
expected linear dependence.

figure 3.3(a). After minimizing the entropy error function (3.4), the output, rescaled
to the interval [0, 1], can be interpreted as Bayesian a posteriori probability, if the
a priori probability is correct, i.e. if a realistic mixture of signal and background
has been chosen. Hence, the quality of the training can be checked by plotting the
signal purity for each output bin, as illustrated in figure 3.3(b). If the network is
well trained, all the points should lie on the diagonal.

For a detailed discussion of the output interpretation, see reference [67].
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Chapter 4

Event Simulation and
Reconstruction

To evaluate measured data, it is useful to simulate physics processes expected to
contribute to the respective data sample. This is usually realized by Monte Carlo
generators which randomly produce hard parton interactions according to the prob-
ability density of phase space and the matrix element of a given process. To emulate
the detector response, the resulting particles are passed to a simulation of the CDF II
detector system.

Both measured and simulated events are subject to the same reconstruction algo-
rithms which aim to retrace the physical process starting from measurements in
the detector, allowing direct comparison between simulated processes and observed
data.

4.1 Monte Carlo Event Generation

The hard interaction of two incoming beams results in the production of up to thou-
sands of outgoing particles. So far, no evidence has been found that contradicts the
belief that this process is described by the standard model of strong and electroweak
phenomena. Unfortunately, full quantum–mechanical treatment is infeasible due to
two reasons: first of all, the number of particles involved gives rise to a tremendous
number of interfering contributions that grows factorially with the number of par-
ticles. Furthermore, perturbation theory is not able to account for the transition
of partons to hadrons. This failure of perturbation theory necessitates other strate-
gies to obtain a detailed description of the production of multiple particles, like the
utilization of Monte Carlo event generators.

Any theoretical model describing an elementary process starts from the knowledge
of its cross section and must both contain a way to compute or to estimate the
effects of higher–order perturbation theory and a way to describe hadronization
effects. One way to include higher–order corrections is to exactly compute the
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result of a given number of emissions, which forms the core of the tree–level matrix
element generators briefly introduced in section 4.1.2. Another way is to estimate
the dominant effects due to emissions at all orders in perturbation theory, based
on the observation that the dominant effects in certain regions of the phase space
have almost trivial dynamics, so extra emissions can be described recursively. One
approach in this context is the parton shower technique which is, by construction,
the core of the event generators described in section 4.1.1.

4.1.1 Showering and Hadronization Event Generators

Showering and hadronization generators are general purpose tools able to simulate
a wide variety of initial and final states, making use of phenomenological models
to describe the parton–hadron transition. They begin with a leading order hard
subprocess, adding higher order effects by allowing the partons to split into qq̄ or gg
pairs and by taking gluon emission from quarks into account. The resultant partons
are then grouped together or “hadronized” into color–singlet hadrons and resonances
are decayed. Finally, the underlying event structure of the event is generated by
inclusion of beam remnants, interactions from other partons in the initial hadrons,
and collisions between other hadrons in the colliding beams.

Some examples of shower and hadronization generators, applied in this analysis, are
shortly described in the next sections.

Pythia

The main emphasis of the pythia [70] event generator is on multi–particle pro-
duction in collisions between elementary particles, in particular hard interactions
involving e+, e−, p, or p̄. pythia contains theory and models for a number of
physics aspects, including hard and soft interactions, parton distributions, initial
and final–state parton showers, multiple interactions, fragmentation and decay. The
program is largely based on original research, but also borrows many formulae and
other knowledge from the literature. For the treatment of the hadronization process,
the Lund string model [71, 72] is implemented. In this model, color flux tubes are
stretched between final–state quarks and antiquarks. The potential energy stored
in these strings can be converted into new quark–antiquark pairs which then build
colorless hadrons.

Herwig

herwig [73] is a general purpose event generator for the simulation of lepton–
lepton, lepton–hadron, and hadron–hadron collisions. The program includes a large
range of hard scattering processes together with initial and final state radiation
using the angular–ordered parton shower, hadronization and hadron decays, and
underlying event simulation. herwig is particularly sophisticated in its treatment of
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the subsequent decay of unstable resonances, including full spin correlations for most
processes. The program contains a large library of hard 2 → n scattering processes
for both the standard model and its supersymmetric extension. Particular emphasis
lies thereby on the detailed simulation of QCD parton showers. The main difference
between herwig and pythia lies in the different modeling of the hadronization
process. The cluster model used by herwig exploits the preconfinement property
of perturbative QCD [74] to form color–neutral clusters which decay into colorless
hadrons.

4.1.2 Tree-Level Matrix Element Generators

Effects of higher–order corrections in perturbation theory can be taken into account
by exact computation of the result of a given (and usually small) number of emis-
sions. This can be realized by considering only those diagrams corresponding to
the emission of real particles. Basically, the number of emissions coincides with the
perturbative order in αs. This approach forms the core of the parton–level genera-
tors described in this section, which compute tree–level matrix elements for a fixed
number of partons in the final state.

These programs generally do not include any form of hadronization, thus the final
states consist of bare quarks and gluons. The kinematics of all hard objects in the
event are explicitly represented and it is simply assumed that there is a one to one
correspondence between hard partons and jets.

However, this assumption may cause problems when interfacing these codes to show-
ering and hadronization programs such as herwig or pythia, a step which is nec-
essary in order to obtain a physically sensible description of the production process.
In fact, a kinematic configuration with n final–state partons can be obtained by
starting from n −m partons generated by the tree–level matrix element generator
with the extra m partons provided by the shower. This implies that, although the
latter partons are generally softer than or collinear to the former, there is always a
non–zero probability that the same n–jet configuration is generated starting from
different (n − m)–parton configurations. Hence, to avoid double–counting of cer-
tain parts of the phase space, this necessitates a matching of the diverse parton
configurations generated by the matrix element generator.

The combination of tree–level matrix element generators and showering programs is
essential for analyses based on multi–jet configurations where the standard showering
codes are basically unable to describe the kinematics correctly.

Alpgen

alpgen [75] is designed for the generation of standard model processes in hadronic
collisions with emphasis on final states with large jet multiplicities. It is based on
the exact leading order evaluation of partonic matrix elements with the inclusion
of b–quark and top–quark masses (c–quark masses are implemented in some cases,
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where necessary) and top–quark and gauge–boson decays with helicity correlations.
The code generates events in both a weighted and unweighted mode. Weighted
generation allows for high–statistics parton–level studies, while unweighted events
can be produced in an independent run through shower evolution and hadronization
programs, such as herwig and pythia.

MadEvent

madevent [76] is a multi–purpose tree–level generator which is powered by the
matrix element generator madgraph [77]. Given a standard model process (at any
collider, e.g. e+e−, ep, pp, pp̄), madgraph automatically generates the amplitudes
for all relevant subprocesses and produces the mappings for the integration over the
phase space. This process–dependent information is passed to madevent and a
stand–alone code is produced that allows the user to calculate cross sections and
to obtain unweighted events. Once the events have been generated, they may be
passed to a shower Monte Carlo program, such as herwig or pythia, where partons
are perturbatively evolved through the emission of QCD radiation and eventually
turned into physical states by hadronization.

4.2 Detector Simulation

It is crucial to not only model the final state particles correctly, but also to describe
the response of the CDF II detector to those particles. The modeling of the de-
tector response is based on a detailed simulation using the GEANT3 package [78].
The charge deposition in the silicon layers is calculated using a simple geometrical
model based on the path length of the ionizing particle. The drift model used in
the COT simulation is based on the GARFIELD [79, 80] package, a general drift
chamber simulation program whose parameters were scaled to describe the data.
The calorimeter simulation GFLASH [81] was also tuned using test–beam data for
electrons and high–pT pions.

A detailed description of the CDF II detector simulation can be found in refer-
ence [82].

4.3 Reconstruction Prerequisites

4.3.1 Track Reconstruction

Detection and tracking of charged particles is an essential part of event analyses at
CDF. Since the tracking detectors only measure distinct positions of particles, the
reconstruction of tracks is the task of combining all point measurements (hits) along
the trajectory to a particle track.
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Figure 4.1: Parameterization of a charged particle track in the r–φ plane. The parameters are
defined with respect to the perigee.

Charged particles moving in a uniform magnetic field, as inside the CDF tracking
system, have a helicoidal trajectory. The curvature of the helix depends on the
momentum and charge of the particle, the helix’ direction points back to its origin.
At CDF, such helices are described using five parameters, defined with respect to
the point of minimum approach to the origin, the perigee, as illustrated in figure 4.1:

• cot θ, the cotangent of the polar angle at the perigee, is a measure of the
helix pitch and the z component of the momentum. It corresponds to the
pseudorapidity η.

• C is the half–curvature of the helix circle in the r–φ plane and has the same
sign as the charge Q of the particle: C = sign(Q)/2ρ, where ρ is the radius of
the circle centered at the perigee (x0, y0). C quantifies the momentum of the
particle in the r–φ plane, the transverse momentum pT.

• z0 is the z coordinate at the perigee.

• d0, the signed impact parameter, is the distance between the helix and the

origin at the perigee: d0 = sign(Q) ·
(

√

x2
0 + y2

0 − ρ
)

.

• φ0 is the azimuthal direction of the helix at the perigee

The described parameterization uses the origin (0,0) as reference. Due to a shifted
beam line position, the coordinate system of the parameterization has to be adapted
to the primary interaction point whose reconstruction is shortly described in sec-
tion 4.3.2.
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Since the CDF II tracking system is built of two dissimilar subdetectors, the COT
and the silicon system, whose properties are quite different, the pattern recognition
strategies vary for each detector. The fit methods in both systems are based on χ2

minimization.

Tracking in the COT

The active volume of the COT has larger radii than the silicon tracker, which leads to
a lower track density and more isolated tracks, resulting in less combinatorics. Thus,
the track reconstruction in the COT is purer and faster as in the silicon system. The
tracking algorithm can only reconstruct tracks of particles passing the entire volume
of the COT. Due to the detector geometry, those tracks are limited to the range of
|η| ≤ 1 and pT > 0.5 GeV/c 1. The track reconstruction is performed in two steps:
first, r–φ tracks are found using the four axial superlayers; second, stereo segments
and hits are attached to these tracks. The axial track reconstruction is performed
by two different algorithms run in parallel. The first one, adopted from Run I [83],
reconstructs and links segments in the superlayers to find the trajectory. The second
algorithm operates at the level of single hits, starting with a single segment in the
outermost superlayer to reconstruct reference trajectories. For each hit in a search
window, a new trajectory is calculated; the distance of this trajectory to the reference
is filled into a histogram which is searched for track candidates. Due to the large
activity, the beam line is firstly used as constraint, being released once the majority
of tracks has been found. This histogram tracking algorithm is used with small
variations at the third trigger level L3. The stereo track reconstruction consists of
two algorithms run in series. The first one, stereo segment linking, matches stereo
segments to existing axial tracks, while the second one uses z vertex seeds produced
using stereo–segment–linked tracks and scans cot θ for the best stereo hit usage.
Further descriptions of tracking in the COT can be found in references [84, 85]

Tracking in the Silicon Detector

The standard reconstruction consists of three major phases: Tracks from the COT
are extrapolated into the silicon detectors, tracks are reconstructed only from silicon
measurements, and tracks reconstructed in the silicon are extrapolated into the drift
chamber.

In the outside–in (OI) approach, tracks from the COT are extrapolated into the
silicon detectors by adding hits to the track and recalculating the track parameters.
The decision on hits belonging to the track is drawn by two different algorithms run
in series. The first [86] is an extended version of the algorithm used in Run I which
uses a generic progressive fitter. The second [87] utilizes a fitter (Kalman Fitter)
based on the principle of a filter method proposed by R.E. Kalman [88]. To reduce
CPU time and to avoid duplicating COT tracks in the OI track list, the second
strategy ignores hits which are already used by the first one.

1With smaller pT, the particle does not reach the COT due to the curvature of the track.



4.3. Reconstruction Prerequisites 37

The silicon stand–alone (SiSA) tracking [87] basically works on the same principle
as the OI tracking using the Kalman Fitter. To reduce combinatorics, hits already
belonging to any other track are not considered. Thus, the main issue of the SiSA
tracking is to find tracks in the forward region up to |η| ≤ 2 which is not covered
by the COT.

In the last phase of silicon reconstruction, silicon–only tracks are extrapolated into
the COT. This inside–out (IO) [89, 90] strategy recovers COT information of tracks
from particles which do not traverse the entire drift chamber, since those cannot
be found by the COT tracking. This confirmation of silicon–only tracks by COT
measurements also decreases the fake rate. The geometrical acceptance of the COT
in forward direction and the efficiency of the SiSA tracking result in a coverage of
about 1.1 ≤ |η| ≤ 1.7 for IO tracks.

Phoenix Tracking

For the identification of electrons in the forward region, as described in section 5.2,
a special algorithm is used which resembles the OI tracking strategy. In this forward
tracking algorithm, an energy cluster in the PEM (instead of a COT track) and the
primary vertex are used to construct seed tracks. For each seed, two hypotheses
about the charge of the particle are considered by computing the curvature for both
an electron and a positron corresponding to the deposited energy. The extrapolation
of those seed helices into the silicon detector works similarly to the OI tracking
algorithm.

4.3.2 Primary Vertex and Beam Line Reconstruction

Accurate determination of the primary interaction point is essential for any high
precision analysis, but it is especially important when selecting on the lifetime of
a particle. In many applications, the position of the beam line can be used to
estimate the primary vertex position which is defined as the origin of all tracks with
zero or small impact parameters, so–called prompt tracks. The precision of this
method is limited by the size of the beam width, but proved to be sufficient for
most applications in b–quark physics where the beam line position is determined
by exploiting the correlation between the impact parameter d0 and the azimuthal
direction φ0 of a track.

For events with high decay multiplicity (e.g. top–quark pair production), the pri-
mary vertex can be found with better precision on an event–by–event basis. Primary
vertices are reconstructed by fitting prompt tracks fulfilling certain quality require-
ments to a common vertex. Tracks contributing a large χ2 to the fitted vertex are
iteratively removed if the χ2 exceeds a given threshold. The iteration stops either if
no track fails the χ2 cut or the number of tracks associated to the vertex falls below
a minimum quantity.

At CDF, different primary vertex reconstruction algorithms are implemented. The
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distribution of primary vertices reconstructed with the VxPrim [91] algorithm is
used to derive the position of the beam line [92]. Here, profile plots of the vertex
positions in x respectively y over z are used to fit the beam line. The position of the
primary interaction point (e.g. necessary to determine secondary decay vertices)
is evaluated using the PrimeVtx [93] package which utilizes another vertex fitter
function than VxPrim. PrimeVtx is applied to tracks around a seed vertex which is
commonly given by the beam line in the transverse plane. The seed’s z component
is given by the highest–pT z vertex from ZVertexColl which is based on associating
reconstructed tracks to pre–tracking vertices. If a certain number of tracks passing
minimal quality criteria is consistent with a vertex, the z position of the vertex is
calculated by the error weighted mean of the z0 parameters of the tracks.

Pre–track primary vertices, i.e. vertices which are reconstructed without tracks,
are built from hits in the SVX II and in the ISL using a histogram method [94].
The algorithm requires two 3D hits within 9◦ in azimuth and tries to find a third
confirmation hit within a certain window. If no third track is found, the beam
spot is used instead to form a triplet. Assuming the hits belong to a track, the
corresponding z0 is calculated and filled into histograms. From those histograms,
the z positions of the vertices are determined by selecting the maxima.

4.3.3 Jet Reconstruction

In hadron-hadron collider experiments like CDF II, a quark (or antiquark) in its
final form manifests itself as one or more calorimeter jets, which appear as energy
deposits shared among several detector calorimeter towers. The development from
scattered partons to detector jets is schematically illustrated in figure 4.2.

At CDF, the jet energy is calculated from the energy deposited in the calorimeter
towers using different types of jet clustering algorithms. In this analysis, jets are clus-
tered using a cone algorithm with a fixed cone size in which the center of the jet is de-
fined as (ηjet, φjet) and the size of the cone asR =

√

(ηtower − ηjet)2 + (φtower − φjet)2 ≤
0.4.

The clustering algorithm groups calorimeter towers with ETi > 1 GeV into jets.
Here, ETi = Ei ·sin θ is the transverse energy deposited in tower i with respect to the
primary vertex z position, Ei is the sum of energies measured in the electromagnetic
and hadronic compartments of that tower. The algorithm begins with creating a
list of seed towers, sorted by decreasing ETi. For each seed tower, adjacent towers
within a radius of size R with respect to its position are used to build clusters. Once
an initial list of towers is obtained, the transverse energy and the position of the
cluster are calculated. This procedure is repeated iteratively, a new list of towers
around the new center is determined. The jet ET and direction are recalculated
until the list of towers assigned to the cluster is stable, that is, when the geometrical
center of the tower corresponds to the cluster centroid. Jets are merged if they
overlap by more than 50%; otherwise, each tower in the overlap region is assigned to
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Figure 4.2: Schematic overview of jet reconstruction.

the nearest jet. The final jet energy is computed from the final list of towers Ntow:

Ejet =
Ntow
∑

i=0

Ei (4.1)

Jet–Energy Correction

At CDF, the clustered energy of a detector jet has to be corrected for several effects
that can distort the measured jet energy, such as response of the calorimeter to
different particles, non-linear response of the calorimeter to the particle energies,
uninstrumented regions of the detector, spectator interactions, and energy radiated
outside the jet cone. Since the corrections are divided into discrete levels to accom-
modate different effects, a subset of these corrections can be applied, depending on
the analysis.

It is possible to scale the measured energy of a jet back to the energy of the final–
state particle–level jet; additionally, there are corrections to associate the measured
jet energy to the parent parton energy, so that direct comparison to the theory can
be made. Detailed information about the jet–energy corrections can be found in
reference [60].

Level 1: η–dependent Corrections Due to the geometry of the CDF calorime-
ter, its response is not uniform in pseudorapidity as illustrated in figure 4.3(a). The
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dependencies on η arise from the separation of calorimeter components at η = 0
where the two halves of the central calorimeter join and at η ≈ 1.1 where the plug
and the central calorimeter abut. The different responses of the plug and the central
calorimeter also cause a dependence on η.
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Figure 4.3: Calorimeter response of photon–jet events from data and MC samples as a function of
pseudorapidity (a) before and (b) after the correction of η–dependence.

The η–dependent corrections are determined based on the assumption that the two
jets in dijet events should be balanced in pT in absence of hard QCD radiation.
Since the central region of the calorimeter is better understood, the forward region
response is intended to be scaled to the central region. In addition, a region far
away from the cracks has to be selected as reference. Hence, a “trigger jet” with
0.2 < |η| < 0.6 is chosen, the other jet is defined as “probe jet”. Scaling the pT of
the probe jet to balance the trigger jet defines the η–dependent correction.



4.3. Reconstruction Prerequisites 41

To check the correction, photon–jet events are utilized, since the photon should be
balanced by a jet in these kind of events. After the application of the correction,
the calorimeter response as a function of η is flat as displayed in figure 4.3(b).

Level 2: not applied in Run II

Level 3: not applied in Run II

Level 4: Multiple pp̄ Interactions At the current luminosities, more than one
pp̄ interaction occurs in the same bunch crossing. These additional pp̄ interactions
increase the energy of the jets from the hard scatter if their final–state hadrons
accidently overlap with the jets. This extra energy therefore needs to be subtracted
from the jet energy.

To estimate the number of interactions in a bunch crossing, utilizing the number
of reconstructed vertices, Nvtx, is the best approach. Using minimum–bias data
triggered with hits in gaseous Cherenkov–light detectors (CLC) in the very forward
direction 3.7 < |η| < 4.7, the transverse energy in a cone around a random seed
tower in the central region 0.2 < |η| < 0.6 is measured in dependence on Nvtx. The
slope of the straight line fitted to this distribution, displayed in figure 4.4, gives the
extra transverse energy per interaction as a function of Nvtx.
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Figure 4.4: The dependence of the jet ET on the number of pp̄ interactions, i.e. the number of
primary vertices Nvtx. The slope of the fitted straight line gives the extra transverse energy per
interaction as a function of Nvtx.

Level 5: Absolute Jet Energy Scale The absolute correction aims to trans-
form the jet energy measured in the calorimeter into the energy corresponding to
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the underlying particle jet. After correcting for any non–linearity and energy loss in
the uninstrumented regions of each calorimeter, the energy scale of a jet is indepen-
dent of the CDF detectors. Since the calorimeter simulation has been optimized to
reproduce the measured single particle response, it is possible to rely on the simula-
tion to derive corrections over a large range of jet transverse momenta. Hence, the
accuracy of this method depends on how well jets are modeled by the simulation.
In particular, it depends on the multiplicity and pT spectrum of the particles inside
a jet and on the calorimeter response to an individual particle.
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Figure 4.5: Absolute jet energy corrections as a function of jet pT.

The correction displayed in figure 4.5 is obtained by mapping the total pT of the
particle jet to the pT of the calorimeter jet, where the jets are required to be in the
central region 0.2 < |η| < 0.6. The particle jet consists of particles within a cone of
R = 0.4 and must be within ∆R < 0.1 of the calorimeter jet.

Level 6: Underlying Event & Level 7: Out–of–Cone It is often desirable to
reconstruct the energy of the original parton rather than the energy of the jet, e.g.
for the measurement of the top–quark mass or the search for the Higgs boson, where
parton energies are used to compute the invariant mass of the decaying products.

The reconstruction of the parton energy from the particle jet is subject to several
difficulties. A fraction of the parton energy can be lost from the jet cone due to
final–state gluon–radiation (FSR) at large angles with respect to the parent parton
or due to particles exiting the cone either in the fragmentation process or due to
low pT particles bending in the magnetic field. This energy is called “out–of–cone”
energy. On the other hand, the particle jet can also have contributions not related to
the actual mother parton of the hard interaction of interest defining the jet, such as
particles from initial state gluon radiation (ISR) or particles from spectator partons
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Figure 4.6: Out–of–cone jet energy corrections as function of the pT of the particle jet.

with color connection to the other partons of the proton (“beam–beam–remnant”).
These two contributions are called “underlying event”.

Final state radiation and hadronization effects are correlated with the primary jet
direction and the jet energy and are expected to decrease with increasing distance
from the jet core. The underlying event is thought to be uncorrelated with the
direction of the outgoing parton and thus independent of the distance from the jet
in η–φ space and almost independent of the jet energy.

The corrections for the out–of–cone energy and the underlying event are derived
simultaneously using MC samples which have been tuned to describe the underlying
event in data. Since any η–dependence of the out–of–cone corrections is already
taken into account by the first level corrections, jets with 0.2 < |η| < 0.6 are used
to obtain the corrections. Those corrections are solely determined from simulation
at particle generator level and hence independent from the CDF detector.

The corrections are obtained from simulated dijet samples using particle jets which
match a primary parton within ∆R < 0.4. The out–of–cone correction is shown in
figure 4.6. For particles with pT = 20 GeV/c, the correction is about +18%. The
underlying event’s transverse energy is estimated to be about 0.4 GeV. Hence, for
jets with a cone of R = 0.4, the reconstruction of the parton energy from the particle
jet is dominated by the correction for out–of–cone losses.

4.3.4 Secondary Vertex Reconstruction

The identification of b–quark jets is essential for top–quark physics, since the top
quark decays in almost 100% of the cases into a W boson and a b quark. The b quark
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originating from the top–quark decay hadronizes almost immediately to form a jet of
particles; included are a b meson (for example B0, B±, B0

s ) or a b baryon (e.g. ΛB).
The b hadron usually carries most of the momentum of the original b–quark and has
a relatively long lifetime of about 1.6 ps. Given their long lifetime and large boost,
b hadrons created in this way travel a macroscopic distance away from the primary
interaction point in the laboratory rest frame before decaying into several charged
and neutral particles. Reconstruction of charged particle tracks enables us to look for
the trajectories of the decay products that have a large impact parameter and hence
are inconsistent with originating from the initial interaction point. Several of those
tracks with large impact parameters, called displaced tracks, can be determined to
originate from a common location and can be used to construct a secondary vertex,
as illustrated in figure 4.7.

Figure 4.7: Schematic view of displaced tracks with impact parameter d0 forming a secondary
vertex. Lxy is defined as the projection of the two–dimensional decay length on the jet axis.

The CDF secondary vertex reconstruction algorithm, SecVtx [95], runs on an per–
jet basis within each event. SecVtx starts by considering silicon tracks within each
jet (∆R < 0.4); the tracks must be seeded (OI) or confirmed (IO) by a track in
the COT. To be considered for SecVtx, the tracks within the jet are demanded
to have pT > 0.5 GeV/c, d0 significance Sd0

≡ |d0/σd0
| > 2.0 with respect to the

primary vertex, and a minimum number of hits in the silicon detectors. The hit
requirements are a function of the detector geometries and the track reconstruction
quality. Tracks are further demanded to not exceed a maximum d0 requirement
(0.15 cm) in order to protect against poorly reconstructed tracks as well as tracks
from long–lived light–flavor hadrons or nuclear interactions in the detector material.

The selected tracks are then ordered in pT and a secondary vertex is sought among
these tracks. The construction of a two–track seed vertex is first attempted among
the qualifying tracks. If a seed vertex is found, the remaining tracks are considered
for vertexing with the seed tracks. Each additional track is considered singly; after
attaching all qualifying tracks to the vertex, the vertex χ2 is recalculated and tracks
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iteratively pruned from the vertex if they contribute too greatly to the overall χ2.

If the pruned vertex retains three or more tracks, this vertex is then subject to a final
round of quality cuts. Vertices from material and nuclear interactions are removed
by restraining the absolute value of Lxy which is defined as the 2D decay length of
the fitted vertex with respect to the primary vertex, projected on the jet axis; all
vertices with a radius greater than 2.5 cm with respect to the center of the SVX II
are vetoed. In addition, vertices are excluded if their invariant mass is consistent
with the masses of KS or Λ, two prominent long–lived light–flavor hadrons. Finally,
the vertex is demanded to have SLxy

> 7.5, where SLxy
is the significance of Lxy,

defined as SLxy
≡ |Lxy/σLxy

|. If the vertex satisfies all of the above criteria, a
secondary vertex is defined to be found.

If no candidate vertex is found in the first pass (pass 1), a second attempt (pass 2)
to reconstruct a vertex is made. Efficiency is gained by only requiring two or more
tracks satisfying more stringent track quality requirements. A summary of all track
and vertex requirements can be found in reference [96].

If a secondary vertex is found, the jet is said to be “b tagged”. If the dot product
of the 2D displacement vector from the primary vertex to the secondary vertex and
the jet’s momentum vector is positive (i.e. the vertex is in the same hemisphere of
the detector as the jet), the tag is called “positive”. If the secondary vertex and jet
momentum have a negative dot product (the vertex is in the opposite hemisphere of
the detector actually behind the jet), the tag is called “negative”. Such vertices are
due to finite tracking resolution of the detector and are predominantly not related
to heavy–flavor decays.

The SecVtx algorithm exists as a loose, a tight, and an ultra–tight version. The
above described criteria are valid for the tight version which is used by default. The
loose algorithm features an increased tag efficiency, while the ultra–tight version
increases the purity.

Tag Efficiency

The efficiency of the SecVtx algorithm is defined as the fraction of b–quark jets
fiducial to the COT and calorimetry that possess a positive SecVtx b tag. Measuring
the efficiency of a b–tagging algorithm in MC events is straightforward, since one
has the complete knowledge of the produced particles and thus it is unpretentious
to identify the fiducial jets that come from b–quark production and the fraction
which are tagged. Unfortunately, the efficiency in MC jets is not accurate; reliable
modeling of b tagging requires precise understanding of the charge deposition in
the silicon detectors, accurate simulation of the tracking, and realistic b hadron
production and decay models. Since none of these effects are perfectly modeled in
the simulation, it is imperative to measure the b–tag efficiency in the data.

The challenge in measuring the tag efficiency in data events is that the nature of
individual jets is not explicitly known. The tag efficiency measurement in data relies
upon constructing a pure sample of b–quark jets within the large dijet sample. Two
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methods currently in use at CDF utilize high–pT leptons matched to jets to identify
jet pairs consistent with heavy–flavor production.

The first technique requires a high energetic electron to be embedded in a jet. This
so–called “electron jet” is paired with a back–to–back jet, the “away jet”, which
is demanded to possess a positive SecVtx tag. This jet pair (one jet containing a
secondary vertex, the other having evidence for a high–pT semileptonic decay) is
consistent with coming from heavy–flavor production. Electron jets being consis-
tent with coming from a photon conversion, i.e. electrons that have a conversion
partner, are not further considered, since they are not compliant with semileptonic
hadrons decays. The tag efficiency is then basically determined by the rate that the
electron jet is tagged in addition to the away jet, taking into account the heavy–
flavor fraction. One method first measures the heavy–flavor fraction of the electron
jets in the untagged sample by identifying those electron jets that also contain a
D meson [97], while another method solves simultaneously for the efficiency and
heavy–flavor fraction [98]. The tagging efficiency obtained by this method in data
is ǫdata ≈ 34% integrated over the complete jet–ET range.

The tag efficiency is used most often when assessing signal acceptance which is typi-
cally done in MC samples. As discussed above, MC b–quark jets are not guaranteed
to perfectly match data b–quark jets. So it is necessary to construct a data–to–MC
scale factor for the tag efficiency, which encapsulates the discrepancies between b–
quark jet tagging in the simulation and data. In an appropriate dijet MC sample
matching the conditions used above to select data events, the tag efficiency was
measured to be ǫMC ≈ 39%. The scale factor, which is basically independent of the
jet ET, is calculated to be SF = 0.89 ± 0.07.

A second technique uses high–pT muons instead of electrons, but works on the same
principle. This method leads to a scale factor of SF = 0.92 ± 0.06. A combination
of both methods leads to SF = 0.91 ± 0.06. The corrected tagging efficiency for b
jets resulting from decaying top quarks can be seen in figure 4.8.

Since the determination of a scale factor using high energetic muons was not yet
available when this analysis was performed, a scale factor of SF = 0.89 ± 0.07 is
used.

False Positive Tagging Rate

False positive tags, or mistags, in SecVtx come from the spurious identification of
a secondary vertex in a jet which doesn’t contain a heavy–flavor quark. Jets from
light–quark production should be consistent with zero lifetime. However, tracks
within a light–quark jet can still have large impact parameters and hence satisfy the
secondary vertex requirements. Sources of such spurious large impact parameters are
limited detector resolution, long–lived light–particle decays (Λ, KS), and material
interactions. Since mistags due to limited detector resolution are expected to be
symmetric in Lxy, the ensemble of negatively tagged jets (Lxy < 0) is a good estimate
of the light–flavor jet contribution to the positive tag sample.
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Figure 4.8: SecVtx tag efficiency for b jets in top–quark decay scaled to data as a function of (a)
jet ET and (b) jet η for two different operating points. In this analysis, the tight version is utilized.

At CDF, events collected by a set of triggers requiring a minimum amount of
calorimeter energy, generic jet samples, are used for the calibration of the mistag
rate. The probability for a given jet to be a mistag is determined from the proba-
bility that the jet is a negative tag, parameterized in five variables: ET, η, and φ
of the jet, track multiplicity and the sum of the transverse energies of the taggable
jets in the event. A jet is considered as taggable, if it fulfills the standards to be
potentially b tagged, namely ET > 10 GeV, |η| < 2.4, and at least two reconstructed
tracks.

This per–jet probability can be used to estimate the expected contribution from
events with mistagged jets to a given data sample.

However, since not all mistags are from resolution effects alone, simply assuming
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that all mistagged jets are symmetric around the origin will lead to an underes-
timate in the rate of false positive tags. Contributions from long–lived particles
and material interactions are at strictly positive values of Lxy and thus introduce a
mistag asymmetry. The asymmetry factor γ was evaluated by a fit of the pseudo–
lifetime cτ = Lxy × Mvtx

pTvtx
to be γ ≈ 1.36, but depends on the sum of the transverse

energies of all jets in the event.

With this parameterization and asymmetry, the mistag rate in a given sample can
be determined as shown in figure 4.9.
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Figure 4.9: SecVtx mistag rate in data as a function of (a) jet ET and (b) jet η for two different
operating points. In this analysis, the tight version is utilized.



Chapter 5

Event Selection and Background
Estimate

As outlined in section 1.2.2, single–top–quark events feature a signature of jets plus
the decay products of a W boson. Studies have shown that about 60% of single–top–
quark events possess exactly two jets [99]. For events produced via t–channel, this is
true because the b̄ quark produced in the 2 → 3 process, illustrated in figure 1.4(b),
has a tendency to be produced in forward direction. In this analysis, only leptonic
decays of the W boson into eνe or µνµ are targeted in order to reduce background
events from multi–jet production via the strong interaction.

For multivariate methods, it is of major importance to understand and to model
the selected events correctly. Hence, not only the modeling of single top–quark
production is subject to thorough evaluation, but also backgrounds leading to the
same event topology have to be studied diligently.

5.1 Measured Data Samples

In this analysis, data taken from February 2002 until February 2006 are used. Since
the focus lies on leptonically decaying W bosons, data passing the high–pT lepton
triggers are used. The central electron trigger ELECTRON CENTRAL 18 requires
a COT track with pT > 9 GeV/c matched to an energy cluster in the CEM with
ET > 18 GeV. The shower profile of this cluster has to be consistent with the expec-
tation obtained by measurements with test–beam electrons. Forward electron candi-
dates have to pass the MET PEM trigger requiring an energy deposition of at least
20 GeV in the PEM. The ratio of hadronic–to–electromagnetic energy EHAD/EEM

has to be less than 0.075. The muon triggers MUON CMUP18 and MUON CMX18
require a COT track with pT > 18 GeV/c matched to a track segment in the muon
chambers.

The data are stripped into different datasets according to the trigger they passed:
the bhel datasets contain central electrons, the bhmu datasets incorporate muons,



50 Chapter 5. Event Selection and Background Estimate

and the bpel datasets comprise forward electrons.

Before being used in analyses, it is crucial to reprocess the data offline. During
reprocessing, online calibrations are checked and readjusted, the alignment of the
silicon detector is corrected, tracks are refit, cluster energies are checked, and lep-
tons are identified. In addition, the jet clustering and the secondary vertex fit are
performed. The data taken from February 2002 until August 2004 were reprocessed
with CDFSOFT2 [100] version 5.3.3 and stripped into the 0d datasets, while data
taken from December 2004 until February 2006 were reprocessed with CDFSOFT2
version 6.1.2 and stripped into the 0h and 0i datasets. All nine datasets used in
this analysis are presented in table 5.1.

Sample Run Range Dates Events L [pb−1]

bhel0d 138425 — 186598 02/04/2002 — 08/22/2004 1255715 333
bhmu0d 138425 — 186598 02/04/2002 — 08/22/2004 552401 333/320
bpel0d 138425 — 186598 02/04/2002 — 08/22/2004 358693 333
bhel0h 190697 — 203799 12/07/2004 — 09/04/2005 1176549 363
bhmu0h 190697 — 203799 12/07/2004 — 09/04/2005 574704 363
bpel0h 190697 — 203799 12/07/2004 — 09/04/2005 326672 363
bhel0i 203819 — 212133 09/05/2005 — 02/22/2006 730697 259
bhmu0i 203819 — 212133 09/05/2005 — 02/22/2006 358639 259
bpel0i 203819 — 212133 09/05/2005 — 02/22/2006 225722 259

Table 5.1: Used data samples with run range, date of data taking, number of events after strip-
ping of the samples, and integrated luminosity. The luminosity values for bhmu0d correspond to
CMUP/CMX.

Each store includes several periods of continuous data taking, so–called runs, since
from time to time, data acquisition stops due to hardware or software failures.
It is of vital importance to revise every single run to verify that every detector
component was both functional and active. Every run marked as “good”, i.e. all
necessary system components were in operation, can be used in analyses and is
incorporated into the so–called “goodrun” list [101]. In this analysis, version 13 [102]
of the goodrun list was used, requiring the whole tracking system, calorimetry, and
muon chambers to be operating. This leads to a total integrated luminosity of
L = (955 ± 75) pb−1.

5.2 Requirements for Candidate Events

Lepton Identification

After offline reconstruction, the lepton candidates have to pass further cuts in
order to improve the purity. For central electrons, a reconstructed track with
pT > 9 GeV/c has to match a cluster in the CEM with ET > 20 GeV. Fur-
thermore, EHAD/EEM < 0.055 + 0.00045 · E is required; the ratio of cluster energy
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to track momentum E/p has to be smaller than 2.0 for track momenta ≤ 50 GeV/c.
Electron candidates in forward direction are defined by a cluster in the PEM with
ET > 20 GeV and EHAD/EEM < 0.05. The cluster position and the primary vertex
are combined to form a search trajectory in the silicon tracker and seed the pat-
tern recognition of the tracking algorithm. For the electron candidate to pass the
selection, the found track has to fulfill certain quality criteria. Electron events are
rejected, if an additional high-pT track is found that forms a common vertex with
the track of the electron candidate and has a curvature of opposite sign. These
events are likely to stem from the conversion of a photon.

Muons are identified by requiring a COT track with pT > 20 GeV/c that extrapo-
lates to a track segment in a muon chamber. Signal muons have to be detected in the
CMU and CMP simultaneously or in the CMX. In order to minimize background
contaminations further requirements are imposed. The energy depositions in the
electromagnetic and hadronic calorimeters have to correspond to the expectation
regarding minimum ionizing particles. To reject cosmic muons or muons from in–
flight decays of long–lived particles (such as KS, KL, or Λ), the impact parameter
d0 of the track must be small. Cosmic muons are further rejected through their
characteristic track timing and topology.

Furthermore, exactly one isolated lepton candidate is required, whereby a candidate
is considered isolated if the ET not assigned to the lepton in a cone of R = 0.4
centered around the lepton is less than 10% of the lepton ET or pT, respectively.
This lepton is called tight lepton.

A detailed description of all lepton requirements can be found in appendix A of this
thesis as well as in references [103, 104, 105].

Dilepton Veto

To ensure that there is exactly one tight lepton, events are rejected which have either
an additional tight lepton or a loose lepton. Loose leptons are leptons which pass
all cuts except the isolation cut, or are identified in the CMP, CMU or BMU solely.

Jet Reconstruction and Selection

In this analysis, jets are reconstructed with a cone of R = 0.4 without taking into
account calorimeter towers which are associated to any tight isolated electron. The
jet energy is corrected up to level 4, i.e for the η–dependence of the calorimeter
response and for multiple pp̄ interactions. Candidate jets, required to have detector
|η| < 2.8, must have corrected ET > 15 GeV to be called tight jets, whereas loose
jets must have corrected ET between 8 GeV and 15 GeV. Detector η is defined as
the pseudorapidity of the jet calculated with respect to the origin of the coordinate
system, which is located in the center of the detector. Only events with exactly two
tight jets are accepted, whereby at least one of the jets must be tagged as a b–quark
jet by requiring a displaced secondary vertex within the jet.
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Figure 5.1: The rejection of QCD background events in the forward calorimeter is illustrated.
Exemplarily, the cuts applied on the angle between missing transverse energy and the leading jet
are demonstrated: |∆φ| > 0.3 and |∆φ| > 2.5 − /ET/(20 GeV).

Missing Transverse Energy

The missing ET (~/ET) is defined by

~/ET = −
∑

i

Ei
Tn̂i, (5.1)

where i denotes the calorimeter tower number with |η| < 3.6, n̂i is a unit vector per-
pendicular to the beam axis which points at the ith calorimeter tower. Additionally,

/ET = |~/ET| is defined. Because this calculation is based on calorimeter towers, ~/ET

has to be adjusted for the effect of the jet corrections for all tight and loose jets.

Since muons pass the calorimeters without showering, i.e. as minimum ionizing
particle, a correction is applied by adding all transverse momenta of the traversing
muons to the sum and by removing the average ionization energy. The corrected
/ET is required to be greater than 25 GeV.

Rejection of QCD multi–jet background

To further suppress events in which no real W boson is produced, additional cuts
are applied [106]. The cuts are based on the assumption that these events do not
produce /ET by nature but due to lost or mismeasured jets. Therefore, one would

expect small /ET and small values of the angle ∆φ between ~/ET and a jet. For central

electrons, the requirements are |∆φ| > 1.9− /ET/(20 GeV) for the angle between ~/ET

and the jet with the higher ET and |∆φ| > 1.8− /ET/(25 GeV) for the angle between
~/ET and the second jet, respectively. Electrons detected in the plug calorimeter must

have |∆φ| > 0.3 and |∆φ| > 2.5 − /ET/(20 GeV) for the angle between ~/ET and the

jet with the higher ET and |∆φ| > 2.2− /ET/(20 GeV) for the angle between ~/ET and
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the second jet. As illustration of the QCD background rejection, the cuts applied on

the angle between ~/ET and the leading jet are exemplarily demonstrated in figure 5.1.

Z–Boson Veto

To remove Z–boson events, events are rejected in which the charged lepton can
be paired with any more loosely defined jet or lepton to form an invariant mass
consistent with the Z peak, defined as the range from 76 GeV/c2 to 106 GeV/c2.

5.3 Data Modeling

Using multivariate methods, it is crucial to model the observed data correctly.
Therefore, the complete spectrum of expected processes contributing to the W +
2 jets bin has to be modeled. Most of the processes are described using Monte Carlo
simulation, while some background processes are derived from data. A complete list
of Monte Carlo samples used in this analysis can be found in table B.1.
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Figure 5.2: Examples of Feynman graphs showing W+heavy flavor background production: (a)
illustrates production of a W boson in association to a gluon splitting into a heavy–quark pair.
(b) shows the production of a W boson in addition to a c quark and a gluon as extra parton.

The background to single top–quark production in the b–tagged lepton+jets sample
is dominated by W–boson production in association with heavy–flavor quarks, illus-
trated in figure 5.2: Wbb̄, Wcc̄, and Wc production, called W+heavy flavor in the
following. Additional background sources are top–quark pair production being illus-
trated in figure 1.3, diboson production (including WW , WZ, and ZZ) whereof an
example is given in figure 5.3(a), as well as Z–boson production in association with
quarks. The latter, exemplarily shown in figure 5.3(b), is also called Z+jets produc-
tion and contains leptonically decaying Z bosons. W–boson, diboson, and Z–boson
events with a light–flavor jet mistakenly tagged as heavy flavor are named mistags1.
A substantial background arises from QCD–induced multijet events, e.g. direct bb̄

1The label “mistag” has to be interpreted in the respective context, since it can denominate
both a mistagged jet and an event with a mistagged jet.
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Figure 5.3: Examples of (a) diboson and (b) Z+jets background production. Variations of (a) can
produce ZZ and WZ events. For Z+jets production, exemplarily illustrated in (b), only leptonic
Z–Boson decays are considered.
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Figure 5.4: Examples of Feynman graphs showing production of QCD backgrounds. In events like
(a), a jet can be misidentified as isolated lepton to fake the signature of single–top–quark events. In
bb̄ events, a semi–leptonically decaying b hadron can lead to the same signature as single–top–quark
events if the lepton is spuriously identified as isolated lepton, as illustrated in (b).

production with additional gluon radiation as illustrated in figure 5.4. Those events
mimic the signature of W–boson production if a jet (or a lepton from a semileptonic
decay) is erroneously identified as an isolated lepton and transverse energy is mis-
measured, leading to artificial /ET. Since no on–shell W boson is produced, those
events are called non–W events in the following.
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5.3.1 Signal MC

Several authors pointed out [107, 38] that the leading order contribution to single
top-quark production via t–channel, as modeled in leading order parton shower
Monte Carlo programs, does not adequately represent the measured final states.

The leading order process is a 2 → 2 process with a b quark in the initial state as
given by figure 1.4(a): b+u→ d+ t or b+ d̄→ ū+ t. For antitop–quark production,
the charge conjugate processes are implied. As already pointed out in section 1.2.2,
the b quark being part of the quark sea is described by a b–quark PDF for the
calculation. Since the b quark originally stems from a gluon splitting into a bb̄ pair, a
b̄ quark has to be present in the event. Leading order parton shower programs create
this b̄ quark through backward evolution following the dglap scheme [108, 109, 110].
Thereby, only the soft regime of the transverse momentum distribution of the b̄
quark is modeled well, while the high–pT tail is not estimated adequately. Also, the
pseudorapidity spectrum expands too far into the forward region.

One can improve the modeling of single top–quark production via t–channel by pro-
ducing two samples of simulated events with matrix element generators and applying
a parton shower Monte Carlo program to the final–state partons. In this analysis,
the matrix element generator madevent, interfaced to the cteq5l [31] parameter-
ization of the parton distribution functions (PDF), was used to produce simulated
events. Parton showering and hadronization were performed using pythia.

The first sample is the 2 → 2 process b+ q → q′ + t given by the Feynman graph in
figure 1.4(a); the second process is a 2 → 3 process with a gluon in the initial state,
g + q → q′ + t + b̄, which is shown in figure 1.4(b). In the second process, the b̄
quark, called 2nd b quark in the following, is produced directly in the hard scattering
described by the matrix element. This sample describes the most important next–to–
leading order (NLO) contribution to t–channel production and is therefore suitable
to describe the high–pT tail of the pT distribution of the 2nd b quark.

However, the two samples, the 2 → 2 process and the 2 → 3 process, have to be
matched to form one unified sample of simulated events. This has been realized by
a procedure of adjusting the ratio between the 2 → 2 and 2 → 3 processes in such a
way that the rate of events with a detectable 2nd b–quark jet, that is pT > 15 GeV/c
and |η| < 2.8, matches the prediction made by ztop [38], a program which operates
at NLO in perturbation theory. The matched t–channel sample is created in such a
manner that the pT distribution of 2nd b–quarks in the matched t–channel sample
consists of 2 → 2 events for transverse momenta below a certain cutoff and of 2 → 3
events for transverse momenta above the cutoff. This cutoff and hence the ratio
between the two processes are varied until the rate of detectable 2nd b–quark jets
matches the prediction [111]. The final ratio is found to be R = 1.3, the cutoff is
derived to be KT = 9 GeV/c, as displayed in figure 5.5. As a result, all detectable
2nd b quarks (pT > 15 GeV/c) in the matched t–channel sample are provided by the
2 → 3 process. Looking at figure 5.5(b) which shows the pT distribution of the 2nd

b quark on a logarithmic scale, it is apparent that the 2nd–b–quark pT spectrum in
the matched t–channel sample is much harder than the one provided by the 2 → 2
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Figure 5.5: Matching of single–top–quark events produced by the 2 → 2 and the 2 → 3 t–channel
processes. The pT distributions of the 2nd b quark in the event are shown, (a) on a linear scale
and (b) on a logarithmic scale. The ratio of 2 → 2 to 2 → 3 events is adjusted such that the rate
of 2nd b quarks with pT > 15GeV/c and |η| < 2.8 matches the NLO prediction. The fraction of
these events is illustrated by the shaded area in (a).

process alone. The tail of the distribution extends beyond 100GeV/c, while it would
otherwise become distinct around 50 GeV/c.

Evaluation of Single–Top Monte Carlo Samples

It is important to evaluate the quality of the modeling of single top–quark events in
a quantitative fashion. For that purpose, the kinematic distributions of the primary
partons extracted from the madevent samples are compared to NLO differential
cross sections calculated with ztop. In general, very good agreement is found. In
particular, it is important to notice that the pseudorapidity distribution of the 2nd

b quark is modeled very well even though it was not used for the matching of the
two t–channel samples.

The remaining difference between the simulation and the ztop NLO calculation can
be obtained by reweighting the simulated events in such a way that they match the
calculation and by investigating the influence on the acceptance. The weights are
derived from comparing six kinematic distributions, namely pT and η of both the
top quark and the two highest ET jets not originating from the top–quark decay.
The correlations between those variables are considered by determination of the co-
variance matrix using simulated events. In case of single top–quark production via
t–channel, one distinguishes between b–quark jets and light–quark jets to account
for the specific final state. The first step to estimate a systematic uncertainty is to
determine the acceptance of simulated events by counting events passing the selec-
tion cuts. The second step is to sum up the weights of accepted events to estimate
the influence of the difference between calculation and simulation on the accep-
tance. In total, a discrepancy of −1.8%± 0.9% (MC stat.) for t–channel events and
−0.3%± 0.7% (MC stat.) for s–channel events is found, respectively. This indicates
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that the estimate of the acceptance using simulated events is slightly higher than
the NLO prediction for t–channel events, while excellent agreement for s–channel
events is found.

The general conclusion from our studies is that the madevent Monte Carlo events
give a very good representation of the single top–quark production process. For
t–channel, the influence of NLO corrections is sufficiently considered by taking into
account the main NLO effect. The remaining differences are covered by assigning a
systematic uncertainty of ±2% or ±1% on the acceptance for t–channel or s–channel
events, respectively.

More details on the t–channel matching procedure and the comparison to ztop can
be found in reference [111].

5.3.2 Modeling of backgrounds

For the modeling of tt̄, diboson, and Z+jets production, simulated events generated
with pythia are used, while the W+heavy flavor background was simulated using
a combination of alpgen and herwig.

The non–W background is modeled using two different approaches [112]. The central
electron and muon models are obtained from central electron trigger data. The
events are required to pass all kinematic electron cuts but to fail two of the five
non–kinematic cuts2. Even though their kinematic properties resemble those of
W–like events, those events are non–W–enriched, since the non–kinematic criteria
serve primarily to filter out QCD–induced multijet events. For the forward electron
sample, such a model is not yet available. For this reason, an additional non–W
model is introduced, based on the idea that for a non–W event to pass the selection
criteria, a jet has to resemble an electron. Hence, events from jet trigger data are
required to have a jet with ET > 20 GeV, 0.05 < EHAD/EEM < 0.2, and at least
four reconstructed tracks. The latter makes it unlikely that the event contains a real
electron. Once a jet is identified as a fake electron, its charge is assigned randomly,
and it is further considered as a tight forward electron.

The event candidates of both approaches have to pass all but the lepton selection
criteria and the b–tag requirement to contribute to the corresponding non–W model.
Since demanding a tagged jet would cause too low statistics, the b tag in the event
has to be faked using taggable3 jets. If, in a given event, only one jet is taggable,
this one is considered to be the tagged jet. If there are two taggable jets in the
event, the event is duplicated and the first jet is assigned as tagged for one event,
and the second jet as tagged for the other event, i.e. both hypothesis are utilized.
To avoid a bias towards events with two taggable jets, events with only one taggable
jet are duplicated as well.

Due to the usage of the neural–network b–tagger described in section 6, it is ad-

2Q · ∆x, |∆z|, EHAD/EEM, Lshr, χ2
strip

3ET > 10 GeV, |η| < 2.4, and Ntrk ≥ 2.
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ditionally necessary to assign a hypothesis of what kind of quark flavor the jet is,
b, c, or light–quark flavor. Therefore, all events are tripled by taking into account
each hypothesis. Each event is weighted by the corresponding flavor fraction. This
fraction is estimated by applying the neural–network b–tagger to the /ET < 15 GeV
sideband of the observed data. In this sideband sample, a flavor composition of 45%
b–quark jets, 40% c–quark jets, and 15% light–quark jets is found.

In order to describe events with mistagged light–quark jets, W+light flavor events
simulated with alpgen and showered with herwig are used. Due to the very small
fraction of tagged events in this sample, a large amount of this kind of events would
be needed in simulation. Thus, the pretag sample is utilized where taggable jets
are assigned to be tagged [113]. If an event has two taggable jets, both hypotheses
are used for the particular event. Each hypothesis of each event is weighted by
the mistag probability of the jet considered as tagged. This probability is defined
by the negative tag rate and the correction factor for the mistag asymmetry, both
introduced in section 4.3.4.

For both non–W and mistag model, the output of the neural network b tagger is
randomly assigned to the jet attributed as tagged. For this purpose template output
distributions obtained from jets of simulated events corresponding to the respective
flavor are utilized.

5.4 Event Yield and Background Estimate

5.4.1 Expected Event Yield of Single–Top–Quark Events

The number of expected events is given by

ν̂ = σ · εevt · Lint (5.2)

where σ is the theoretically predicted cross section of the respective process, εevt

is the event detection efficiency, and Lint is the integrated luminosity. The pre-
dicted cross sections for single top–quark production via t–channel and s–channel
are quoted in section 1.2.2.

The event detection efficiency is estimated by applying the selection cuts to the
samples of simulated events. In addition, one has to account for differences between
the simulation and the real experimental setup. Since the trigger simulation is not
used in this analysis, the event detection efficiency obtained from the Monte Carlo
simulation, εmc is reduced by the trigger efficiency εtrig. Differences in the identifica-
tion efficiencies of charged leptons and b quark jets between data and simulation are
accounted for by a correction factor, εcorr [99]. Here, the scale factor correcting the
b tag efficiency, SF = 0.89±0.07 (see section 4.3.4), is valid per tagged heavy–flavor
jet. For c–quark jets, the uncertainty on the scale factor SF is doubled. Since the
simulation is too optimistic concerning mistagged light jets, the number of expected
mistags per sample is estimated using the mistag matrix introduced in section 4.3.4.
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The samples of simulated events are produced in such a way that the W boson
emerging from the top–quark decay is only allowed to decay into lepton pairs, that is
eνe, µνµ, and τντ . The value of εmc is therefore multiplied by the branching fraction
of W bosons into leptons, εBR = 0.324. In total, the event detection efficiency is
given by

εevt = εmc · εBR · εcorr · εtrig (5.3)

Including all trigger and identification efficiencies, εevt(t–channel) = (1.2 ± 0.1)%
and εevt(s–channel) = (1.8 ± 0.1)% are found. The expected number of single–top–
quark events is 22.4± 1.8 for production via t–channel and 15.4± 1.0 for s–channel,
respectively; the quoted errors include only the uncertainty on εevt.

5.4.2 Background Estimate

To estimate the number of expected background events, two different approaches are
realized. The expectations of theoretically understood processes are determined us-
ing simulated events [99]. Processes with larger theoretical uncertainties are treated
by a data–based method [114] utilizing so–called “pretag” data, i.e. the data sample
with all cuts applied except the b–tag requirement. This pretag sample is corrected
for the expected number of events estimated by the Monte–Carlo–based method.
Afterwards, the number of pretag non–W events is evaluated and subtracted to
enable the determination of the expected pretag W+heavy flavor events which are
scaled by the tagging efficiency to result in the expected number of events in the b–
tagged sample. Using the remaining number of pretag events, the expected number
of mistags is estimated. In the final step, the number of tagged non–W events is
determined. In the following sections, this procedure is outlined more precisely.

Monte–Carlo–Based Backgrounds

Contributions of tt̄, diboson, and Z+jets production to the b–tagged lepton+jets
sample are derived from samples of simulated events. The corresponding event de-
tection efficiencies εevt are calculated as described in section 5.4.1 in case of single
top–quark production. Using (5.2), the number of expected events of a given process
is estimated by multiplying the event detection efficiency by the integrated lumi-
nosity and by the appropriate theoretically predicted cross section. Therefore, it is
essential that the given physical process is theoretically well understood, i.e. the
kinematics are well described through simulated events and the cross section is well
known.

Events from top–quark pair production are expected to be present in the selected
data sample due to limited detector acceptance. In principle, tt̄ events can be
distinguished by the decay mode of both W bosons coming from the top–quark and
antitop–quark decays. If both W bosons decay leptonically the event belongs to the
dilepton category. If one of those leptons is not detected, the event can possibly
pass the event selection cuts. In case of one W boson decaying hadronically, several
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lost or misidentified jets can induce such a non–dilepton event being accepted by the
single–top–quark event–selection. Even though a veto on dilepton events is applied,
the rejection is not perfect. To compensate for a higher dilepton veto efficiency in
simulated events induced by deviation in lepton identification and reconstruction
efficiencies, the dilepton εevt is corrected using measured dilepton events from Z–
boson decays. The normalization of tt̄ production is based on the theoretical NLO
cross section predicted by Bonciani et al. [115, 34]. The differences to the cross
sections calculated by Berger et al. [116] and Kidonakis et al. [117] are incorporated,
as well as an additional systematic uncertainty due to a variation of the top–quark
mass, leading to a cross section of σtt̄ = (6.70 ± 1.32) pb.

To obtain the expected number of diboson events in our selected data sample, we
use the theoretical cross sections predicted for a center of mass energy of

√
s =

1.80 TeV and
√
s = 2.00 TeV [118], respectively. The rescaling to

√
s = 1.96 TeV

is realized by taking the mean of a linear and quadratic interpolation, leading to
σWW = (13.30 ± 0.40) pb, σWZ = (3.96 ± 0.12) pb, and σZZ = (1.57 ± 0.05) pb.

The expected number of Z+heavy flavor events is estimated in an analogous way;
events of Z–boson production in association with light–flavor quarks and coincident
decay of Z → e+e− or Z → µ+µ− contribute to the background category of mistags
and are hence estimated differently. The normalization for Z+jets production is
determined using σZ · BR(Z → l+l−) = (336.0 ± 8.0) pb, where BR(Z → l+l−) is
the branching ratio of events with leptonically decaying Z bosons.

Estimation of the Pretag Non–W Event Rate

The estimation of the expected number of non–W events makes use of the pretag
sideband of the lepton trigger data. To obtain the fraction of non–W events in the
pretag sample, the selection requirement of /ET is additionally omitted. The /ET

distribution of a W+jets template obtained from alpgen simulated events and a
non–W template is fitted to the /ET spectrum of the measured pretag data.

For the muon and forward electron trigger data, the non–W template is built out of
corresponding non–isolated sideband lepton data. By inverting the lepton calorime-
ter isolation requirement, the on–shell W–boson content is intensely reduced.

For the central electron sample, the non–W template is obtained from electron
trigger data by requiring those events to pass all kinematic selection criteria but to
fail two of five lepton identification criteria as described in section 5.3.2.

The estimate of the tagged non–W event yield is performed in a similar way after the
rates of all other background processes are specified. This is mandatory to establish
a /ET distribution according to the full background prediction.
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W+Heavy Flavor Contributions

W+heavy flavor production contributes significantly to the b–tagged lepton+jets
sample. Several Monte Carlo generators are capable of performing matrix element
calculations for W+jets, but merely performing calculations at leading–order in per-
turbation theory. As a result, the overall normalization of these calculations has a
large theoretical uncertainty, even though the relative contributions of the impor-
tant diagrams for Wbb̄, Wcc̄, and Wc production are well–defined. For this reason,
the number of pretag W+heavy flavor events, NHF, is estimated by multiplying
the number of W+jets events in the pretag data sample, NW+jets, by the relative
W+heavy flavor fractions, fHF. The heavy flavor fractions were obtained from sam-
ples of alpgen simulated events using corrections derived from observed multijet
events [119]. Hence, the number of pretag W+heavy flavor events is given by

NHF = fHF ·NW+jets = fHF · (N · (1 − fnon–W ) −NHFsim) (5.4)

where N is the number of observed events in the pretag data set, fnon–W is the
fraction of non–W events in the pretag sample, and NHFsim is the expected number
of pretag heavy–flavor events derived by the described technique using simulated
events, i.e. tt̄, diboson, and Z+jets events. The number of tagged W+heavy flavor
events ν̂HF is predicted by applying tagging efficiencies εtag, derived from simulated
events of Wbb̄, Wcc̄, and Wc production.

ν̂HF = NHF · εtag (5.5)

Rates of Events with Mistagged Jets

The number of expected mistagged events is estimated by making use of the mistag
matrix described in section 4.3.4. The per–jet mistag rate is used to estimate the
number of negatively tagged events, Ntag−, in the observed pretag sample. To correct
for the mistag asymmetry, the correction factor γ has to be applied. Additionally, to
obtain the number of expected mistagged events ν̂mistags, one has to further correct
for non–W and heavy–flavor contributions to the pretag sideband:

ν̂mistags = Ntag− · γ · N · (1 − fnon–W ) −NHFsim −NHF

N
(5.6)

Estimation of the b–Tagged Non–W Event Rate

To estimate the number of expected tagged non–W events, likelihood template fits
are performed to the /ET spectrum of the tagged data sample. As a tagged W+jets
template, rather than a sample of simulated W+jets events, the /ET distribution of
the full background prediction is used with proper normalization and all background
processes included except the non–W fraction. To obtain the non–W template in
the tagged sample, the pretag non–W template is weighted by an /ET–dependent
tagging transfer function extracted from central electron trigger data.
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The predicted numbers of background events, as well as the number of expected
single–top–quark events, are given in table 5.2.

Process Number of Events

tt̄ dilepton 19.9 ± 4.6
tt̄ non–dilepton 38.5 ± 8.9
total tt̄ 58.4 ± 13.5
Wbb̄ 170.9 ± 50.7
Wcc̄ 63.5 ± 19.9
Wc 68.6 ± 19.0
total W+heavy flavor 303.0 ± 89.6
Mistags 136.1 ± 19.7
Non–W 26.2 ± 15.9
WW 5.5 ± 1.0
WZ 8.0 ± 0.8
ZZ 0.3 ± 0.1
total Diboson 13.7 ± 1.9
Z → ee 1.2 ± 0.5
Z → µµ 5.3 ± 1.6
Z → ττ 5.5 ± 2.4
total Z+jets 11.9 ± 4.4
total background 549.3 ± 95.2
t–channel 22.4 ± 3.6
s–channel 15.4 ± 2.2
total single–top 37.8 ± 5.9
total prediction 587.1 ± 96.6

observation 644

Table 5.2: Summary of predicted numbers of signal and background events in the selected data
sample with all systematic uncertainties included (see section 7.3).
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A Neural–Network b–Tagger

In the selection of single–top–quark events, the identification of b–quark jets is re-
alized by requiring a reconstructed secondary vertex which mainly exploits the long
lifetime of b hadrons (τ ≈ 1.6 ps). Due to the non–zero lifetime of c hadrons and
spurious reconstruction of secondary vertices in light–flavored jets, 48% of the ex-
pected backgrounds to the search of single top–quark production do not contain any
b quarks, as demonstrated in table 5.2. Selected events without any b quarks can
be further rejected by extending the vertex requirement by the inclusion of other
characteristics of b hadrons. Appropriate properties are their large mass of about
5 GeV/c2, the high decay multiplicity, and the probability of semileptonic decays.

In this thesis, a neural network was developed (making use of the NeuroBayes R©

package described in section 3.1), which was trained with a variety of variables ex-
ploiting those quantities in order to identify secondary vertices related to the decay
of b hadrons [120]. This approach has the advantage that all given information and
all correlations are optimally combined to one continuous variable. For the training,
tagged jets of simulated single–top–quark events and the main backgrounds, viz pro-
duction of W+jets and tt̄, are used in a mixture according to the expectation given
by table 5.2. As signal, all processes containing b quarks are used, namely produc-
tion of single top quarks, tt̄, and Wbb̄, while processes containing charm and light
flavors, that is Wcc̄, Wc, and mistags, act as background. Out of those processes,
tagged jets are used for the training of the neural network, taking into account the
knowledge about a particle’s origin which is a given information for simulated events.
This is particularly important for the selection of mistagged light–quark jets. Since
those have to be extracted from W+jets events comprising all quark flavors, only
tagged jets in events without any heavy–flavored quarks or hadrons are utilized as
mistags for the training. In case of the b–quark (c–quark) samples, only tagged jets
are used with at least one track coming from the decay of a b hadron (c hadron).

For the training of the neural–network b–tagger, the single–top–quark event selection
described in section 5.2 is omitted, since those requirements reduce the number
of available jets in simulated events. Nevertheless, only events with exactly one
identified tight lepton are considered. This is necessary to prevent confusing the
unidentified lepton from the W–boson decay with a light–flavored jet.
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6.1 Discriminating Variables
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Figure 6.1: Qualified variables to discriminate secondary vertices stemming from the decay of a
b hadron: (a) the 2–dimensional decay length of the secondary vertex, (b) the significance of the
2–dimensional decay length, (c) the number of displaced tracks fulfilling the quality requirements
for pass 1 of the vertex fit, and (d) the number of tracks fitted to the secondary vertex.

A variety of variables is suitable to exploit lifetime, mass, and decay multiplicity of
b hadrons. Many of them are related to the reconstructed secondary vertex, some
are reflected by the properties of the tracks in the tagged jet. To account for the
probability of semileptonic b–hadron decays, the number and momenta of leptons
in the jet are useful quantities.

For instance, the decay length of the reconstructed secondary vertex is related to
the lifetime of the decaying particle. Even though figure 6.1(a) illustrates that
spuriously reconstructed vertices can have a large transverse distance Lxy to the
primary interaction point, the significance of the transverse decay length (Lxy/σLxy

)
is small, as clarified by figure 6.1(b): as expected, vertices induced by the decay of
a b hadron are more significantly dislodged from the primary interaction point than
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Figure 6.2: Qualified variables to discriminate secondary vertices stemming from the decay of a b
hadron: (a) the number of tracks in the tagged jet with an impact parameter significance larger
than 3σ, (b) the invariant mass of the vertex, (c) the transverse momentum at the secondary
vertex, and (d) the pseudo–lifetime of the secondary vertex.

vertices originating from decaying c hadrons or falsely reconstructed vertices.

The high decay multiplicity of b hadrons is for example reflected by the number of
tracks Ntrk per jet, fulfilling minimum–quality requirements; another sensitive quan-
tity is the number of displaced tracks Npass1

trk qualified for the use in pass 1 of the
vertex fit described in section 4.3.4, as displayed in figure 6.1(c). Figure 6.1(d) illus-
trates that the number of tracks associated to the vertex, Nvtx

trk , contains information
about the origin of the vertex. Additionally, many tracks with a certain significance
of the impact parameter, d0/σd0

, are a sign of the presence of a long–lived particle
in the jet. This is exemplarily shown in figure 6.2(a) for the number of tracks with
d0/σd0

> 3.

The large b–hadron mass leads to higher invariant vertex masses Mvtx if the vertex
stems from the decay of a b–hadron as demonstrated in figure 6.2(b). Since the
combination of tracks is arbitrary in case of spurious vertices, the invariant mass is
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usually small. In case of c–hadron decays, the mass distribution shows a cutoff at
around 2 GeV/c2, induced by the c–quark mass.

Using the transverse momentum of the tracks associated to the secondary ver-
tex, pT

vtx, displayed in figure 6.2(c), one can compute the vertex pseudo–lifetime
cτ = Lxy ·Mvtx/pT

vtx, depicted in figure 6.2(d), mirroring the fact that falsely re-
constructed vertices can have large distances to the primary interaction point, as
mentioned above.
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Figure 6.3: Qualified variables to discriminate secondary vertices stemming from the decay of a b
hadron: (a) the lifetime–signed impact parameter significance and (b) the transverse momentum
pT

rel with respect to the jet axis of the most energetic track in the tagged jet.

In addition to vertex properties, attributes of the tracks in the jet are suitable to dis-
criminate jets containing a b hadron. For track information, the three most energetic
tracks in each tagged jet are considered, named “1.track”, “2.track”, and “3.track”
in the following. Both their impact parameters d0 and their lifetime–signed impact
parameters, (ǫzik · pi

jet
· pk

track
)/(|ǫzik · pi

jet
· pk

track
|) · d0, have been examined to account

for tracks not originating from the primary interaction point; the corresponding
significances are taken into account as well. Since the impact parameters of the
tracks mirror the lifetime of the mother particle, the displacement from the primary
interaction point is larger in case of tracks originating from the decay of a b hadron
than for other tracks. As illustration, the significance of the lifetime–signed impact
parameter of the most energetic track in the jet, i.e. the 1.track, is shown in fig-
ure 6.3(a). Other quantities reflecting the decay kinematics of b hadrons are the
momenta p of the tracks in the jet, as well as their transverse momenta pT

rel and
rapidities yrel with respect to the jet axis. Exemplarily, figure 6.3(b) depicts pT

rel of
the 1.track.

As already described in section 4.3.4, the secondary–vertex fitting procedure consists
of two passes. The algorithm initially tries to form a vertex consisting of at least
three tracks. If this first pass fails, a second attempt is made using tracks fulfilling
more stringent criteria. In this second pass, at least two tracks must be attached
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Figure 6.4: Some variables strongly depend on the pass of the secondary vertex fit whose distri-
bution is displayed in (a): Examples are the number of tracks associated to the vertex (Nvtx

trk ) for
(b) pass–1 vertices and (c) pass–2 vertices and the charge at the secondary vertex for (d) pass–1
vertices and (e) pass–2 vertices.
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to the vertex. Figure 6.4(a) demonstrates that, due to the decay multiplicity, more
than 70% of the reconstructed b–decay vertices are already built in pass 1, whereas
more than half of the reconstructed c–decay vertices or falsely reconstructed vertices
can only be fitted in the second pass. Due to construction, Nvtx

trk differs for the two
passes: while b–hadron–decay vertices can contain up to six tracks if they have been
reconstructed in pass 1 (see figure 6.4(b)), they mostly contain two or three tracks if
they have been fitted in pass 2 (see figure 6.4(c)). The track multiplicity is reflected
by the charge at the secondary vertex Qvtx, as displayed in figures 6.4(d) and 6.4(e):
to obtain an odd value for Qvtx, an odd number of tracks is necessary, while an even
number of tracks results in an even value for Qvtx.

6.1.1 Input Variables

As already explained, the distributions of many variables depend on the pass of the
vertex fit. Even though the network is able to learn those correlations by itself,
the training procedure was facilitated by explicitly incorporating those connections.
This is realized by splitting up the relevant variables into two separate ones, whereof
one is only filled in case of pass 1, the other one for pass 2. In case of pass 2, the
value of the pass–1 variable is assigned to a δ function (see section 3.1.2) and vice
versa.

In the first approach, 50 variables were investigated whose distributions can be
found in appendix C.1 if not already presented before. Variables containing only
few additional information are discarded by the automatic variable selection being
performed during the preprocessing as described in section 3.1.3. In case of the
neural–network b–tagger, the selection was restrained to variables contributing a
significance of at least 3σ. The complete list of the 25 variables eventually utilized to
train the neural–network b–tagger (ordered by significance) can be found in table 6.1;
the list of discarded variables is given in table 6.2.

6.2 Result of the Training

The output distributions of b–quark jets, c–quark jets, and light–quark jets with a
reconstructed secondary vertex are shown in figure 6.5(a). The separation between
b–hadron–decay vertices and vertices not related to the decay of a b hadron is very
good. Additionally, the neural network is able to distinguish between c–decay ver-
tices and falsely reconstructed ones. Since c hadrons have a non–zero lifetime, the
network classifies tagged c–quark jets as less background–like than mistags.

Figure 6.6 demonstrates that the pass of the vertex fit is reflected by the output
distributions. Since pass–1 vertices have to consist of at least three displaced tracks
and pass–2 vertices are only built if the first pass already failed, one can consider
pass–1 vertices as being of higher quality. Due to their high decay multiplicity, b–
quark jets tend to have a reconstructed vertex fitted in pass 1, while pass–2 vertices
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Rank Variable Relative Significance (in σ)

1 Ntrk with d0/σd0 > 3 80.5
2 signed d0/σd0 of 1.track 42.3
3 signed d0/σd0 of 2.track 27.1
4 signed d0/σd0 of 3.track 22.7
5 Mvtx (pass 2) 21.1
6 Mvtx (pass 1) 20.6
7 pass of SecVtx fit 19.7
8 pT

rel of muon 14.5
9 vertex cτ 13.3
10 Lxy/σLxy

2.7
11 Lxyz/σLxyz

10.4
12 pT

vtx (pass 1) 9.3
13 jet ET 10.1
14 Nvtx

trk (pass 1) 9.7
15 yrel of 1.track 6.5
16 Ntrk 6.1
17 Lxy 6.0
18 pT

rel of electron 5.8
19 Ntrk with d0/σd0 > 1 5.2
20 Nvtx

trk (pass 2) 4.0
21 χ2 per DOF of SecVtx fit (pass 2) 4.2
22 χ2 per DOF of SecVtx fit (pass 1) 3.9
23 p of 1.track 3.6
24 pT

rel of 3.track 3.3
25 jet η 3.2

Table 6.1: Set of discriminating variables used to train the neural–network b–tagger, sorted by
relevance. The quoted relative significances are determined as described in section 3.1.3, i.e. cal-
culated in terms of reduced matrices. These variables passed the requirement of the significance
being larger than 3σ. The variables which did not survive the cut on the significance are listed in
table 6.2.

are only reconstructed in b–quark jets if some of the tracks of the decay products are
missing. The fact that pass–2 vertices are of minor quality is distinctly recognized
by the neural–network b–tagger. Figure 6.6(a) illustrates that pass–1 vertices in
b–quark jets are clearly identified as signal–like, while figure 6.6(b) indicates that
pass–2 vertices have a broader output distribution not prominently peaking in the
signal region. In contrast, tagged c–quark and light–quark jets are identified as more
background–like if the vertex was reconstructed in pass 2, whereas pass–1 vertices
in these kinds of events feature a flatter distribution.

The performance of the neural network in the training sample is illustrated in fig-
ure 6.5(b) showing the signal purity N cut

sig /(N
cut
sig +N cut

bkg) in dependence of the signal
efficiency N cut

sig /Nsig, where Nsig is the initial number of b–quark jets in the training
sample and N cut

sig (N cut
bkg) the number of b–quark jets (non–b–quark jets) passing a
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Rank Variable Relative Significance (in σ)

26 yrel of 2.track 2.7
27 d0 of 1.track 2.4
28 signed d0 of 3.track 2.3
29 d0 of 3.track 2.4
30 yrel of 3.track 2.1
31 signed d0 of 2.track 1.7
32 d0 of 2.track 2.0
33 signed d0 of 1.track 1.7
34 pT

rel of 1.track 1.8
35 p of 3.track 1.4
36 electron ET 1.3
37 # electrons per jet 1.2
38 Ntrk with d0/σd0 > 2 0.3

39 Npass1
trk 1.1

40 d0/σd0 of 1.track 1.1
41 pT

vtx (pass 2) 1.0
42 p of 2.track 0.9
43 d0/σd0 of 3.track 0.8
44 pT

rel of 2.track 0.2
45 muon pT 0.3
46 d0/σd0 of 2.track 0.2
47 Qvtx (pass 2) 0.1
48 # muons per jet 0.1
49 Lxyz 0.1
50 Qvtx (pass 1) 0.0

Table 6.2: Set of discarded variables sorted by relevance. The quoted relative significances are
determined as described in section 3.1.3, i.e. calculated in terms of reduced matrices. These
variables did not survive the cut on the significance > 3σ.

certain cut on the neural network output. A signal efficiency equal to one corre-
sponds to simply omitting the cut on the neural network output. Hence, the signal
purity at efficiency equal to one is in accordance to the signal ratio in the training
sample of about 50%. The signal purity can be improved by cutting on the network
output, which provides the possibility to obtain a purity of more than 95% at the
expense of losing about 50% of the signal events. As further illustration, table 6.3
shows the efficiencies for an arbitrary cut on the output at −0.3, demonstrating that
90% of the tagged b–quark jets are kept, while 44% of the tagged c–quark jets and
73% of the mistags are rejected.

Besides using the network in a cut–based manner, it is possible to exploit the
different continuous output distributions without losing events in addition to the
secondary–vertex tagging efficiency, e.g. in a multivariate analysis. This is realized
in the search for single top–quark production as described in section 6.4.1.
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Figure 6.5: (a) The output of the neural–network b–tagger for b–quark jets, c–quark jets, and
light–quark jets with a reconstructed secondary vertex and (b) the signal purity in the training
sample in dependence of the signal efficiency.

flavor Noutput>−0.3
events /Nevents

b–quark jets 90%
c–quark jets 56%

light–quark jets 27%

Table 6.3: To demonstrate the performance of the neural–network b–tagger, the efficiency of a cut
at output > −0.3 is shown for b–quark jets, c–quark jets, and mistags. The numbers were obtained
by using the distributions in figure 6.5(a)

6.3 Comparison of Observed and Simulated Events

As the neural–network b–tagger is trained using simulated events, it is essential
to verify that the simulated events describe the data correctly. A decisive point
are the shapes of the input–variable distributions whose simulated distributions
are compared to data in section 6.3.2. Furthermore, it is important to scrutinize
the output distributions of both b signal and non–b background, as described in
sections 6.3.3 and 6.3.4.

6.3.1 Used Samples

In principle, one would like to select jets in observed events corresponding to those
utilized for the training of the neural network. In case of a neural–network b–tagger,
this is not possible, since the flavor of a jet is crucial to be known. Hence, it is
necessary to exploit special kinds of data to obtain samples which are enhanced in
specific quark flavors.
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Figure 6.6: The output of the neural–network b–tagger for b–quark jets, c–quark jets, and light–
quark jets with a secondary vertex reconstructed in (a) pass 1 and (b) pass 2.

Heavy–Flavor Enhanced Samples

Inclusive Electron Data For the comparison of b–quark jets in data and simula-
tion, b–quark pair production and semileptonic b–hadron decays are exploited to se-
lect heavy–flavor enriched samples. Hence, data triggered with the inclusive electron
trigger, blpc0d, are utilized. This trigger requires a COT track with pT > 8 GeV/c
to match an energy cluster with ET > 8 GeV. The shower profile of this cluster has
to be consistent with the expectation obtained by test–beam measurements. The
data sample has been stripped for an 8 GeV electron and two 10 GeV jets.

MC To model the inclusive electron data sample, generic 2 → 2 scattering QCD
events (generated with herwig) with a minimum outgoing transverse momentum
of 15 GeV/c (20 GeV/c) are used where all flavors are created. A filter requiring a
7 GeV/c (8 GeV/c) electron in the generator parton list discards most light–flavor
events. In these simulated samples, every event contains a lepton originating from
semileptonic decays whereas in data, the required lepton is possibly produced by
material interactions.

To emulate the trigger efficiency of measured data, simulated events are accepted
or rejected according to a parameterization of the 8 GeV L1 lepton trigger [121].

freq
(

(
√

ET −
√

ET0)/(2σE)
)

×freq ((pT − pT0)/(2σppTpT0))×
(

1 − e(2.0−ET)/(2σE2)
)

,

with ET0 = 7.93, σE = 0.096, σE2 = 1.10, pT0 = 7.56, σp = 0.0139 (base unit is
GeV), and freq(x) the normal frequency function

freq(x) =
1√
2π

x
∫

−∞

e−t2/2dt
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Mistag Samples

Jet–Trigger Data For the comparison of mistagged jets in data and simulation,
events selected by generic jet triggers are utilized. Those triggers require a jet,
reconstructed with a cone of R = 0.7, having a transverse energy of ET > 20 GeV
(gjt10d) or ET > 50 GeV (gjt20d), respectively. In those events, negatively tagged
jets are utilized.

MC As a model of the above described data, dijet events generated with pythia

and herwig, having a minimum pT of 18 GeV/c and 40 GeV/c, respectively, are
used.

6.3.2 Modeling of Input Variables

As already mentioned, the distributions of the input variables in data and simulation
have to be compared. For this purpose, the inclusive lepton samples described before
are utilized. Exemplarily, some comparisons are shown in figures 6.7, 6.8, and 6.9;
all other comparisons can be found in appendix C.2.

Overall, good agreement between data and simulation is found. Some minor differ-
ences are observed using the inclusive electron control samples, caused by the fact
that the electron in data can be induced by material interactions. This fact can be
compensated by demanding minimum–quality requirements for the electron track.
E.g. in case of the comparison of the transverse momentum at the secondary vertex,
illustrated in figure 6.8(c), the electron track is required to be attached to the sec-
ondary vertex. Nevertheless, this difference between simulation and data is specific
to the stripped inclusive lepton samples and not expected in genuine b–quark jets.

6.3.3 Output Distributions of b–Quark Jets

To quantify differences between the output distributions of observed and simulated
b–signal events, both b–quark pair production and semileptonic b–hadron decays are
taken into account to select b–quark enhanced events. This is realized by requiring
an energetic electron within a jet and an additional jet opposite in φ.

The electron must have ET > 9.0 GeV and a matched track with ET > 8.0 GeV/c.
Furthermore, the ratio between hadronic and electromagnetic energy, EHAD/EEM, is
required to be less than 0.05; the ratio of clustered energy to track momentum, E/p,
has to be 0.5 < E/p < 2.0. Additionally, the shower profile of the cluster has to be
consistent with the expectation obtained by measurements with test–beam electrons.
If more than one electron is present, the one with the highest ET is selected. Events
are rejected if the electron is identified as coming from the conversion of a photon.
Details on the electron selection can be found in appendix A.3.
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Figure 6.7: Comparison of discriminating variables in data and simulation: (a) the 2–dimensional
decay length of the secondary vertex, (b) the charge at the secondary vertex, (c) the number of
tracks per jet, and (d) the number of tracks fitted to the secondary vertex.

The selected electron must be within ∆R = 0.4 of a 15 GeV jet, called “electron
jet”. If more than one jet is present, the closest one is selected.

To account for the fact that b quarks are mostly produced in pairs, an additional
15 GeV jet with ∆φ > 2 radians respective the electron jet and η < 1.5 is required,
the so–called “away jet”. If there is more than one candidate, the one with the
smallest |∆φ− π| is chosen.

To evaluate the differences between the output distributions of b–quark jets in data
and simulation, the away jet is considered, since utilizing the electron jet would
introduce a strong bias due to the presence of the lepton.
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Figure 6.8: Comparison of discriminating variables in data and simulation: (a) the number of
tracks in the tagged jet with an impact parameter significance larger than 1σ, (b) the invariant
mass of the vertex, (c) the transverse momentum at the secondary vertex if the electron track is
used for the fit, and (d) the pseudo–lifetime of the secondary vertex.

Comparability of Flavor Compositions

Even though the selected events are enriched in heavy flavors, the contributions of
the different flavors are expected to vary between data and simulation. Hence, a
first step in evaluating the differences between data and simulation is to understand
the flavor composition of the considered jets.

In simulated events, the contributions of the different flavors can be determined by
looking for heavy–flavor quarks within a cone of R = 0.4 around the jet axis. In
data, this task is more difficult to perform. One established method to estimate the
flavor composition of tagged jets is to make use of the distribution of the mass at the
secondary vertex, Mvtx, being very distinct for the differently flavored jets. For this
estimation, template distributions of Mvtx, calculated at secondary vertices in jets
of different flavors, are fitted to the distribution observed in data. Those template
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Figure 6.9: Comparison of discriminating variables in data and simulation: (a) the rapidity yrel

and (b) the transverse momentum pT
rel with respect to the jet axis of the most energetic track in

the tagged jet.

distributions, displayed in figure 6.10(a), are obtained from away jets in simulated
events. The composition of tagged away jets is estimated for two cases: (1) both
electron and away jet are required to be tagged and (2) only the away jet is required
to be tagged (the electron jet is not necessarily tagged). The fitted distributions
of both scenarios are shown in figures 6.10(b) and 6.10(c), describing the observed
distributions well.

(a) away jet tagged, electron jet tagged

b–quark fraction [%] c–quark fraction [%] light–quark fraction [%]

MC 95.0 3.2 1.8
data 87.2 ± 3.0 9.9 ± 3.8 2.9 ± 2.0

(b) away jet tagged

b–quark fraction [%] c–quark fraction [%] light–quark fraction [%]

MC 88.9 8.8 2.3
data 72.9 ± 1.9 17.2 ± 2.8 9.9 ± 1.9

Table 6.4: Flavor composition of tagged away jets in data and simulation. The flavor composition
in data was estimated by fitting templates of Mvtx to the distribution in data, as illustrated in
figure 6.10. The flavor compositions are given for (a) both electron and away jet required to be
tagged and (b) only the away jet required to be tagged.

The composition of away jets, estimated in case of observed data and determined for
simulated events, is given in table 6.4. As expected, the contribution of b–quark jets
to the sample of tagged away jets increases if the electron jet is additionally required
to be tagged. Nevertheless, the b–quark fraction measured in the simulation is larger
than estimated for away jets in data. If only the away jet is required to be tagged,
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Figure 6.10: Fit of Mvtx templates to estimate the flavor composition of the away jet in data.
Figure (a) shows the templates obtained from tagged simulated away jets which are fitted to the
Mvtx distribution of away jets in data. Figure (b) shows the fit result if both electron and away
jet are required to be tagged. Additionally, the contributions of the different templates are shown
as given by table 6.4. The fit result is not equal to the weighted sum of the templates, since the fit
takes statistical uncertainties of the templates into account. The result of the fit if only the away
jet is required to be tagged is shown in figure (c).

the flavor composition in the simulation is measured to be 88.9%, while the estimate
in data is only 72.9%, i.e. the b–quark fraction in the simulation is 22% larger than
estimated in the data. If the electron jet is additionally required to be tagged, the b–
quark fraction in simulated away jets increases to 95%, whereas the estimate in data
is 87.2%. Since the composition seems to agree at a level of 9%, events with both
jets tagged are expected to be more qualified to evaluate the differences between the
output distributions of b–quark jets in data and simulation.
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Figure 6.11: The estimation of systematic uncertainties due to differences between data and sim-
ulation is illustrated. For all distributions, tagged away jets in events with tagged electron jets
are utilized. The output distributions of away jets in data and MC are shown in figure (a), fig-
ure (b) shows the accumulated output distributions, figure (c) shows the ratio of the accumulated
distribution in data divided by the accumulated distribution in the simulation, and (d) shows the
function quantifying the systematic uncertainties due to the observed differences between b–quark
jets in data and simulation.

Evaluating the Systematic Uncertainties

Figure 6.11(a) shows the output distributions of tagged away jets in observed and
simulated events with tagged electron jets. As expected from the estimated flavor
composition, the output distribution is more b–quark–like in simulated events than
in data. Nevertheless, adjusting the flavor composition of simulated jets to the
estimated composition of jets in observed events would introduce a large systematic
uncertainty, since the fit of Mvtx templates only provides a rough estimate.

To quantify the differences between data and simulation, the output distributions
are integrated from right to left, i.e. they are accumulated, having the advantage
that the accumulated distributions f acc are monotonic decreasing as displayed in
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figure 6.11(b). The value of the accumulated distribution at each output value
o, f acc(o), is equivalent to the ratio of events with outputs larger than o divided
by the total number of events: f acc(o) = Nevents(output ≥ o)/Nevents. If the output
distributions were completely alike, the ratio of the accumulated distribution in
data f acc

data(o) divided by the accumulated distribution in the simulation f acc
MC(o),

displayed in figure 6.11(c), should be equal to one. If the neural–network b–tagger
is implemented by cutting on the output, this ratio can be used to correct the cut
efficiency in the simulation in such a way that it fits the one in data.

The use of the b tagger as a continuous variable, like it is realized in the search for
single top–quark production, necessitates a method allowing to correct the output
event–by–event for differences between data and simulation. For this purpose, the
output oMC of simulated events is shifted to the value ocorr where the accumulated
distribution in data has the same value as the accumulated distribution in the sim-
ulation at that point: f acc

data(ocorr) ≡ f acc
MC(oMC). The dependence of the corrected

output ocorr on the output oMC is demonstrated in figure 6.11(d). The application

NN output
-1 -0.5 0 0.5 1

n
o

rm
al

iz
ed

 t
o

 u
n

it
 a

re
a

0

0.1

0.2

data

MC orig

MC corr

Figure 6.12: The impact of the systematic correction of b–quark jets is demonstrated by comparing
the output distribution of tagged away jets in observed events to the one in simulation before and
after the application of the systematic correction function.

of this function to simulated b–quark jets leads to a less signal–like distribution,
as illustrated in figure 6.12 showing the output distribution of tagged away jets in
observed events (with the electron jet additionally tagged) compared to simulated
distributions before and after the correction. This closure test of the systematic cor-
rection demonstrates that the corrected output describes the observed distribution
well.

Since the observed deviations of the simulated distribution from the one in data,
illustrated in figures 6.11(c) and 6.11(d), are small and expected to be partly induced
by different flavor compositions in simulation and data, the displayed function is not
used as a default correction of the output of simulated b–quark jets but rather to
estimate a systematic uncertainty, as explained in section 6.4.1.
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Comparison of the Output Distributions of the Electron Jet

As already mentioned, the electron jet has quite specific properties and cannot
be used to evaluate systematic uncertainties. Nevertheless, examining its output
distribution in data and simulation is an interesting cross check.
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Figure 6.13: Fit of Mvtx templates to estimate the flavor composition of the electron jet in data.
Figure (a) shows the templates obtained from tagged simulated electron jets which are fitted to
the Mvtx distribution of electron jets in data. Figure (b) shows the fit result if both electron and
away jet are required to be tagged. Additionally, the contributions of the different templates are
shown as given by table 6.5. The fit result is not equal to the weighted sum of the templates, since
the fit takes statistical uncertainties of the templates into account. The result of the fit if only the
electron jet is required to be tagged is shown in figure (c).

As described before in case of the away jet, the flavor composition of the electron jet
is determined by fitting template distributions of Mvtx to the distribution observed
in data. The template distributions obtained from electron jets in simulated events
are shown in figure 6.13(a), the results of the fits to the observed distributions are
illustrated in figure 6.13(b) for the case that both jets are tagged and in figure 6.13(c)
for the case that only the electron jet is required to be tagged.
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(a) electron jet tagged, away jet tagged

b–quark fraction [%] c–quark fraction [%] light–quark fraction [%]

MC 98.0 1.9 0.04
data 97.6 ± 2.1 0.9 ± 1.7 1.5 ± 1.0

(b) electron jet tagged

b–quark fraction [%] c–quark fraction [%] light–quark fraction [%]

MC 92.7 7.2 0.1
data 90.7 ± 1.1 6.2 ± 1.2 3.1 ± 1.1

Table 6.5: Flavor composition of tagged electron jets in data and simulation. The flavor composi-
tion in data was estimated by fitting templates of Mvtx to the distribution in data, as illustrated
in figure 6.13. The flavor compositions are given for (a) both electron and away jet required to be
tagged and (b) only the electron jet required to be tagged.

The estimated flavor composition of the electron jet in data is shown in table 6.5 in
addition to the composition determined for simulated events. Due to the presence of
the electron, the b–quark fraction is larger, while the deviations of the composition
in the simulation from the expectation in data are smaller than in case of the away
jet. If both jets are required to be tagged, the b–quark fraction in the simulation
is almost identical to the one estimated in data. Therefore, the deviations in the
output distributions are expected to be smaller than in case of the away jet. This
is demonstrated in figure 6.14. Comparing the accumulated distributions shown in
figure 6.14(b) or the ratio of the accumulated distributions displayed in figure 6.14(c),
it can be seen that the deviations of the output distribution of simulated electron
jets from the observed one are negligible.

6.3.4 Output Distributions of Mistagged Jets

The comparison of the output distributions of light–quark jets in data and simula-
tion is a difficult challenge, since the neural–network b–tagger is applied to events
already selected by the secondary–vertex b–tagger. Nevertheless, events with falsely
reconstructed secondary vertices can be selected by making use of negatively tagged
jets, i.e. secondary vertices with a negative decay length as introduced in sec-
tion 4.3.4. Under the assumption that negatively tagged vertices are a valid descrip-
tion of positively mistagged vertices, those events can be utilized for the comparison
of mistagged jets in data and simulation. One caveat is that the decay length is
negative per definition. This is taken into account by using its absolute value.

The simulation of mistagged jets is a challenging task, since it requires adequate
simulation of detector effects. Hence, a first important check is to quantify if mistags
are modeled consistently in simulation. Therefore, in simulated dijet events, all–
flavor negatively tagged jets are compared to negatively tagged light–flavored jets
and to positively tagged light–flavored jets. As shown in figure 6.15(a), the output
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Figure 6.14: The differences in the output distributions of tagged electron jets in data and simu-
lation are evaluated. For all distributions, the away jet is additionally required to be tagged. The
output distributions of electron jets in data and MC are shown in figure (a), figure (b) shows the
accumulated output distributions, and figure (c) shows the ratio of the accumulated distribution
in data divided by the accumulated distribution in the simulation.

distributions of the various kinds of mistagged jets look consistently.

The comparison between negatively tagged jets in simulated and observed jet events,
presented in figure 6.15(b), reveals that the output distribution of mistags in data
appears less background–like than indicated by simulated mistags. Hence, it is
necessary to correct the output distribution of simulated mistags in such a way that
it describes the observation. As described in case of the estimation of systematic
uncertainties due to the modeling of b–quark jets (see section 6.3.3), the output
distributions are accumulated to quantify the differences between mistags in data
and simulation, being depicted in figure 6.15(c). As expected, the ratio of the
accumulated data distribution divided by the accumulated MC distribution, shown
in figure 6.15(d), exhibits significant deviations from one, confirming the conclusion
that the output distribution of simulated mistagged jets needs to be corrected.
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Figure 6.15: Comparison of mistag output distributions: in figure (a), the output distributions
of negatively tagged jets are compared to negatively and positively tagged light–quark jets in
simulated events, figure (b) shows the output distributions of negatively tagged jets in data and
simulation, figure (c) depicts the accumulated output distributions of negatively tagged jets in data
and simulation, and figure (d) displays the ratio of the accumulated data distribution divided by
the simulated one.

Since the deviation of simulated mistags from observed ones differs for pass–1 and
pass-2 vertices, as demonstrated in figure 6.16, the corrections are derived separately
for the two passes of the vertex fit.

Parameterization of the Correction Function

As noted in section 4.3.4, the mistag probability depends on several parameters,
namely ET, η, and φ of the jet, track multiplicity Ntrk and the sum of the transverse
energies of the taggable jets in the event (

∑

ET). Hence, it is prospective that the
differences between the output distributions of mistagged jets in data and simulation
also depend on those quantities, which is investigated in the following. Figures 6.17
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Figure 6.16: The output distributions of negatively tagged (a) pass–1 and (b) pass–2 vertices in
data and simulation are shown.

and 6.18 show the ratio of the accumulated output distribution in data divided by
the one in simulation for different bins of the above mentioned variables for pass–
1 and pass–2 vertices, respectively. Here, the dependences are treated completely
inclusive, i.e. possible correlations between the different bins are ignored. Within
the given statistics, pass–1 mistags seem only to depend on jet ET, while pass–2
mistags show dependences on jet ET,

∑

ET, and Ntrk. In both cases, no angular
dependences can be observed.

The function correcting for the differences observed between the output distributions
of mistagged jets in data and simulation is exclusively parameterized dependent on
the above mentioned quantities, as demonstrated in figure 6.19. As described in
section 6.3.3, the corrected output ocorr is given by the accumulated distributions:
f acc

data(ocorr) ≡ f acc
MC(oMC). It can be seen that the corrections are negligible for some

bins, e.g. ET < 30 GeV in case of pass–1 vertices and both
∑

ET bins for ET ≥
30 GeV and Ntrk < 6 in case of pass–2 vertices. Other bins show larger deviations of
the simulated output from the observed one, like ET ≥ 30 GeV for pass–1 vertices
and both

∑

ET bins for ET ≥ 30 GeV and Ntrk ≥ 6 in case of pass–2 vertices.

Due to construction, the application of the correction function to the output of
simulated mistags leads to a less background–like distribution. In figure 6.20, the
output distribution of mistags in data is compared to the distribution of simulated
mistags before and after correction for the observed differences between data and
simulation. It can be seen that the corrected distribution describes the data well for
both pass–1 (see figure 6.20(a)) and pass–2 (see figure 6.20(b)) vertices.
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Figure 6.17: The ratio of the accumulated data distribution divided by the accumulated MC
distribution for pass–1 vertices is shown in dependence of (a) jet ET, (b) the sum of the transverse
energies of the taggable jets, (c) the number of tracks per jet, (d) jet η, and (e) jet φ
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Figure 6.18: The ratio of the accumulated data distribution divided by the accumulated MC
distribution for pass–2 vertices is shown in dependence of (a) jet ET, (b) the sum of the transverse
energies of the taggable jets, (c) the number of tracks per jet, (d) jet η, and (e) jet φ
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Figure 6.19: Functions correcting for the observed differences between mistags in data and sim-
ulation for (a) pass–1 and (a) pass–2 vertices. The functions are parameterized according to the
dependences observed in figures 6.17 and 6.18.
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Figure 6.20: The mistag correction is demonstrated by comparing the observed mistag output
distribution to the one in simulation before and after the application of the correction function for
(a) pass–1 and (b) pass–2 vertices.
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6.4 Application in Analyses

The b–tagger described above is the first neural–network b–tagger developed at a
hadron collider. At CDF, it has successfully been implemented into all searches
for single top–quark production, where it has proven to be an important quantity
to reject events not containing any b quarks. As demonstrated in section 7, the
b–tagger output is one of the most important variables to discriminate single–top–
quark events.

Even more, the output of the b–tagger can not only be used as a discriminating
variable, but also to estimate the flavor composition of a given data sample. This
way of application has a large potential to improve the estimation of the expected
event yield, gaining importance with increasing amount of collected data.

Furthermore, the neural–network b–tagger is a universal tool which can be utilized
in all high–pT analyses at CDF, requiring identification of b–quark jets, like the
search for the Higgs boson predicted by the standard model.

6.4.1 Implementation in the Search for Single Top Quarks

As mentioned above, the output of the neural–network b–tagger can be used as a
continuous variable by exploiting the different shapes of the output distributions of
the various physics processes, as done in the search for single top–quark production.
This way of application is illustrated in figure 6.21 for simulated events passing the
single–top–quark event selection described in section 5.2. Exemplarily, the distri-
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Figure 6.21: The b–tagger output distributions of simulated events passing the event selection are
shown for production of single top quarks, tt̄, Wbb̄, Wc, and Wcc̄ in addition to the distribution
of the mistag model described in section 5.3.2. The output of the tagged jet with the largest ET

in events passing the single–top–quark event selection is shown.

butions of single–top–quark events are compared to production of tt̄ and W+heavy
flavor, in addition to the mistag model described in section 5.3.2. The output of
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Figure 6.22: A systematic shape uncertainty for the output of the neural–network b–tagger can
be estimated by utilizing the correction function illustrated in figures 6.11(d) and 6.19. This is
realized by defining two scenarios: (a) an optimistic and (b) a pessimistic one. In the optimistic
case, the separation between b–quark jets on one hand and c–quark and mistagged jets on the
other hand is increased, while it is decreased in the pessimistic scenario. The dashed lines show
the default output distributions, while the solid lines illustrate the output distributions utilized in
the corresponding systematic scenario.

the light–flavored jets was corrected for the observed differences between data and
simulation using the correction functions illustrated in figure 6.19.

Besides the expected separation between b–quark jets on one hand and c–quark and
light–quark jets on the other hand, it can be seen that the output distributions
of jets of the same quark flavor look similar, no matter of the physical production
mode. This leads to the conclusion that the neural–network b–tagger can be used as
a generic tool in high–pT analyses where flavor separation is needed, like in searches
for Higgs bosons in the mass range below 140 GeV/c2 where it dominantly decays
into bb̄.

Estimating a Systematic Uncertainty

The shapes of the b–tagger output distributions of simulated events are afflicted
with a systematic uncertainty. This uncertainty can be estimated by making use of
the above derived correction functions for b–quark jets (figure 6.11(d)) and mistags
(figure 6.19), realized by defining two scenarios, an optimistic and a pessimistic one.
In the optimistic case, illustrated in figure 6.22(a), the distributions are altered in
such a way that the discrimination between b–quark jets on one hand and c–quark
and mistagged jets on the other hand is increased. This is achieved by not correcting
the output of mistagged light–quark jets and by utilizing the systematic correction
function (derived for b-quark jets) to shift the output of c–quark jets to the more
background–like region. In the pessimistic scenario, demonstrated in figure 6.22(b),
the discrimination between b–quark and non–b–quark jets is decreased by applying



6.4. Application in Analyses 91

the systematic b–quark function to b–quark jets and the mistag correction functions
to c–quark jets. The distribution of simulated mistags is corrected as usual.

The influence of the application of this procedure to the result of the search for
single top–quark production is illustrated in section 7.3.

6.4.2 Estimation of Flavor Fractions

Due to the different shapes of the output distributions of b–quark, c–quark, and
light–quark jets, the neural–network b–tagger can be utilized to estimate the flavor
composition of a given data sample by fitting template output distributions, obtained
from differently flavored simulated jets, to the output distribution of the selected
data events.

NN output
-1 -0.5 0 0.5 1

E
ve

n
ts

 p
er

 0
.1

25
 u

n
it

s

0

50

100

150

NN output
-1 -0.5 0 0.5 1

E
ve

n
ts

 p
er

 0
.1

25
 u

n
it

s

0

50

100

150
CDF II data 

Fit Sum (with uncertainty)
W + b quarks

W + c quarks

W + light quarks

(a) fit to W+2 jets bin

NN output
-1 -0.5 0 0.5 1

E
ve

n
ts

 p
er

 0
.1

25
 u

n
it

s

0

50

100

150

NN output
-1 -0.5 0 0.5 1

E
ve

n
ts

 p
er

 0
.1

25
 u

n
it

s

0

50

100

150
CDF II data 

Expected Sum (with uncertainty)
W + b quarks

W + c quarks

W + light quarks

(b) expectation in W+2 jets bin

Figure 6.23: The use of the neural–network b–tagger to estimate the flavor composition is illustrated
exemplarily for the observed events passing the single–top–quark event selection. Figure (a) shows
the result of a template fit to the data distribution including the statistical uncertainty (yellow
band). The templates are scaled to the fitted values given in table 6.6. As a comparison, figure (b)
illustrates the respective distributions scaled to the expected event yield, derived in section 5.4.
The accordant contributions of the different flavors are also given in table 6.6. The uncertainty on
the prediction includes all systematics as explained in section 7.3.

In the search for single top–quark production [122], such a fit has been performed to
check the estimated event yield derived in section 5.4. The result of the template fit
to the b–tagger output distribution of the observed events passing the single–top–
quark event selection is illustrated in figure 6.23(a). The fitted contributions of the
different flavors are quoted in table 6.6. For comparison, the expected contributions
of each flavor (based on the event yield for the different physics processes presented
in table 5.2) are given in table 6.6 as well. In figure 6.23(b), the respective expected
contributions to the total number of expected events are compared to the distribu-
tion observed in data. Both estimated output distributions describe the one in data
well.
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flavor b–tagger fit event yield

b 292.8 ± 26.3 299.0 ± 56.8
c 171.6 ± 53.8 148.1 ± 39.4

light 179.5 ± 42.5 140.0 ± 19.8
total 644 587.1 ± 96.6

Table 6.6: Expected contributions of the different flavors to the observed data events passing the
single–top–quark event selection. The numbers obtained by a template fit of the output distribution
of the neural–network b–tagger (see figure 6.6) are given as well as the predicted contributions
according to the event yield (described in section 5.4). The uncertainties on the fit result are
statistical only, while those on the prediction include systematics as explained in section 7.3.

Within the given uncertainties, the fit reproduces the expected flavor contributions,
even though the fitted central values of the c–quark and light–quark contributions
are slightly higher than the ones obtained from the event yield estimation described
in section 5.4. This indicates that the observed excess is mainly due to charm and
mistagged events. However, since the uncertainties on the fitted flavor contributions
are still large (but are expected to decrease with increasing statistics), the fitted
numbers can currently only be used as a cross check. Nevertheless, this way of
utilizing the neural–network b–tagger has a large potential to improve the estimation
of the expected number of events in future analyses.



Chapter 7

Search for Single Top–Quark
Production

As outlined in section 1.2.2, the standard model predicts two dominant electroweak
production modes of single top quarks at the Tevatron: t–channel and s–channel
single–top–quark production, both investigated in this analysis. In this search for
single top–quark production, only leptonic W–boson decays in events with exactly
two tight jets are targeted.

Since a small signal must be extracted from a huge amount of background events,
multivariate methods are an appropriate approach, exploiting a large number of
characteristic quantities. In this analysis, neural networks are used to discrimi-
nate single–top–quark events by employing the NeuroBayesR© package, described in
section 3.1. To measure the cross section of single top–quark production, signal
and background templates of the neural network output are created from simulated
events, which are fitted to the output distribution of observed events.

For the search of single–top–quark events, two different approaches are taken. One
is to assume the ratio of the cross sections of both production channels to be as
predicted by the standard model (see section 1.2.2). In this approach, one neural
network is trained to identify both t– and s–channel events, the so–called combined
network. The other is to determine the cross sections of both channels independently
and simultaneously, named separate search. Here, two different neural networks are
trained, one to identify only t–channel events and one to identify only s–channel
events. For the t–channel neural network, s–channel events are treated as back-
ground and vice versa.

7.1 Neural–Network Input–Variables

For all three trainings mentioned above, three categories of input variables are used:
some are directly measured in the detector, others are reconstructed out of measured
properties, and a few are calculated by advanced algorithms like the neural–network
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b–tagger described in chapter 6 and the kinematic fitter introduced in section 7.1.2.
Furthermore, some quantities need the knowledge about the four–vector of the top
quark whose reconstruction is described in section 7.1.1.

7.1.1 Top–Quark Reconstruction

For some of the variables, the reconstruction of the top quark is necessary. At this,
the top–quark four–momentum is built out of the reconstructed W boson and a
defined b–quark jet.

The first step in top–quark reconstruction is the selection of the b–quark jet. If there
is only one tagged jet, this jet is utilized to reconstruct the top quark. If there is more
than one jet with a reconstructed secondary vertex, the tagged jet with the largest
product of the charge of the tight lepton (Qℓ) and the jet pseudorapidity, Qℓ · η, is
assigned to belong to the top–quark decay [123]. At the top–quark reconstruction
level, the momentum p of the selected b–quark jet is corrected up to level 7, i.e.
parton level. The mass of the b–quark jet is set to mb = 5 GeV/c2, its energy
calculated by (Eb)

2 = (mb)
2 + (~p)2.

The second step is the reconstruction of the four–momentum of the W boson, being
built from the four–momenta of the measured tight lepton and the reconstructed
neutrino. In good approximation, the transverse neutrino momentum can be derived
from the missing transverse energy /ET. To be consistent with the jet energy correc-
tion applied to the b–quark jet, jets corrected up to level 6 are utilized to calculate
/ET. Out–of–cone, i.e. level 7, corrections are omitted to avoid double counting. The
z component of the neutrino momentum is obtained by using a quadratic constraint
of the W–boson decay–kinematics, assuming a leptonically decaying W boson and a
massless neutrino: (pW )2 = (pe +pν)

2 = mW . Solving for pν
z results in the following

expression:

pν
z =

κpℓ
z

(Eℓ)2 − (pℓ
z)

2
± 1

2 ((Eℓ)2 − (pℓ
z)

2)
(7.1)

·
√

(2κpℓ
z)

2 − 4 ((Eℓ)2(pT
ν)2 − κ2) · ((Eℓ)2 − (pℓ

z)
2)

with κ =
1

2
(m2

W −m2
ℓ) + cos(φℓ − φν) · pT

ℓpT
ν . (7.2)

In this formula, the masses are used as given by tables 1.1 and 1.2: mW = 80.4 GeV/c2,
me = 0.511 MeV/c2, and mµ = 0.106 GeV/c2. Out of the two solutions of equation
(7.1), the one with the smallest |pν

z | is chosen, since neutrinos produced in top–quark
decays are rather central. If the solution of the equation is complex, which happens
in about 30% of the cases, the real part of the solution is utilized. Finally, the
neutrino energy is calculated by (Eν)

2 = (/ET)2 + (pν
z)

2.

Using the four–momentum of the W boson, pW = pe + pν , the four–momentum of
the top quark can be calculated by ptop = pb + pW .
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7.1.2 Kinematic Fitter

To evaluate the ambiguities in the reconstruction of the top quark due to selection of
the b–quark jet and the neutrino pz solution, a kinematic fitter [124] is utilized. This
fitter varies pb, pT

ν , and φν to minimize a χ2 function for all possible combinations
of selecting the b–quark jet and neutrino pz:

χ2 =
(pb − pobs

b )2

σ2
pb

+
(pT

ν − /pT
)2

σ2
/pT

+
(φν − φobs

/ET
)2

σ2
φν

+
(Mℓνb −mt)

2

σ2
mt

+Y ·(Im(pz))
2. (7.3)

In this context, pobs
b is the measured momentum of the jet considered as the b–quark

jet from the top–quark decay, /pT
is the transverse momentum corresponding to /ET,

φobs
/ET

is the measured azimuthal angle of /ET, and Mℓνb is the invariant mass of the
considered system of b–quark jet, charged lepton, and neutrino. The parameters
σpb

= 12.9 GeV/c, σ/pT
= 9.0 GeV/c, and σφν

= 0.2 were derived by studying

simulated events. σmt
= 0.5 GeV/c2 constrains Mℓνb to mt = 175 GeV in this fit.

Additionally, a penalty term Y · (Im(pz))
2 with Y = 3.0 [125] pushes the fit away

from unphysical neutrino solutions.

Since there are two possibilities to assign a b–quark jet and two possible solutions
for pν

z , the kinematic fit results in four different χ2 values which are used for the
training of the neural networks.

7.1.3 Utilized Variables

As already mentioned, a variety of variables is suitable to discriminate single–top–
quark events. For the training of the neural networks, 26 variables were initially
investigated, whereof a total number of only 23 variables is utilized, since variables
with a significance smaller than 3σ are rejected by the automatic variable selection
explained in section 3.1.3. Those used variables are depicted in figures 7.1 to 7.6,
comparing the distributions of single–top–quark events to those of tt̄ events and,
exemplarily for W+jets production, Wbb̄ events.

Some of the input variables are directly measured in the detector. Figures 7.1(a)
and 7.1(b) show the pseudorapidities of the jets ηj1 and ηj2, where j1 is the jet with
the higher ET and j2 the jet with the smaller ET. These variables discriminate
t–channel single–top–quark events, because both jets are less central than in case
of s–channel single–top–quark events and production of tt̄ or W+jets. Even though
this tendency is only small in case of the leading jet j1, the second–leading jet
j2 has a broad η distribution with a trend towards the forward direction. These
features are also reflected in the distributions of ηj1 + ηj2 and ηj1 − ηj2, displayed in
figure 7.1(c) and figure 7.1(d), respectively. In case ofWbb̄ events, it can be seen that
both jets have a tendency to have a small difference in η. Further directly measured
variables are the transverse energies of the two jets, illustrated in figures 7.2(a) and
7.2(b). Comparing the spectra of jets generated by different physics processes, it
can be seen that both jets in Wbb̄ events have softer ET spectra than those in tt̄ or
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Figure 7.1: Input variables for the training of the neural networks used to discriminate single–
top–quark events: (a) the pseudorapidity of the leading jet j1, (b) the pseudorapidity of the
second–leading jet j2, (c) the sum of the pseudorapidities of the two jets ηj1 + ηj2, and (d) the
difference between the pseudorapidities of the two jets ηj1 − ηj2. t– and s–channel events are
compared with tt̄ events and, exemplarily for W+jets, Wbb̄ events.
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Figure 7.2: Input variables for the training of the neural networks used to discriminate single–top–
quark events: (a) the transverse energy of the leading jet j1 (is only shown for completeness but,
due to the automatic variable selection described in section 3.1.3, is not used for the training),
(b) the transverse energy of the second–leading jet j2, (c) the transverse momentum of the tight
lepton, and (d) the number of loose jets. t– and s–channel events are compared with tt̄ events and,
exemplarily for W+jets, Wbb̄ events.
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single–top–quark events whereas tt̄ events feature the hardest jet ET spectra. It is
important to note that the distribution of the transverse energy of the leading jet
j1 is only shown for the sake of completeness, since it is rejected by the automatic
variable selection.

In addition to the transverse jet energies, the transverse momentum of the tight lep-
ton pℓ

T provides information about the generating physics process: as demonstrated
in figure 7.2(c), leptons in single–top–quark events have softer pT spectra than those
in Wbb̄ events, while leptons in tt̄ events have a slightly harder spectrum.

An important variable being a measure of the total activity per event is the number
of loose jets, depicted in figure 7.2(d). As expected, about 80% of the single–top–
quark and Wbb̄ events do not contain any loose jets, while about 40% of the tt̄ events
contain at least one loose jet.

Besides those directly measured variables, some reconstructed quantities are con-
sidered. One example is the invariant mass of the two jets, Mj1j2, illustrated in
figure 7.3(a). This variable reflects the fact that both jets in Wbb̄ events stem from
the same object, namely a gluon splitting into a bb̄ pair, while they origin from dif-
ferent objects in single–top–quark and tt̄ events, leading to larger invariant masses.

Figure 7.3(b) depicts the mass of the top quark reconstructed out of the measured
tight lepton, the reconstructed neutrino, and a selected b–quark jet as described in
section 7.1.1. It is obvious that the invariant mass between these three objects is
smaller in Wbb̄ events, since those kinds of events do not contain any top quarks,
while the reconstructed invariant mass peaks at the expected value in case of single–
top–quark and tt̄ events. Nevertheless, the distribution of the reconstructed top–
quark mass in s–channel events is broader than the one in t–channel events, induced
by larger ambiguities due to the selection of the b–quark jet. This equivocality,
caused by the fact that there are two b quarks in s–channel events, has an even
larger impact in tt̄ events having a larger jet multiplicity.

An important variable to discriminate t–channel events is the product of the charge
of the tight lepton Qℓ and the pseudorapidity of the light–quark jet Qℓ ·ηlj [8]. In this
connection, the light–quark jet is the jet which has not been assigned to the decay
of the top quark. As can be seen in figure 7.3(c), this variable is very asymmetric
for t–channel events, while it is rather balanced around zero for all other processes.
This asymmetry, induced by the parton distribution function of the proton, can
be explained by the Feynman graphs shown in figure 1.4. The light–quark jet is
produced via emission of aW boson from a u–type or d–type valence quark, while the
second participating initial–state parton, a b quark stemming from gluon splitting,
is a sea quark carrying a significantly smaller fraction of the proton momentum (see
figure 1.2). As already mentioned in section 1.2.2, this leads to the fact that the
light–quark jet has a strong tendency of propagating in the direction of the u–type
or d–type valence quark. Since the proton consists of two u quarks and only one d
quark, a top quark is mostly produced by an initial–state u–quark stemming from
the proton, while the d̄ originating from the antiproton makes a smaller contribution
to the production of top quarks. Hence, most of the top quarks propagate in proton
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Figure 7.3: Input variables for the training of the neural networks used to discriminate single–top–
quark events: (a) the invariant mass of the two jets, (b) the invariant mass of the reconstructed top
quark (see section 7.1.1), (c) the product of the charge of the tight lepton Qℓ and the pseudorapidity
of the jet not assigned to the decay of the top quark, and (d) the number of reconstructed secondary
vertices. t– and s–channel events are compared with tt̄ events and, exemplarily for W+jets, Wbb̄
events.
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direction, being reflected in the larger peak in the positive regime of the Qℓ · ηlj

distribution. For antitop–quark production, the charge conjugate case applies which
is compensated by the multiplication of the pseudorapidity by the charge of the
lepton.

Since some of the considered processes contain more than one b quark, it is important
to account for the number of reconstructed secondary vertices. As illustrated in
figure 7.3(d), most t–channel events have only one jet with a reconstructed secondary
vertex, while both jets are tagged in about 20% of s–channel and tt̄ events. In Wbb̄
events, the fraction of double–tagged events is slightly smaller than in case of s–
channel and tt̄ events, even though they contain two b quarks as well. This can be
attributed to the fact that there is a certain probability for both b quarks to be
embedded in the same jet.

Another set of variables is motivated by reference [126] where studies have shown
that the difference between the rapidity of the top quark and the rapidity of the
light–quark jet is correlated to the sum of those two quantities. The difference of
the rapidities is related to the scattering angle in the parton–parton center–of–mass
system, while the sum reflects the boost of the parton–parton center–of–mass system
with respect to the laboratory system. Due to this reason, ηtop +ηlj and ηtop−ηlj are
utilized in this analysis. As demonstrated in figures 7.4(a) and 7.4(b), those variables
do not provide much separation power when considered separately. Nevertheless,
the correlations between those two variables are quite specific for t–channel events
compared to s–channel, tt̄, and Wbb̄ as illustrated in figures 7.4(c) to 7.4(f), raising
the discrimination power of those input variables.

To account for the total amount of energy in each event, the scalar sum of the trans-
verse energy of tight lepton, the transverse energies of all tight and loose jets, and
the missing transverse energy, HT =

∑

jetsET + pℓ
T + /ET, is suitable. Figure 7.5(a)

demonstrates that tt̄ events have a tendency towards larger values of HT, while the
distribution ofWbb̄ is slightly shifted to smaller values compared to single–top–quark
events.

The physics process which created the W boson can be ascertained by the pseu-
dorapidity of the reconstructed W boson. Looking at figure 7.5(b), it can be seen
that W bosons originating from decaying top quarks in tt̄ events are more central
than those in single–top–quark events. Furthermore, W bosons in Wbb̄ events have
a broader η distribution slightly expanding into the forward region.

As already mentioned in section 1.2.2, the top quark is almost exclusively produced
with negative helicity. In t–channel events, this spin polarization can be observed by
examining the cosine of the angle between the light–quark jet and the lepton in the
top–quark rest frame, as demonstrated in figure 7.5(c). In s–channel events, the best
basis to analyze the polarization of the top–quark (antitop–quark) spin is the cosine
of the angle between the lepton and the positive (negative) beam axis in the top–
quark rest frame. Due to ambiguities in reconstruction of the top–quark rest frame,
the polarization of s–channel single–top–quarks is smeared out in the distribution
of this variable, as illustrated in figure 7.5(d). Nevertheless, this variable provides
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Figure 7.4: Input variables for the training of the neural networks used to discriminate single–top–
quark events: (a) the sum of the pseudorapidities of the top quark and the light–quark jet (the
jet not assigned to the top–quark decay) ηtop + ηlj, (b) the difference between the pseudorapidity
of the top quark and the pseudorapidity of the light–quark jet ηtop − ηlj, and the dependence of
ηtop − ηlj on ηtop + ηlj for (c) t–channel events, (d) s–channel events, (e) tt̄ events, and (f) Wbb̄
events. The choice of these variables is motivated by reference [126].
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Figure 7.5: Input variables for the training of the neural networks used to discriminate single–top–
quark events: (a) HT =

∑

jets ET + pℓ
T + /ET where

∑

jets ET is the sum of the transverse energies
of the tight and loose jets, (b) the pseudorapidity of the reconstructed W boson (see section 7.1.1),
(c) the cosine of the angle in the top–quark rest frame between the tight lepton and the jet not
assigned to the top–quark decay, and (d) the cosine of the angle between the tight lepton and the
beam axis in the top–quark rest frame. t– and s–channel events are compared with tt̄ events and,
exemplarily for W+jets, Wbb̄ events.
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enough information to be incorporated in the training of the neural network.

Some of the input variables are calculated by advanced algorithms. One example is
the output of the neural–network b–tagger described in section 6, trained to iden-
tify secondary vertices related to the decay of a b hadron. As already shown in
figure 6.21, the output value of this b tagger is continuously distributed between −1
and 1. In this distribution, events containing b hadrons (like t–channel, s–channel,
tt̄, and Wbb̄) pile up at values around 1, while events without any b hadrons ac-
cumulate at outputs around −1. Additionally, a small separation between c–quark
and light–quark jets can be observed. For the training of the neural networks used
to discriminate single–top–quark events, the neural-network b–tagger output of the
most energetic tagged jet is taken.

Another set of variables is calculated by the kinematic fitter introduced in sec-
tion 7.1.2. As a measure of the top–quark reconstruction potential, all four χ2 values
calculated using equation (7.3) are considered. In this context, the assignment of
the b–quark jet to the top–quark decay and the selection of pν

z is the following:

b–quark jet pν
z solution

χ2
1 j1 larger pν

z solution
χ2

2 j2 larger pν
z solution

χ2
3 j1 smaller pν

z solution
χ2

4 j2 smaller pν
z solution

It can be seen that all possible combinations of the objects in Wbb̄ events lead to
higher χ2 values than in case of events containing a real top quark. In addition
to the four χ2 values, the difference between the best χ2

best and the second–best
χ2

2ndbest value is used as illustrated in figure 7.6. In this distribution, the peak at
−10 represents the underflow bin, i.e. those events with only one solution for pν

z ,
leading to no difference between χ2

best and χ2
2ndbest.

Comparison between Observation and Simulation

Since the neural network is trained with simulated events, it is crucial to check if
the input variables are modeled correctly. Hence it is necessary to compare the
shape of each input variable in observed events with the shape obtained by modeled
data embracing the signal and background models described in section 5.3. For
this comparison, each modeled process is scaled in such a way that it contributes
as many events to the compound model as predicted by the estimated event yield
quoted in table 5.2.

Exemplarily, figure 7.7 shows comparisons of the distributions of the output of the
neural–network b–tagger, the reconstructed top–quark massMℓνb, the invariant mass
of the two jets Mj1j2, and the product of the lepton charge times the pseudorapidity
of the jet not assigned to the decay of the top quark Qℓ · ηlj. The comparison of all
other utilized variables can be found both in appendix D.1 and in reference [127].
In general, good agreement between the distributions in observed events and those
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Figure 7.6: Input variables for the training of the neural networks used to discriminate single–top–
quark events, calculated by the kinematic fitter introduced in section 7.1.2: the χ2 values of the
four possible combinations of the objects to reconstruct the top quark: (a) χ2

1, (b) χ2
2, (c) χ2

3, (d)
χ2

4, and (e) the logarithm of the difference between the χ2 values of the second–best combination
and the best combination χ2

2ndbest − χ2
best. t– and s–channel events are compared with tt̄ events

and, exemplarily for W+jets, Wbb̄ events.
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Figure 7.7: Data–MC comparison of input variables for the training of the neural networks used
to discriminate single–top–quark events: (a) the output of the neural–network b–tagger of the
most energetic tagged jet, (a) the invariant mass of the two jets, (b) the invariant mass of the
reconstructed top quark (see section 7.1.1), and (c) the product of the charge of the tight lepton
Qℓ and the pseudorapidity of the jet not assigned to the decay of the top quark. The modeled
distributions are scaled to the number of observed events.
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obtained by the composite model is achieved. This leads to the conclusion that
the signal and background models described before are suitable to train the neural
networks.

7.2 Training of the Neural Networks

For the training of the three networks, it is necessary to arrange training samples
consisting of the relevant modeled physics processes, each with reasonable statistics.
A natural approach would be to select a mixture corresponding to the estimated
composition of the observed events. Since this is not practicable in case of the search
for single top–quark production, a different composition of the training samples has
to be chosen as will be discussed in section 7.2.1.

Before the training, the input variables are preprocessed as discussed in section 3.1.2
and the respective correlations to the target are determined, providing an ordered list
of input variables being presented in section 7.2.2. In this connection, only variables
with a significance larger than 3σ are utilized for the training. An illustration of the
correlations between the considered variables can be found in appendix D.2.

Each training results in a continuous output distributed between −1 and 1. At
this, the output distribution of signal events piles up at 1, while background events
accumulate at −1. In section 7.2.3, the output distributions of the different physics
processes relevant for the search for single top–quark production are presented. Ex-
emplarily, the distributions of the combined network are discussed.

7.2.1 Training Samples

For the training of the three neural networks, a realistic mixture of all expected
processes would be a desirable approach. However, since the number of expected
single–top–quark events is quite small compared to the number of expected back-
ground events, this concept is not realizable.

The samples used to train the three neural networks are composed in such a way
that both single–top–quark production–processes add up to 35%. For the training
of the combined neural network, the respective contributions of both single–top–
quark production–modes are given by the cross sections predicted by the standard
model. In the separate search, s–channel events are treated as background for the
training of the t–channel neural network and vice versa. In both trainings, the
respective background single–top–quark production–channel contributes 1% to the
total fraction of single–top–quark events.

The individual contributions of all other background processes are alike for both
approaches, separate and combined search, and add up to 65%. The fractions of all
considered processes relative to this total contribution are given by the respective
number of expected events quoted in table 5.2.
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Process combined search t–channel s–channel

t–channel 2 → 2 15.0% 23.0% 0.5%
t–channel 2 → 3 6.0% 11.0% 0.5%

s–channel 14.0% 1.0% 34.0%
tt̄ 7.3%

WW 0.7%
WZ 1.0%
ZZ 0.0%

Z+jets, Z → ee 0.1%
Z+jets, Z → µµ 0.2%
Z+jets, Z → ττ 1.2%
Wbb̄, W → eν 12.6%
Wbb̄, W → µν 8.2%
Wbb̄, W → τν 0.4%
Wcc̄, W → eν 5.7%
Wcc̄, W → µν 3.2%
Wcc̄, W → τν 0.2%
Wc, W → eν 4.0%
Wc, W → µν 3.2%
Wc, W → τν 0.3%

mistags, W → eν 10.2%
mistags, W → µν 6.0%
mistags, W → τν 0.7%

Table 7.1: Composition of the training samples used to train the neural networks to discriminate
single–top–quark events. The contributions of single–top–quark events add up to 35% of the
complete training sample. The contributions of the background processes are the same for both
approaches, separate and combined search. The relative fractions to the background category are
given by table 5.2. The absolute fractions are determined by the requirement that the contributions
of all background processes sum up to 65%. The contributions of the different W–boson decay–
modes in case of W+jet events have been obtained from the acceptance of simulated events.
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Rank Variable Relative Significance (in σ)

1 NN b–tag output 42.7
2 Mℓνb 35.3
3 Mj1j2 28.0
4 Qℓ · ηlj 18.8
5 # loose jets 14.8
6 HT 10.4
7 cos Θ(ℓ, lj) 11.3
8 ηW 9.3
9 lg(χ2

2ndbest − χ2
best) 8.9

10 pℓ
T 7.6

11 # secondary vertices 7.0
12 χ2

3 5.5
13 χ2

2 5.2
14 ηj1 + ηj2 4.8

15 Ej2
T 4.0

16 ηtop − ηlj 2.9
17 ηj1 − ηj2 3.7
18 ηj1 3.0
19 Mℓνbb 2.7
20 ηtop + ηlj 2.1
21 χ2

1 2.1
22 cos Θ(ℓ, beam) 1.8
23 χ2

4 1.9
24 ηj2 1.7

25 Ej1
T 0.9

26 Ej1
T + Ej2

T 0.3

Table 7.2: Set of discriminating variables investigated for the training of the combined neural net-
work. The quoted relative significances are determined as described in section 3.1.3, i.e. calculated
in terms of reduced matrices. Only variables with a significance > 3σ are used for the training.

A list of all used processes, modeled as described in section 5.3, as well as their
contributions to the training samples is given in table 7.1.

7.2.2 Relevance of Input Variables

As already mentioned, 26 variables have initially been investigated for the training of
the neural networks. Making use of the automatic variable selection, only variables
are used for the training which have a significance of more than 3σ, calculated as
described in section 3.1.3. Since the relevance of the variables varies for the three
trainings, each neural network utilizes a different set of input variables passing the
cut on the significance, quoted in tables 7.2, 7.3, and 7.4.
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Rank Variable Relative Significance (in σ)

1 Mℓνb 50.1
2 Qℓ · ηlj 41.1
3 NN b–tag output 29.9
4 cos Θ(ℓ, lj) 21.2
5 Mj1j2 13.1
6 # loose jets 10.9
7 HT 11.3
8 ηW 9.0
9 # secondary vertices 8.1
10 ηj1 + ηj2 6.8
11 lg(χ2

2ndbest − χ2
best) 6.0

12 pℓ
T 4.9

13 χ2
3 4.2

14 Ej2
T 4.1

15 ηtop − ηlj 3.1
16 ηj1 − ηj2 4.3
17 cos Θ(ℓ, beam) 3.3
18 χ2

2 3.0
19 ηj2 3.1
20 χ2

1 2.1
21 ηtop + ηlj 2.0
22 Mℓνbb 1.7
23 χ2

4 1.2

24 Ej1
T 0.5

25 Ej1
T + Ej2

T 1.1
26 ηj1 0.2

Table 7.3: Set of discriminating variables investigated for the training of the t-channel neural net-
work. The quoted relative significances are determined as described in section 3.1.3, i.e. calculated
in terms of reduced matrices. Only variables with a significance > 3σ are used for the training.
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Rank Variable Relative Significance (in σ)

1 NN b–tag output 41.1
2 # secondary vertices 27.4
3 Mj1j2 21.8
4 Mℓνb 20.0
5 # loose jets 14.5
6 ηW 11.4
7 χ2

2 10.6
8 pℓ

T 10.3
9 χ2

3 9.3

10 Ej2
T 7.9

11 ηj1 − ηj2 6.6
12 lg(χ2

2ndbest − χ2
best) 5.9

13 HT 5.2
14 ηtop − ηlj 4.3
15 χ2

4 3.9
16 χ2

1 4.0
17 ηj1 + ηj2 2.2
18 ηtop + ηlj 3.7
19 cos Θ(ℓ, lj) 3.6
20 Mℓνbb 1.6

21 Ej1
T + Ej2

T 1.3
22 Qℓ · ηlj 1.2
23 ηj2 1.5
24 cos Θ(ℓ, beam) 1.4
25 ηj1 0.4

26 Ej1
T 0.1

Table 7.4: Set of discriminating variables investigated for the training of the s-channel neural net-
work. The quoted relative significances are determined as described in section 3.1.3, i.e. calculated
in terms of reduced matrices. Only variables with a significance > 3σ are used for the training.
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For all three trainings, the output of the neural–network b–tagger, the reconstructed
top–quark mass Mℓνb, the invariant mass of the two jets Mj1j2, and the number of
loose jets are some of the most important variables. Additionally, Qℓ · ηlj and
cos Θ(ℓ, lj) are of major importance in both networks considering t–channel events
as signal, i.e. the combined and the t–channel network, while they are negligible in
case of the s–channel neural network. In contrast, the number of secondary vertices
is a significant quantity to identify s–channel events.

Three out of the 26 variables are not utilized in any of the neural networks, since they
do not provide significant additional information. These variables are the transverse
energy of the most energetic jet Ej1

T , the sum of the transverse energies of both
jets Ej1

T +Ej2
T , and the invariant mass of lepton, missing transverse energy and the

two jets Mlνbb reconstructed under the assumption of s–channel events (two b–quark
jets). Altogether, 23 variables are used for the training of all three neural networks
whereof 18 variables are employed by the combined network, while both t– and
s–channel networks utilize different subsets consisting of 19 variables.

7.2.3 Output Distributions and Templates

The training of a neural network results in one output variable continuously dis-
tributed between −1 and 1. Figure 7.8 illustrates the result of the training of the
three networks utilized in the search for single top–quark production. Figure 7.8(a)
depicts the output of the t–channel neural network applied to the mixed sample used
for the training, featuring an efficient separation between t–channel single–top–quark
events and the background processes, induced by both excellent background rejec-
tion and reasonable signal identification. Nevertheless, it can be seen that there are
obviously no signal events being identified with absolute doubtlessness.

Furthermore, figure 7.8(b) illustrates that the s–channel neural network provides less
definite identification of signal events, compared to the t–channel neural network.
The reason for this rather flat, indetermined signal output distribution around zero
is that there are no variables featuring a powerful discrimination of s–channel events,
as opposed to t-channel events.

The output of the neural network supposed to identify both t– and s–channel events
as signal reflects the above mentioned features as shown in figure 7.8(c). The output
distribution of single–top–quark events looks more signal–like than in case of the s–
channel neural network but has a slightly less prominent peak in the signal region
compared to the t–channel neural network.

The output of the different neural networks is used to create templates which are to
be fitted to the output distribution of observed events. In general, it would be possi-
ble to create a template for each of the relevant processes. Nevertheless, comparing
the different processes, it can be seen that some of the output distributions feature
very similar shapes. As illustrated in figure 7.9 exemplarily for the combined search,
three non–top templates are created: Wbb̄ and WZ form the b–like template as illus-
trated in figure 7.9(a). The c–like template consists of Wcc̄, Wc, WW , and mistags
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Figure 7.8: The neural network outputs of the (a) t–channel neural network, (b) s–channel neural
network, and (c) combined neural network in the respective training samples.
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Figure 7.9: The construction of the different templates is illustrated exemplarily for the combined
neural network. Due to similarity of the output distributions, three non–top templates are cre-
ated: (a) b–like template, (b) c–like template, and (c) non–W–like template. For comparison, all
distributions are scaled to the same area.



114 Chapter 7. Search for Single Top–Quark Production

NN output
-1 -0.5 0 0.5 1

n
o

rm
al

iz
ed

 t
o

 u
n

it
 a

re
a

0

0.1

0.2

single-top signal

 backgroundtt
c-like background
b-like background
non-W background

(a)

NN output
-1 -0.5 0 0.5 1

n
o

rm
al

iz
ed

 t
o

 u
n

it
 a

re
a

0

0.1

0.2

t+s-channel signal

t-channel signal

s-channel signal

(b)

Figure 7.10: The templates utilized in the combined search are illustrated: (a) shows the different
template distribution and (b) illustrates the combination of the t– and s–channel distributions into
the single–top template. The templates are composed as illustrated in figure 7.9.

as shown in figure 7.9(b). In case of the third template, the non–W background
is combined with Z+jets and ZZ as depicted in figure 7.9(c). Constructing the
templates, the contributions of the individual processes are weighted according to
the number of expected events. Thus, together with the tt̄ template, a total number
of four background templates is utilized in both combined and separate search.

A comparison of the five templates used in the combined search can be found in
figure 7.10. As can be seen in figure 7.10(a), the c–like template features the most
background–like distribution, while the distributions are getting less background–
like with increasing b–quark content: since part of the events incorporated in the
non–W–like template contain b quarks, this template distribution is slightly less
background–like compared to the c–like template. This trend is even more pro-
nounced in case of the b–like template mainly consisting of Wbb̄ events. As expected
due to the presence of top quarks, the tt̄ template features the least background–
like distribution, although being distinct from the distribution of the single–top
template.

In case of the separate search, the individual templates are constructed out of the
same processes, except t– and s–channel which are treated separately, leading to a
total of six template distributions. Those templates are illustrated in figure 7.11
showing the output of the s–channel neural network versus the output of the t–
channel neural network. The two–dimensional template distribution of t–channel
events is depicted in figure 7.11(a), indicating that the output distribution of the
t–channel network peaks at values around one, while the output of the s–channel
network has a broad symmetric distribution around zero. The situation is different
for s–channel events as illustrated in figure 7.11(b): the output distribution of the
t–channel network looks very background–like, while the output of the s–channel
network has broad distribution not significantly peaking in the signal region as
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Figure 7.11: The templates utilized in the separate search are illustrated. The output of the s–
channel network in dependence of the output of the t–channel network is shown for (a) t–channel
events, (b) s–channel events, (c) tt̄ events, (d) the combined b–like template, (e) the combined
c–like template, and (f) the combined non–W–like template. The templates are composed as
illustrated in figure 7.9.
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already discussed before. Looking at figure 7.11(c), it can be seen that the t–
channel neural network identifies tt̄ events as quite background–like whereas their
suppression works slightly worse in case of the s–channel network. Considering the
remaining template categories illustrated in figures 7.11(d), 7.11(e), and 7.11(f),
both networks classify them clearly as background. As already addressed in the
discussion of the templates used in the combined search, the c–like template depicted
in figure 7.11(e) has the most background–like distribution.

7.3 Systematic Uncertainties

Uncertainties in the modeling of physics processes and detector effects cause system-
atic uncertainties on the measurement results, affecting the rate of predicted signal
and background events as well as the shape of the template histograms used in the
fit to the observed data distribution. It must be noted that some effects induce only
rate uncertainties, while some affect only the shape of the templates, even though
most of them impact both.

The following sources of systematic uncertainties are considered: the uncertainty on
the jet energy corrections, the uncertainty in modeling initial-state gluon radiation
(ISR) and final–state gluon radiation (FSR), the choice of the parameterization of
the parton distribution functions (PDF) used for the event simulation, the choice of
the Monte Carlo event generator, the uncertainty in the event detection efficiency,
the uncertainty in modeling the output of the neural–network b–tagger, the uncer-
tainty in the factorization and renormalization scale for the simulation of W+heavy
flavor processes, the modeling of instrumental backgrounds, that is mistag events
and non-W events, and the uncertainty in the luminosity determination. The im-
pact of these sources of uncertainties is evaluated by altering the modeling of the
corresponding processes or effects within their uncertainties or by assigning a plau-
sible alternative model. As a result, relative changes of the event rates and shifted
template distributions are obtained. Rate uncertainties are only determined for
single–top–quark and tt̄ events because the rates of the main backgrounds, W+jets
and non–W events, are estimated based on the observed rate of events before b tag-
ging or by a fit to the observed missing transverse energy distribution, respectively.
A more detailed discussion on the background estimation is given in section 5.4.

The effect of the uncertainty on the jet energy corrections is quantified by varying
the corrections within their ±1σ uncertainties [60]. The corresponding alternative
template distributions are calculated for all signal and background processes. The
influence of initial–state and final–state gluon radiation is estimated by producing
samples of simulated events for which the simulation was altered to produce either
less or more gluon radiation compared to the standard setting [128]. Specifically, two
parameters controlling the parton shower in the pythia program are varied: ΛQCD

and the scale factor K to the transverse momentum scale of the showering. The
different settings are derived from studies of ISR in Drell-Yan events. Using these
specific ISR and FSR samples of simulated events, alternative template shapes are
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Figure 7.12: Shape variation due the uncertainty on initial–state radiation. The template distri-
butions for (a) single–top–quark and (b) tt̄ events in the combined neural network analysis are
shown. The default distributions are compared to the shifted distributions where the simulation
was altered to produce either less or more initial–state gluon radiation compared to the standard
setting [128].

produced for single–top–quark and tt̄ events. As an example, figure 7.12 displays
the specific ISR template distributions of single–top–quark and tt̄ events in the
combined neural network analysis.

The impact of the uncertainties on the PDF parameterization are studied by reweight-
ing single–top–quark and tt̄ events with weights associated with the 20 pairs of
cteq6m eigenvectors. The rate uncertainty on the signal model which is based on
the madevent event generator is determined by a comparison to differential cross
sections computed with the ztop program as described in section 5.3.1. The mod-
eling of tt̄ events is studied by using simulated events produced with the herwig

program as an alternative generator. The shape uncertainties on the template his-
tograms due to the modeling of W+heavy flavor events with the alpgen Monte
Carlo program [75] are deduced by using version 2.0 of the program instead of the
default version 1.3.3. The factorization and renormalization scale is varied in the
simulation to derive an additional set of altered template histograms for W+heavy
flavor events. The default W+jets Monte Carlo samples are generated with a dy-
namic scale µ2 = Q2. To check the influence of a rather drastic systematic variation,
the scale is fixed to µ2 = m2

W .

The uncertainty in the event detection efficiency includes the uncertainties on the
trigger efficiency, on the lepton identification efficiency, and on the b–tagging effi-
ciency which is the dominating factor. Since no cut is applied on the output of the
neural–network b–tagger, the uncertainty associated with this quantity does not im-
ply a rate uncertainty, but only a shape uncertainty on the template distributions.
Systematic effects are studied by utilizing the correction or systematic shift func-
tions to define two scenarios, an optimistic one and a pessimistic one as described
in section 6.4.1.
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Source t–channel s–channel single–top tt̄

jet energy corrections 2.1% 1.4% 1.8% 8.6%
initial–state radiation 2.6% 1.6% 2.2% 10.1%
final–state radiation 3.4% 1.4% 2.6% 11.4%
parton distribution functions 2.5% 2.2% 2.4% 2.4%
event generator 2.0% 1.0% 1.6% 3.0%
event detection efficiency 8.1% 6.3% 7.4% 7.1%
luminosity 6.0% 6.0% 6.0% 6.0%

Table 7.5: Relative systematic rate uncertainties for single–top–quark and tt̄ events.

A modified model of non–W events is considered to investigate the influence of this
aspect on the analysis. In comparison to the default model described in section 5.3,
the alternative model uses events selected from a generic jet sample where one of the
jets has a fraction of electromagnetic energy measured in the calorimeter of at least
0.8, but less than 0.95. This so–called jet–electron assumes the role of the charged
lepton in the event. In addition, the flavor composition of the non–W sample is
varied: the default model assumes a composition of 45% b–quark jets, 40% c–quark
jets, and 15% light–quark jets, whereas the alternative model uses a composition of
60:30:10, respectively.

To evaluate the systematic effect on the shapes of the distributions caused by the
modeling of mistagged light–quark jet events, an alternative model is utilized to
create template distributions. This is realized by replacing the default mistag model
based on simulated events as described in section 5.3 by a description on the basis
of measured W+jets events before b tagging.

Table 7.5 summarizes the relative rate uncertainties on the number of expected
single–top–quark and tt̄ prediction events. The analyses are done under the as-
sumption of a top–quark mass of Mt = 175 GeV/c2. That is why the uncertainty in
the top–quark mass is not taken into account as a systematic uncertainty. Hence,
the analyses provide rather a measurement at the specified value of the top–quark
mass. However, if the top–quark mass is varied in the simulation by ±5 GeV/c2 the
acceptance for single–top–quark events changes by ±2.8%.

The influences of the sources of systematic uncertainties on the shape of the tem-
plate distributions are visualized in appendix D.3, besides the examples presented
in figure 7.12. For later usage in the template likelihood fit to the observed out-
put distribution, all shape and rate uncertainties are symmetrized as illustrated
in figure 7.13 exemplarily for the uncertainty on initial state radiation. The sym-
metrization is performed for each bin by calculating half the difference between the
two altered scenarios. If there is only one systematic scenario, the full difference
between the altered and default distribution is considered.
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Figure 7.13: Symmetrized shape variation due the uncertainty on initial–state radiation for (a)
single–top–quark and (b) tt̄ events in the combined neural network analysis. The default distri-
butions are compared to the symmetrized variations. The symmetrization is performed for each
bin by calculating half the difference between the two scenarios with altered initial–state radiation
illustrated in figure 7.12.

7.4 Likelihood Function

Both combined and separate search use the same likelihood function for the template
fit to the observed events. This likelihood function consists of Poisson terms for the
individual bins of the fitted histogram, Gaussian constraints on the background
rates, and Gaussian constraints on the strengths of systematic effects:

L(β1, ... , βC ; δ1, ... , δS) =
B

∏

k=1

e−µk · µnk

k

nk!
·

C
∏

j=A

G(βj, 1.0,∆j) ·
S

∏

i=1

G(δi, 0.0, 1.0) . (7.4)

Systematic uncertainties are included as factors modifying the expectation value µk

of events in a certain bin k, with

µk =
C

∑

j=1

βj · ν̂j ·
{

S
∑

i=1

(1 + δi · ǫji)
}

· αjk ·
{

1 +
S

∑

i=1

(δi · κjik)

}

, (7.5)

G(βj, 1.0,∆j) =
1

√

2π∆2
j

· exp

(−(βj − 1.0)2

2 ∆2
j

)

, and (7.6)

G(δi, 0.0, 1.0) =
1√
2π

· exp

(−δ2
i

2

)

. (7.7)

The index j runs over the different event categories occurring in the likelihood func-
tion. In both approaches, four background categories are considered as introduced
in section 7.2.3: tt̄, b–like backgrounds, c–like backgrounds, and non–W–like events.
In the combined search, the total number of event classes is C = 5, with j = 1
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being the label for single–top–quark events. The labeling of background processes
starts with A = 2. In the separate search, C is equal to 6, with j = 1 for t–channel
single–top–quark events and j = 2 for s–channel single–top–quark events. The first
background label is A = 3.

The predicted expectation values for the number of events of a certain event category
are denoted ν̂j, leading to ν̂1 = 37.8 for the combined search and ν̂1 = 22.4 and
ν̂2 = 15.4 for the separate search, respectively. The predicted expectation values
for the background event categories as well as their relative uncertainties ∆j are
given in Table 7.6. The free parameters in the fit are given by βj = νj/ν̂j, i.e. the

process ν̂j ∆j

tt̄ 58.4 19.7%
b-like 178.9 28.3%
c-like 273.7 16.1%
non-W 38.5 43.0%

Table 7.6: Predicted expectation values and their relative standard deviations used for the Gaussian
background constraints in the likelihood function (7.4).

expectation values over their prediction. The normalized content of bin k of the
template histogram for event category j is αjk. The total number of bins is B.

In the fit, seven effects causing systematic rate uncertainties are considered as given
by table 7.5. In this notation, the sources of systematic uncertainties carry the index
i. The variation in strength of a systematic effect i is measured with the variable
δi which constitutes an additional fit parameter and measures the strength of the
systematic effect in units of one standard deviation. The relative rate uncertain-
ties due to these sources are named ǫji. As outlined in section 7.3, ten sources of
uncertainties influencing the template shape are taken into account. Altogether,
S = 13 sources of systematic uncertainties are thus considered. In the template dis-
tributions, the shape uncertainties are reflected by relative uncertainties in the bin
content of bin k, being denominated as κjik. The values of κjik are calculated from
the systematically shifted normalized template histograms α+

jik and α−
jik according

to

κjik =
α+

jik − α−
jik

2αjk

. (7.8)

By construction the κjik satisfy the normalization condition

B
∑

k=1

κjik = 0 . (7.9)

The systematically shifted template taking into account the shifts caused by all
systematic effects with strengths {δi} is given by

α′
ji = αjk ·

{

1 +
S

∑

i=1

δi · κjik

}

. (7.10)
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Due to (7.9), the shifted histogram α′
ji is properly normalized:

B
∑

k=1

α′
ji = 1 . (7.11)

Both normalized background rates βj, where j runs over the background event cat-
egories, and the parameters δi describing the strengths of systematic excursions are
constrained by Gaussian terms in the likelihood function, see (7.4): the background
rates βj are constrained within the relative uncertainties of the prediction, ∆j, while
the strengths of the systematic effects δi are constrained to 0.0 with a standard de-
viation of 1.0. The single–top–quark content is measured by fitting the parameters
of the likelihood function, βj and δj, to the observed data. This is achieved by
minimizing the negative logarithm of the likelihood function (7.4) with respect to
these parameters using the program minuit [129]. In doing so, the normalized ex-
pectation values of single–top–quark events, β1 for the combined search and β1 and
β2 for the separate search, are allowed to assume only values greater or equal than
zero to avoid unphysical results.

Using this technique, one can compute the likelihood function of the combined
search as a function of β1 only by minimizing the negative log–likelihood at a fixed
value of β1 with respect to all other variables (often called nuisance parameters).
This method, often named “profiling the likelihood function”, results in a one–
dimensional function, the reduced likelihood Lred(β1).

7.5 Ensemble Tests and Expected Sensitivity

To compute the sensitivity of both combined and separate search, ensemble tests
are used. In this context, an ensemble test consists of a set of pseudo experiments.
For each pseudo experiment, first the number of events Nj of each event category is
determined by drawing a random number from a Poisson distribution of a mean ν̂j.
As a result, the pseudo experiment features a total number of

∑

Nj events.

In a second step, Nj random numbers are drawn from the template distributions of
the neural network output for all considered event categories displayed figure 7.10(a)
for the combined search and figure 7.11 for the separate search, respectively. Those
random numbers are filled in a histogram which constitutes the neural network
output distribution of a particular pseudo experiment. For each approach, combined
and separate search, two ensemble tests are performed: one with single–top–quark
events included at the predicted standard–model rate and one without any single–
top–quark events. For each pseudo experiment, the single–top–quark cross section
is determined using the same method as used for observed events. Based on the
ensemble test with single–top–quark events included, the root mean square (RMS)
of the resulting single–top–quark cross–section distribution is defined as the expected
uncertainty of the measurement. For the combined neural network, a value of 1.3 pb
is found including all systematic uncertainties, which is 45% of the predicted cross
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Figure 7.14: The distribution of expected measurements in the combined search is shown. The
fitted cross sections are based on the ensemble test with single–top–quark events included. The
RMS value of this distribution is defined as the expected uncertainty of the measurement.

section as illustrated in figure 7.14. For the separate neural network search, the
expected uncertainties are 1.1 pb for t–channel figure 7.15(a)) and 1.0 pb for s–
channel (see figure 7.15(b)) , corresponding to 56% or 112%, respectively.

The effect of the individual sources of systematic uncertainties are estimated by
evaluating the distributions of the fitted δi parameters measuring the strength of
a systematic excursion in units of one standard deviation. The RMS values of
these distributions, summarized in table 7.7 for both combined and separate search
including rate and shape uncertainties, are defined as a relative measure of the size
of the systematic uncertainties. In this context, it is important to note that some
sources like mistag model or Q2 only effect specific processes.

To compute the significance of a potentially observed signal, a hypothesis test is
performed, considering two hypotheses. The first one, the null hypothesis H0, as-
sumes that the single–top–quark cross section is zero (β1 = 0 for the combined
search; β1 = β2 = 0 for the separate search). The second one, H1, assumes that
the single–top–quark production cross–section is the one predicted by the standard
model (β1 = 1 for the combined search; β1 = β2 = 1 for the separate search). The
objective of both analyses is to observe single–top–quark events, that means to re-
ject the null hypothesis H0. The hypothesis test for the combined neural network
search is based on the Q–value,

Q = −2 (lnLred(β1 = 1) − lnLred(β1 = 0)) , (7.12)

where Lred(β1 = 1) is the value of the reduced likelihood function at the standard–
model prediction and Lred(β1 = 0) is the value of the reduced likelihood function
for a single–top–quark cross section of zero. The Q–value for the separate search is
given in an analogous way. Using the two ensemble tests, the respective Q–value
distributions are determined. The resulting distributions are shown in figure 7.16(a)
for the combined search and in figure 7.16(b) for the separate search, respectively.
In order to quantify the probability for H0 to be correct, the p–value is defined.
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(a) t–channel
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Figure 7.15: The distributions of expected measurements in the separate search are shown for
(a) t–channel and (b) s–channel. The fitted cross sections are based on the ensemble test with
single–top–quark events included. The RMS values of these distributions are defined as the ex-
pected uncertainties of the measurement. The red–colored areas correspond to 95% of the integral
under the particular distributions, representing the expected upper limits. The two–dimensional
distribution of the fitted cross sections is displayed in (c).
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Source of systematic effect RMS of δi distribution

combined search separate search
mistag shape 0.41 0.46
alpgen scale 0.38 0.44
jet energy corrections 0.33 0.34
alpgen version 0.28 0.45
neural–network b–tagger 0.23 0.28
non–W model 0.13 0.19
initial-state radiation 0.09 0.14
final-state radiation 0.07 0.14
non-W flavor composition 0.05 0.09
event detection efficiency 0.04 0.04
signal generator 0.018 0.02
parton distribution functions 0.02 0.07

Table 7.7: RMS values of the δi distributions obtained from the ensemble test with single–top–
quark events included. These values give a relative estimate of the size of the different systematic
effects.

Assuming that the value Q0 is observed in a particular experiment, the p–value is
given by

p(Q0) =
1

Iq
·
∫ Q0

−∞

q0(Q
′) dQ′ , (7.13)

where q0 is the distribution of Q–values for the null hypothesis H0 and

Iq =

∫ +∞

−∞

q0(Q
′) dQ′ . (7.14)

To quantify the sensitivity of the analysis, the expected p–value p̂ = p(Q̃1) is defined,
where Q̃1 is the median of the Q–value distribution q1 for the hypothesis H1. The
meaning of p̂ is the following: Under the assumption that H1 is correct one expects
to observe p < p̂ with a probability of 50%. For the combined search, p̂ = 0.5%
is found, while it is p̂ = 0.4% for the separate search. Both values include all sys-
tematic uncertainties. The found p̂–values can be interpreted as follows: assuming
the predicted single–top–quark production cross–section, the expectation is, with a
probability of 50%, to see at least that many single–top–quark events that the ob-
served excess over the background corresponds to a background fluctuation of 2.6σ
in case of the combined search and 2.7σ in case of the separate search, respectively.

The expected upper limit of the combined search is defined by the median of the
distributions of upper limits obtained from pseudo experiments based on the ensem-
ble with single–top–quarks included. According to figure 7.17, the expected upper
limit for the combined search is 5.7 pb at 95% confidence level. The expected upper
limits for the separate search are determined in a different way, namely from the dis-
tributions of the fitted cross sections displayed in figure 7.15(a) and figure 7.15(b),
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Figure 7.16: Distributions of Q–values for two ensemble tests, one with single–top–quark events
present at the expected standard–model rate, one without any single–top–quark events for (a)
combined and (b) separate search.
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Figure 7.17: The distribution of the upper limits obtained from pseudo experiments based on the
ensemble test with single–top–quarks included is shown for the combined search. The median of
this distribution is defined as the expected upper limit of the combined analysis.
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respectively. In this approach, the limits are derived from the area covering 95% of
the integral under the particular distribution, leading to an expected upper limit of
3.8 pb for t–channel and 2.9 pb for s–channel, respectively. To illustrate the result
of the pseudo experiments performed in the separate search, the two–dimensional
distribution of the fitted cross sections is displayed in figure 7.15(c).

7.6 Application to Observed Events

After the expected sensitivities and the expected upper limits of both approaches
have been determined, the neural networks are applied to observed events. At first,
the output distributions of observed events are compared to the expected distribu-
tions. Finally, the templates are fitted to the observed distributions to determine
the single–top–quark cross sections.

7.6.1 Comparison to Expectation

Due to the shapes of the template distributions, the bins with the highest output
values are the most interesting ones: here, the ratio of signal to background events
should be the largest. Hence, the discussion of the comparison between the distribu-
tion of observed events and the expected distribution is restrained to the so–called
signal region.
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Figure 7.18: The output of observed events is compared to the expectation in the high–output
region of the combined analysis.

The output distribution of the combined neural network in the bins with the highest
output values is depicted in figure 7.18, illustrating that less events are observed than
expected. In the third to last bin, 5.1 events are expected including 2.4 single–top–
quark events, while only 2 events are observed. In the last two bins, no events are
observed, while the expectation is 2.1 events including 1.6 single–top–quark events
in the second to last bin and 0.1 single–top–quark events in the last bin, respectively.
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Hence, the observation in the three highest output bins is completely compatible
with the background expectation only.
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Figure 7.19: The two–dimensional output distributions of the separate search are shown for (a)
observed events and (b) expectation. The number quoted for each bin denotes the number of
entries in the particular bin.

The two–dimensional output distribution of observed events in the combined search
is depicted in figure 7.19(a), while the expectation is illustrated in figure 7.19(b).
Comparing the six bins with the highest t–channel outputs, it can be seen that
8 events are observed, while the expectation is 12.5 events. In the bins with the
second–highest t–channel output, the observation is 21 events with an expectation
of 25.8. In the six bins with the highest output in the s–channel network, 5 events
are observed, while 4.1 events are expected. For the bins with the second–highest
s–channel network output, 21 events are observed and 27.2 events expected. In con-
clusion, the data appears less signal–like than predicted even though the expectation
agrees with the observation in the six bins with the highest s–channel output.

7.6.2 Fit Results

The likelihood fit to the neural network output for the combined search yields a
rate of zero single–top–quark events, as already indicated by figure 7.18. The values
obtained for the background rates and strengths of systematic effects are quoted
in table 7.8. The observed Q–value is 9.13, yielding an observed p–value of 54.6%.
Figure 7.20, comparing the observed Q–value with the expectation, illustrates that
the observed data are thus well compatible with being a background fluctuation.
As depicted in figure 7.21, the fitted distributions describe the observed output
distribution well. The upper limit on the combined single–top–quark cross section
is found to be 2.6 pb at the 95% confidence level (C.L.).

For the separate search, the fit yields the cross sections σt = 0.2+1.1
−0.2(stat.+ syst.) pb

for t–channel and σs = 0.7+1.5
−0.7(stat.+ syst.) pb for s–channel, respectively. The
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process (fitted rate)/(predicted rate) fitted events

single–top 0.0 ± 0.41 0.0 ± 15.6
tt̄ 1.02 ± 0.19 59.7 ± 11.2
b–like 1.13 ± 0.19 201.3 ± 34.1
c–like 1.20 ± 0.11 327.2 ± 30.2
non–W 1.11 ± 0.42 42.0 ± 16.1

systematic source (fitted excursion)/(standard deviation)

mistag shape 0.47 ± 0.80
alpgen scale −0.25 ± 0.81
jet energy corrections 0.28 ± 0.88
alpgen version 0.06 ± 0.89
neural–network b–tagger 0.40 ± 0.93
non–W model 0.043 ± 0.97
initial–state radiation 0.011 ± 0.96
final–state radiation 0.036 ± 0.96
non–W flavor composition −0.07 ± 0.97
event detection efficiency 0.041 ± 0.97
signal generator 0.018 ± 0.97
parton distribution functions 0.013 ± 0.97

Table 7.8: The fitted rates of the considered processes and strengths of systematic effects of the
combined search are quoted.

fitted rates of the considered processes and strengths of systematic effects are quoted
in table 7.9. At the 95% confidence level, the resulting upper limits on the t– and
s–channel cross sections are 2.6 pb and 3.7 pb, respectively. As shown in figure 7.22,
the observed Q–value of 2.94, yielding a p–value of 21.9%, is more compatible with
the standard–model expectation than in case of the combined search. The fit result
is depicted in figure 7.23 showing the contours of the negative logarithm of the
reduced likelihood function in the plane of single–top–quark s–channel versus t–
channel cross sections. Negative cross section values are physically meaningless and
therefore not allowed. The minimum represents the best fit values and is indicated
by the black dot. The black error bars quote the 1σ uncertainties on the fitted t–
and s–channel cross sections, while the yellow error bars present the 95% C.L. upper
limits. The true values of both cross sections have a probability of 95% (68%) to be
found in the region comprised by the yellow (black) contour. The value predicted
by the standard model, within its uncertainties, is illustrated by the red rectangle.

In conclusion, both approaches cannot establish a signal of single top–quark produc-
tion. The result of the combined search is fully compatible with being a background
fluctuation, while the result of the separate search is slightly more compliant with
the standard–model expectation, especially for the s–channel.
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Figure 7.20: Comparison of observed Q–value to the expectation in the combined search.
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Figure 7.21: Fit result for the combined neural network search versus the observed distribution.
(a) shows the entire neural network output domain, while (b) zooms in on the high neural network
output region. Since the single–top–quark rate is measured to be zero, it is omitted in these
histograms.
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process fitted rate / predicted rate fitted events

t-channel 0.11 ± 0.66 2.4 ± 14.8
s-channel 0.76 ± 1.66 11.7 ± 25.6
tt̄ 0.99 ± 0.20 58.0 ± 11.4
b-like 1.12 ± 0.23 200.5 ± 41.9
c-like 1.15 ± 0.12 315.6 ± 32.6
non-W 1.20 ± 0.41 45.9 ± 15.9

systematic source fitted excursion / standard deviation

mistag shape 0.582 ± 0.60
alpgen scale −0.443 ± 0.58
jet energy corrections 0.074 ± 0.87
alpgen version 0.197 ± 0.54
neural–network b–tagger −0.399 ± 0.93
non–W model 0.0381 ± 0.94
initial–state radiation 0.178 ± 0.97
final–state radiation −0.120 ± 0.95
non–W flavor composition −0.080 ± 0.97
event detection efficiency −0.009 ± 0.97
signal generator −0.004 ± 0.97
parton distribution functions 0.062 ± 0.97

Table 7.9: The fitted rates of the considered processes and strengths of systematic effects of the
separate search are quoted.
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Figure 7.22: Comparison of observed Q–value to the expectation in the separate search.
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Figure 7.23: Negative log likelihood function of the separate neural network search. The one
standard deviation and 95% confidence level contours are overlaid.
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Summary and Outlook

In this thesis, a search for single top–quark production using neural networks has
been described, utilizing a dataset corresponding to an integrated luminosity of
955 pb−1. At the Tevatron, two processes contribute significantly to the produc-
tion of single top–quarks: t–channel and s–channel production with predicted cross
sections at next–to–leading order of σt = 1.98+0.28

−0.22 pb and σs = 0.88+0.12
−0.11 pb, respec-

tively.

In the search for single–top–quark events, only semileptonic top–quark decays are
considered by requiring one isolated lepton and missing transverse energy. Addition-
ally, exactly two jets are required whereof at least one must be tagged as a b–quark
jet. It has been shown that the standard identification of b–quark jets, requiring a
reconstructed secondary vertex, still leaves a significant amount of events containing
no b–quarks at all. Therefore, it is important to reject secondary vertices which are
not related to the decay of a b hadron by extending the identification of b–quark
jets.

In this thesis, the first neural–network b–tagger at a hadron collider has been de-
veloped, being able to reject c–quark and light–quark jets with secondary vertices.
The output of this tagger finds application in all searches for single top–quark pro-
duction at CDF where it has proven to be of major importance to reject background
events. One interesting way of utilizing the output of the neural–network b–tagger
lies in the determination of the flavor composition of a given sample of observed
events. Currently, this is used as a cross check to the actual estimation of the event
yield but has a large potential, since the uncertainties are expected to decrease with
increasing statistics. Additionally, it must be noticed that this tagger, developed in
the context of searches for single top–quark production, is a universal tool which
can be utilized in all kinds of high–pT analyses requiring identification of b–quark
jets, such as the search for a Higgs boson in the WH channel.

In the analysis described in this thesis, two different approaches to search for elec-
troweak production of single top–quarks have been performed. In the first approach,
the ratio of the cross sections of both production channels is assumed to be as pre-
dicted by the standard model. In this approach, one neural network is trained
to identify both t– and s–channel events, the so–called combined network. In the
other approach, the cross sections of both channels are determined independently
and simultaneously, named separate search. Here, two different neural networks are
trained, one to identify only t–channel events and one to identify only s–channel
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events. For the t–channel neural network, s–channel events are treated as back-
ground and vice versa.

The output distributions of those three neural networks are utilized to create tem-
plate distributions which are fitted to the output distribution of observed events
using a likelihood method. In the likelihood function, Gaussian constraints on the
number of predicted background events as well as on the strength of systematic
uncertainties are included. Concerning the latter, both systematic rate and shape
uncertainties are considered.

The expected sensitivities of the two approaches are determined using hypotheses
tests, leading to an expected significance of 2.6σ in the combined search and 2.7σ in
the separate search, which is the highest a priori sensitivity of all searches for single
top–quark production currently performed at the Tevatron. The expected upper
limit at 95% confidence level is 5.7 pb in case of the combined search, while it is
3.8 pb for t–channel and 2.9 pb for s–channel in case of the separate search.

The likelihood fit in the combined search yields a rate of zero single–top–quark
events. The resulting upper limit at 95% confidence level is 2.6 pb. In case of
the separate search, the obtained cross sections are σt = 0.2+1.1

−0.2(stat.+ syst.) pb
for t–channel and σs = 0.7+1.5

−0.7(stat.+ syst.) pb for s–channel, respectively. The
ensuing upper limits on the t– and s–channel cross sections are 2.6 pb and 3.7 pb,
respectively. In conclusion, both approaches are not able to establish a signal of
single top–quark production.

Parallel to this work, two other groups at CDF performed searches for single top–
quark production, both looking for a combined signal of t– and s–channel. Hereof,
only one was able to measure a combined cross section of 2.7+1.5

−1.3 pb with a signif-
icance of 2.3σ [130]. The other one obtained a result comparable to the combined
neural–network analysis and set a limit of 2.7 pb at the 95% confidence limit [131].
Detailed studies, taking into account the correlations between the different analyses,
lead to a consistency around 1%. The interpretation is that the deviations in the
obtained results are due to statistical fluctuations. Additionally, several analyses
looking for a combined t– and s–channel signal were performed at DØ whereof each
observed evidence for single top–quark production [132]. Nevertheless, the measured
cross sections are all about twice the predicted value, resulting in a combined value
of 4.7 ± 1.3 pb with a significance of 3.6σ [133]. However, this value is excluded at
the 95% confidence level by the combined network analysis described in this thesis.
For both the DØ analysis and the combined analysis presented in this thesis, the
probability to obtain the respective observed result, under the assumption that the
standard–model prediction is correct, is at the per–cent level. Since the agreement
with the predicted cross section is roughly comparable in both cases, the different re-
sults are most likely induced by statistical fluctuations. Therefore, the cross section
of single top–quark production is still an exciting open question which can hopefully
be answered in the next rounds of analyses utilizing a larger amount of data.



Appendix A

Baseline Cuts for Lepton
Identification

A.1 Electron Identification

A.1.1 Central Electrons

• Fiducial: Flag, if the electron is within the fiducial volume of the CEM
towers. The fiducial volume excludes tower 9 and the chimney, the exhaust
of the cabling in tower 7. Additionally, a matched CES strip cluster and a
matched CES wire cluster are required.

• ET: Transverse energy deposited in the calorimeter with respect to the pri-
mary vertex z position: ET = E · sin θ.

• |z0|: The z intersection of the track with the beam axis in the r–z plane.

• pT: Transverse momentum of the associated COT track.

• Good COT Axial Segments: Number of track segments with at least 5
hits in the COT axial superlayers for the maximum pT matched track.

• Good COT Stereo Segments: Number of track segments with at least 5
hits in the COT stereo superlayers for the maximum pT matched track.

• Conversion: Flag, if the electron is identified as coming from a photon con-
version. Conversions are oppositely charged electron–track pairs with similar
directions and small separation in the x–y plane. Trident events, i.e. electrons
radiating off a photon that converts into e+e−, are kept.

• EHAD/EEM: Ratio of hadronic calorimeter energy to electromagnetic calorime-
ter energy using all towers involved.
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• Isolation: The energy in a cone of radius R = 0.4 around the seed tower
divided by the total energy of the cluster. The isolation variable is corrected
for calorimeter leakage, i.e. energy in adjacent towers not considered by the
cluster algorithm.

• Lshr: The lateral shower profile compares the energy in CEM towers adjacent
to the seed tower for data and test–beam electrons and is defined as

Lshr = 0.14
Σi(Mi − Pi)

√

(0.14
√
EEM)2 + Σi(∆Pi)2

, (A.1)

where the sums are over the towers in the electromagnetic cluster adjacent to
the seed tower and in the same wedge as the seed tower. Mi is the measured
energy in an adjacent tower, Pi is the predicted energy deposit in the adjacent
tower, EEM is the total electromagnetic energy in the cluster, and ∆Pi is an
estimate of the uncertainty in Pi [134].

• E/P: Electromagnetic calorimeter energy E divided by the momentum P of
the maximum pT matched track.

• |∆z|: Distance in the r–z plane between the extrapolated COT track and
the best matching CES cluster.

• Q ·∆x: Distance in the r–φ plane between the extrapolated COT track and
the best matching CES cluster, multiplied by the charge of the track.

• χ2
strip: The χ2 comparison of the CES shower profile in the r–z view with the

same profile extracted from test–beam electrons.

A.1.2 Forward Electrons

• ET: Transverse energy deposited in the calorimeter with respect to the pri-
mary vertex z position: ET = E · sin θ.

• PES |η|: Detector η of the best matching PES cluster is used as a cut
variable to determine fiduciality.

• EHAD/EEM: Ratio of hadronic calorimeter energy to electromagnetic calorime-
ter energy using all towers involved.

• Towers in χ2 fit: Number of towers used by the 3 × 3 PEM cluster fit to
data from test runs.

• PEM 3 x 3 χ2: χ2 value of the 3×3 PEM cluster fit to data from test runs.

• PES cluster 5 x 9 ratio: By default, PES clusters have 9 strips with the
most energetic one at the center. This variable is defined as the ratio of the
energy measured by the central 5 strips by the energy measured by all 9 strips
of the cluster.
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Central Electron Variable Cut TNtuple

Region CEM Region

Fiducial Yes Fiducial

ET ≥ 20.0 GeV Et

|z0| ≤ 60.0 cm TrkZ0

pT ≥ 10.0 GeV/c TrkPt

Good COT Axial Segments ≥ 3 TrkAxSeg

Good COT Stereo Segments ≥ 2 TrkStSeg

Conversion 6= 1 Conversion

EHAD/EEM ≤ 0.055 + 0.00045 · E Hadem

Isolation ≤ 0.1 Isol

Lshr ≤ 0.2 LshrTrk

E/P ≤ 2.0 unless pT ≥ 50 GeV/c EP

|∆z| ≤ 3.0 cm DeltaZ

Q · ∆x ≥ −3.0 cm and ≤ 1.5 cm Charge, DeltaX

χ2
strip ≤ 10.0 StripChi2

Table A.1: Baseline cuts for central electrons [105]. Variables given in the TNtuple column are
members of the electron class of the HighLevelObjects.

• Isolation: The energy in a cone of radius R = 0.4 around the seed tower
divided by the total energy of the cluster. The isolation variable is corrected
for calorimeter leakage, i.e. energy in adjacent towers not considered by the
cluster algorithm.

• ∆R PEM-PES: Distance in the η–φ plane (
√

∆φ2 + ∆η2) between the
signal in the plug electromagnetic calorimeter cluster and the best matching
pre-shower cluster.

• Phoenix match: Match between reconstructed phoenix track and calorime-
ter tower.

• Number PHX Si hits: Number of silicon hits associated to the track.

• Number PES clusters: Number of pre-shower clusters.

• |z0|: The z intersection of the track with the beam axis in the r–z plane.

A.2 Muon Identification

The baseline cuts for muons are given in table A.3. The detailed description of the
cut variables are:

• pT: Transverse momentum of the corresponding track.
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Plug Electron Variable Cut TNtuple

Region PEM Region

ET ≥ 20.0 GeV Et

PES |η| 1.2 ≤ |η| ≤ 2.0 Pes2dEta

EHAD/EEM ≤ 0.05 Hadem

Towers in χ2 fit ≥ 1 Pem3x3FitTow

PEM 3 x 3 χ2 ≤ 10.0 Pem3x3Chisq

PES U cluster 5 x 9 ratio ≥ 0.65 Pes2d5by9U

PES V cluster 5 x 9 ratio ≥ 0.65 Pes2d5by9V

Isolation ≤ 0.1 Isol

∆R PEM-PES ≤ 3 cm Pem3x3DetEta, Pem3x3Phi

Pes2dX, Pes2dY

Phoenix match Yes PhxMatch

Number PHX Si hits ≥ 3 TrkSiHits

Number PES clusters ≥ 1 NumPes2d

|z0| ≤ 60.0 cm TrkZ0

Table A.2: Baseline cuts for plug electrons [105] using the phoenix tracking. Variables given in
the TNtuple column are members of the electron class of the HighLevelObjects.

• EEM: Energy deposition in the electromagnetic calorimeter.

• EHAD: Energy deposition in the hadronic calorimeter.

• Isolation: Total excess energy within a cone of radius ∆R = 0.4 around the
muon divided by the transverse momentum of the muon.

• |z0|: The z intersection of the track with the beam axis in the r–z plane.

• |d0|: If the track does not include silicon hits, d0 is measured with respect
to the COT beam spot. Otherwise, the SVX beam spot is taken as reference
point.

• CMU/ CMP / CMX |∆x|: Distance in r–φ between the stub direction
and the track extrapolation to the stub.

• Fiduciality: A track is projected out from the tracking chambers to the plane
of the muon chamber in question. The fiducial distance is then defined as the
distance between the projected track position and the edge of the chamber.
Two planes are used for this measurement. One is the local z direction of the
chamber which is in the longitudinal direction of the chambers. The other is
the local x direction of the chamber which is along the drift direction.

• COT exit radius: The COT exit radius check ensures that the muon passes
through all 4 axial layers of the COT and could trigger the event.
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Central Muon Variable Cut TNtuple

pT ≥ 20.0 GeV PtCorr

EEM ≤ 2 + max(0, 0.0115(p − 100)) GeV EmEnergy

EHAD ≤ 6 + max(0, 0.0280(p − 100)) GeV HadEnergy

Isolation ≤ 0.1 Isol
Good COT Axial Segments ≥ 3 TrkAxSeg

Good COT Stereo Segments ≥ 2 TrkStSeg

|z0| ≤ 60.0 cm Z0

|d0| ≤ 0.2 cm if no Si hits D0

|d0| ≤ 0.02 cm if Si hits D0

Additional requirements for specific subdetectors
CMU|∆x| ≤ 3.0 cm CmuDx

CMP|∆x| ≤ 5.0 cm CmpDx

CMX|∆x| ≤ 6.0 cm CmxDx

Fiduciality requirements
CMUP CMUFidX < 0 cm, CMUFidZ < 0 cm CmuFidX, CmuFidZ

CMPFidX < 0 cm, CMPFidZ < −3 cm CmpFidX, CmpFidZ

CMX CMXFidX < 0 cm, CMXFidZ < −3 cm CmxFidX, CmxFidZ

COT exit radius > 140 cm Eta, Z0

Table A.3: Baseline cuts for CMUP and CMX muons [103, 104]. Variables given in the TNtuple
column are functions of the muon class of the HighLevelObjects.
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A.3 Selection of Heavy–Flavor Enhanced Events

To determine the difference between b–quark jets in data and simulation, an energetic
electron within a jet and an additional jet opposite in φ are required.

The requirements for the electron are quoted in table A.4. Some of the quantities
have already been introduced in section A.1.1, the others are explained below.

• |z|: The z coordinate of the track helix at a given radius

• |zpvtx − z0|: The distance of the z intersection of the track with the beam
axis in the r–z plane (z0) from the z position of the primary vertex (zpvtx).

• |∆x|: Distance in the r–φ plane between the extrapolated COT track and
the best matching CES cluster.

If more than one candidate is present, the one with the highest ET is taken.

Central Electron Variable Cut TNtuple

Fiducial Yes Fiducial

ET ≥ 9.0 GeV Et

|z| at edges of SVX II < 43.5 cm TrkZ0, TrkD0, Curv, Lambda

|zpvtx − z0| < 5 cm fjetZV, TrkZ0

pT ≥ 8.0 GeV/c TrkPt

Conversion 6= 1 Conversion

EHAD/EEM < 0.05 Hadem

Isolation > 0.1 Isol

Lshr ≤ 0.2 LshrTrk

E/P 0.5 < E/P < 2.0 EP

|∆z| ≤ 5.0 cm DeltaZ

|∆x| ≤ 3.0 cm DeltaX

χ2
strip ≤ 10.0 StripChi2

Table A.4: The baseline cuts for electrons used to exploit semileptonic b–hadron decays [97, 98].
Variables given in the TNtuple column are members of the electron, track and summary classes
of the HighLevelObjects.

The selection of the electron jet is done the following way:

• ET > 15 GeV (corrected up to level 4)

• ∆R =
√

(ηelectron − ηjet)2 + (φelectron − φjet)2 < 0.4

• If more than one candidate, the one with the smallest ∆R is taken.
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The selection of the away jet is done the following way:

• ET > 15 GeV (corrected up to level 4)

• η < 1.5

• |∆φ| > 2 rad between electron and away jet

• If more than one candidate, the one with the largest |∆φ| is taken.
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Appendix B

Used MC Samples

In the search of single top–quark production, a set of Monte Carlo simulated sam-
ples (see table B.1) is used to model the selected data sample. Single top–quark
production is simulated with the matrix element generator madevent and pythia

showering. For the modeling of tt̄, diboson, and Z+jets production, simulated events
generated with pythia are used. W+heavy flavor events were simulated using a
combination of alpgen and herwig. In addition, this combination forms the basis
for the mistag model used in this analysis.

To evaluate the systematic uncertainties of our search for single top–quark produc-
tion, a variety of MC samples is utilized (see table B.2), each containing variations
due to a specific source of systematic uncertainty.

To determine the correction functions which have to be applied to the output of the
neural–network b–tagger, another set of simulated processes was used (see table B.3).
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Sample Process Generator Events
ttop1oNew

+

ttop2oNew

t–channel (matched) madevent + pythia 600060

ttop0oNewCat s–channel madevent + pythia 577276
ttopkl +

ttopvl +

ttopyl +

ttoptl

tt̄ pythia 3463090

ltop0b +

ltop3b +

atop0t

Wbb̄+ 0p
(W → e/µ/τ + ν)

alpgen + herwig 814418

ltop0c +

ltop3c +

atop3t

Wcc̄+ 0p
(W → e/µ/τ + ν)

alpgen + herwig 879204

ltop1a +

ltop5a

Wc+ 1p
(W → e/µ+ ν)

alpgen + herwig 532823

ltop2n +

ltop2m +

atop8t

W + 2p
(W → e/µ/τ + ν)

alpgen + herwig 356454

wtop1w +

wtop2w
WW pythia 606877

wtop1z +

wtop2z
WZ pythia 594502

ztopcz +

ztopfz
ZZ pythia 801176

ztop7i Z → ee pythia 3251489
ztop0i +

ztopei
Z → µµ pythia 1794600

ztop1i +

ztop4i +

ztop5i

Z → ττ pythia 3538885

Table B.1: Monte Carlo samples used in the search for single top–quark production.
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Sample Comment Events

Single–Top
sisrls s–channel, less ISR 294910
sisrmr s–channel, more ISR 267491
sfsrls s–channel, less FSR 299793
sfsrmr s–channel, more FSR 299838

tisrls merged t–channel, less ISR 303293
tisrmr merged t–channel, more ISR 242986
tfsrls merged t–channel, less FSR 311474
tfsrmr merged t–channel, more FSR 298803

tchan170 merged t–channel, mtop = 170 GeV/c2 135565
tchan180 merged t–channel, mtop = 180 GeV/c2 131691

ctoph0 s–channel, mtop = 170 GeV/c2 100165
ctoph1 s–channel, mtop = 180 GeV/c2 69671

tt̄
ttopbr tt̄, less ISR 930469
ttopdr tt̄, more ISR 924188
ttopfr tt̄, less FSR 932334
ttopkr tt̄, more FSR 466292

W + Jets

ltop1r + ltop3r
Wbb̄+ 0p, Q2

(W → e/µ/+ ν)
379422

ltop5r + ltop7r
Wcc̄+ 0p, Q2

(W → e/µ/+ ν)
368864

ltop9r + ltopbr
Wc+ 1p, Q2

(W → e/µ/+ ν)
339125

ltopdr + ltopfr
W + 2p, Q2

(W → e/µ/+ ν)
248089

mtop0x + mtop1x + mtop2x
Wbb̄+ 0p

(W → e+ ν)
alpgen Version 2

1124616

mtop0y + mtop1y + mtop2y
Wbb̄+ 0p

(W → µ+ ν)
alpgen Version 2

1127743

Table B.2: Systematic Monte Carlo samples used in the search for single top–quark production.
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Sample Process Generator
b–like correction

btop5a +

btop6a

2 → 2 scattering QCD,
pTmin = 15 GeV/c, filtered for
7 GeV/c electron or muon in

generator parton list

herwig

btop7a +

btop8a

2 → 2 scattering QCD,
pTmin = 20 GeV/c, filtered for
8 GeV/c electron or 9 GeV/c
muon in generator parton list

herwig

mistag correction
jqcd1f dijet sample, pT > 18 GeV/c phytia

jqcd2f dijet sample, pT > 40 GeV/c phytia

jqcd2h dijet sample, pT > 18 GeV/c herwig

jqcd3h dijet sample, pT > 40 GeV/c herwig

Table B.3: Monte Carlo samples used to determine the correction functions of the neural–network
b–tagger.



Appendix C

More Discriminating b–Tagger
Variables

C.1 Discriminating Variables

Figures C.1 to C.8 show the distributions of discriminating variables investigated
for the neural–network b–tagger. The distributions are shown for b–quark, c–quark,
and light–quark jets. More information can be found in section 6.1.1. Some further
examples are shown in figures 6.1 to 6.4.
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Figure C.1: Qualified variables to discriminate secondary vertices stemming from the decay of a
b hadron: (a) the 3–dimensional decay length of the secondary vertex, (b) the significance of the
3–dimensional decay length.
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Figure C.2: Qualified variables to discriminate secondary vertices stemming from the decay of a
b hadron: (a) the charge at the secondary vertex, (b) the χ2 per degree of freedom of the vertex
fit, (c) the number of tracks per jet and the number of tracks in the tagged jet with an impact
parameter significance larger than (d) 1σ and (e) 2σ.
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Figure C.3: Qualified variables to discriminate secondary vertices stemming from the decay of a
b hadron: the invariant mass of (a) pass–1 and (b) pass–2 vertices, the transverse momentum at
(c) pass–1 and (d) pass–2 vertices, and the χ2 per degree of freedom for (e) pass–1 and (f) pass–2
vertices.
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Figure C.4: Qualified variables to discriminate secondary vertices stemming from the decay of a b
hadron: the momentum of the (a) 1.track, (b) 2.track, and (c) 3.track, and the rapidity yrel with
respect to the jet axis of the (d) 1.track, (e) 2.track, and (f) 3.track.
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Figure C.5: Qualified variables to discriminate secondary vertices stemming from the decay of a
b hadron: the transverse momentum pT

rel with respect to the jet axis of the (a) 2.track and (b)
3.track, (c) jet ET, and (d) jet η.
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Figure C.6: Qualified variables to discriminate secondary vertices stemming from the decay of a b
hadron: the impact parameter d0 of the (a) 1.track, (b) 2.track, and (c) 3.track and the significance
of the impact parameter of the (d) 1.track, (e) 2.track, and (f) 3.track.
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Figure C.7: Qualified variables to discriminate secondary vertices stemming from the decay of a
b hadron: the signed impact parameter of the (a) 1.track, (b) 2.track, and (c) 3.track and the
significance of the signed impact parameter of the (d) 2.track and (e) 3.track.
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Figure C.8: Qualified variables to discriminate secondary vertices stemming from the decay of a
b hadron: (a) the number of muons per jet and (b) pT and (c) transverse momentum pT

rel with
respect to the jet axis of the most energetic muon in the jet, (d) the number of electrons per jet
and (e) ET and (f) pT

rel of the most energetic electron in the jet.
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C.2 Discriminating Variables in Data and MC

Figures C.9 to C.17 show the comparison of discriminating b–tagger variables in
data and simulation. More information about the used samples can be found in
section 6.3.2.

The differences observed in figures C.12(c), C.12(d), C.17(d), and C.17(e) are in-
duced by differences between electrons in data and simulation. First, the selected
electron in observed events can be created by material interactions, while this is
avoided by requiring an electron at generator level in simulated events. Second,
in simulation, the track of the selected electron fulfills more often some minimum
quality requirements than in data. This fact additionally increases the probability of
the track to be attached to the secondary vertex in simulated events. Nevertheless,
this is a specific feature of the inclusive lepton samples used for this comparison and
not expected in genuine b–quark jets.

Some further comparisons are shown in figures 6.7 to 6.9.
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Figure C.9: Comparison of discriminating b–tagger variables in data and simulation: the (a) 3–
dimensional decay length of the secondary vertex, the significance of the (b) 3–dimensional and
(c) 2–dimensional decay length, and (d) the χ2 per degree of freedom of the vertex fit,
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Figure C.10: Comparison of discriminating b–tagger variables in data and simulation: (a) the
number of displaced tracks fulfilling the quality requirements for pass 1 of the vertex fit, the
number of tracks in the tagged jet with an impact parameter significance larger than (b) 2σ and
(c) 3σ.
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Figure C.11: Comparison of discriminating b–tagger variables in data and simulation: (a) the pass
of the vertex fit, the number of tracks associated to (b) pass–1 and (c) pass–2 vertices, and the
charge at (d) pass–1 and (d) pass–2 vertices.
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Figure C.12: Comparison of discriminating b–tagger variables in data and simulation: the invariant
mass of (a) pass–1 and (b) pass–2 vertices, the transverse momentum at (c) pass–1 and (d) pass–2
vertices, and the χ2 per degree of freedom for (e) pass–1 and (f) pass–2 vertices.
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Figure C.13: Comparison of discriminating b–tagger variables in data and simulation: the momen-
tum of the (a) 1.track, (b) 2.track, and (c) 3.track, and the rapidity yrel with respect to the jet
axis of the (d) 2.track and (e) 3.track.
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Figure C.14: Comparison of discriminating b–tagger variables in data and simulation: the trans-
verse momentum pT

rel with respect to the jet axis of the (a) 2.track and (b) 3.track, (c) jet ET,
and (d) jet η.
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Figure C.15: Comparison of discriminating b–tagger variables in data and simulation: the impact
parameter d0 of the (a) 1.track, (b) 2.track, and (c) 3.track and the significance of the impact
parameter of the (d) 1.track, (e) 2.track, and (f) 3.track.
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Figure C.16: Comparison of discriminating b–tagger variables in data and simulation: the signed
impact parameter of the (a) 1.track, (b) 2.track, and (c) 3.track and the significance of the signed
impact parameter of the (d) 1.track, (e) 2.track, and (f) 3.track.
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Figure C.17: Comparison of discriminating b–tagger variables in data and simulation: (a) the
number of muons per jet and (b) pT and (c) transverse momentum pT

rel with respect to the jet
axis of the most energetic muon in the jet, (d) the number of electrons per jet and (e) ET and (f)
pT

rel of the most energetic electron in the jet.



Appendix D

Distributions Concerning the
Single–Top Networks

D.1 Data–MC Comparison of Input Variables

Since the neural networks identifying single–top–quark events have been trained
using simulated events, it is crucial to verify that the distributions obtained by
a composition of signal and background models describe the distributions in ob-
served events correctly. The different physics processes are modeled as described
in section 5.3. Each process contributes a fraction corresponding to the respective
expected number of events quoted in table 5.2. To allow a detailed comparison of
the shapes of the distribution, the area of the modeled distribution is scaled to the
number of observed events.

The comparisons of the neural–network b–tagger, the reconstructed top–quark mass
Mℓνb, the invariant mass of the two jets, and the product of the lepton charge times
the pseudorapidity of the jet not assigned to the decay of the top quark Qℓ · ηlj have
already been shown in figure 7.7. The comparison of the rest of the input variables
introduced in section 7.1.3 can be found in figures D.1 to D.4. It can be seen that
the distributions obtained by the composite model describe the ones of observed
events well.

All those distributions as well as the comparisons of all distributions in all the
subdetectors, comparisons of some control variables, and comparisons in control
regions can be found in reference [127].
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Figure D.1: Data–MC comparison of input variables for the training of the neural networks used
to discriminate single–top–quark events: (a) the pseudorapidity of the leading jet j1, (b) the
pseudorapidity of the second–leading jet j2, (c) the sum of the pseudorapidities of the two jets
ηj1+ηj2, and (d) the difference between the pseudorapidities of the two jets ηj1−ηj2. The modeled
distributions are scaled to the number of observed events.
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Figure D.2: Data–MC comparison of input variables for the training of the neural networks used to
discriminate single–top–quark events: (a) the number of reconstructed secondary vertices, (b) the
transverse energy of the second–leading jet j2, (c) the transverse momentum of the tight lepton,
(d) the number of loose jets, (e) the sum of the pseudorapidities of the top quark and the light–
quark jet ηtop + ηlj, and (f) the difference between the pseudorapidity of the top quark and the
pseudorapidity of the jet not assigned to the top–quark decay ηtop−ηlj. The modeled distributions
are scaled to the number of observed events.
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Figure D.3: Data–MC comparison of input variables for the training of the neural networks used
to discriminate single–top–quark events: (a) HT =

∑

jets ET + pℓ
T + /ET where

∑

jets ET is the sum
of the transverse energies of the tight and loose jets, (b) the pseudorapidity of the reconstructed
W boson (see section 7.1.1), (c) the cosine of the polar angle in the top–quark rest frame between
the tight lepton and the jet not assigned to the top–quark decay, and (d) the cosine of the polar
angle between the tight lepton and the beam axis in the top–quark rest frame. The modeled
distributions are scaled to the number of observed events.
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Figure D.4: Data–MC comparison of input variables for the training of the neural networks used to
discriminate single–top–quark events, calculated by the kinematic fitter introduced in section 7.1.2:
the χ2 values of the four possible combinations of the objects to reconstruct the top quark: (a)
χ2

1, (b) χ2
2, (c) χ2

3, (d) χ2
4, and (e) the logarithm of the difference between the χ2 values of the

second–best combination and the best combination χ2
2ndbest − χ2

best. The modeled distributions
are scaled to the number of observed events.
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D.2 Correlations between Input Variables

During the preprocessing of the input variables, their correlations are determined
as outlined in section 3.1.2. To illustrate the correlations between the variables, the
correlation matrices of the three network trainings performed in the search for single
top–quark production are depicted in figure D.5. The correlation matrix of the input
variables for the combined network is shown in figure D.5(a), while the ones of the
separate search are depicted in figures D.5(b) and D.5(c), respectively. The axes are
labeled with numbers corresponding to the arbitrary order of the variables in the
training process. It must be noted that label number 1 corresponds to the target
value. That is why the numbering of the variables starts at 2. The key to break
down those numbers into the names of the considered variables can be found in
table D.5(d).
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Figure D.5: The correlation matrices of the input variables are shown for the (a) combined network,
(b) t–channel network, and fig:schanCorrelations s–channel network. In (d), the numbering of the
axis labels is broken down into the different variables. Since label number 1 corresponds to the
target, the numbering of the variables starts at 2.
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D.3 Systematic Uncertainties

The uncertainties affect the rate of predicted signal and background events as well
as the shape of the template histograms used in the fit to the observed data distri-
bution. Some effects cause only rate uncertainties, some only shape uncertainties,
but most of them affect both. The following sources of systematic uncertainties
are considered: the uncertainty on the jet energy corrections, the uncertainty in
modeling initial–state gluon radiation (ISR) and final–state gluon radiation (FSR),
the choice of the parameterization of the parton distribution functions (PDF) used
for the event simulation, the uncertainty in modeling the output of the neural–
network b–tagger, the uncertainty in the factorization and renormalization scale for
the simulation of W+heavy flavor processes, the choice of the Monte Carlo event
generator, the uncertainty in the event detection efficiency, the modeling of instru-
mental backgrounds, that is mistag events and non–W events, and the uncertainty
in the luminosity determination. The impact of these sources of uncertainties is
evaluated by altering the modeling of the corresponding processes or effects within
their uncertainties or by assigning a plausible alternative model. As a result, rel-
ative changes of the shifted template distributions are obtained, being exemplarily
illustrated by means of the template distributions utilized in the combined search.
Rate uncertainties are only determined for single-top and tt̄, quoted in table 7.5.
For details of the performed variations and further information, see section 7.3.
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Figure D.6: Shape variation due to the uncertainty on final–state radiation. The template dis-
tributions for (a) single–top–quark and (b) tt̄ events in the combined neural network analysis are
shown. The default distributions are compared to the shifted distributions where the simulation
was altered to produce either less or more final–state gluon radiation compared to the standard
setting [128].

The impact of the uncertainty in the modeling of ISR on the shape of the tem-
plate distributions has already been shown in figure 7.12, while the influence of the
modeling of FSR is depicted in figure D.6. Systematic changes of the shape of the
distributions induced by the parameterization of the PDF are obtained by combin-
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Figure D.7: Shape variation due to the choice of PDF parameterization. The template distributions
for (a) single–top–quark and (b) tt̄ events in the combined neural network analysis are shown.
The default distributions are compared to the shifted distributions obtained from the 20 pairs of
cteq6m eigenvectors [31].

ing the histograms achieved from the 20 pairs of cteq6m eigenvectors in such a way
that the largest deviation from the standard distribution is determined bin–by–bin,
leading to the variation of the output shape depicted in figure D.7. The influence
of the variation of the output of the neural–network b–tagger on the shape of the
template distributions is depicted in figure D.8. Figure D.9 illustrates the uncer-
tainty induced by the selection of a different factorization and renormalization scale
on the template histograms of W+heavy flavor events. The shape uncertainty due
to the choice of the version of the alpgen Monte Carlo program is illustrated in
figure D.10(a). The variations of the template shapes due to to the modeling of the
mistags and the non–W background models are shown in figures D.10(b) and D.11,
respectively.
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Figure D.8: Shape variation due to the uncertainty on the shape of the neural–network b–tagger.
The distributions of (a) single–top template, (b) tt̄ template, (c) b–like template, (d) c–like tem-
plate, and (e) non–W–like template utilized in the combined neural network analysis are shown.
The default distributions are compared to the shifted distributions obtained from the optimistic
and pessimistic scenarios introduced in section 6.4.1.
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Figure D.9: Shape variation due to a different choice of the factorization and renormalization scale.
The distributions of the (a) b–like and (b) c–like templates used in the combined neural network
analysis are shown. The default distributions are compared to the shifted distributions obtained
from events generated with a different choice of the factorization and renormalization scale.
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Figure D.10: Shape variation due to the choice of the utilized version of alpgen and the uncertainty
on the mistag modeling. (a) The b–like template distributions in the combined analysis are shown.
The default distribution is compared to the shifted distribution where alpgen version 2.0 was
used instead of the default version 1.3.3. (b) The c–like template distributions in the combined
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Übernahme des Korreferats, sondern auch dafür, dass er mich in den letzten Jahren
in meiner Arbeit sehr unterstützt hat. Die fachlichen Diskussionen mit ihm haben
mich sehr viel weitergebracht.

Ich möchte mich auch bei Herrn Professor Dr. Thomas Müller für die herzliche
Aufnahme in die Top–Gruppe bedanken. Ich weiß es sehr zu schätzen, dass er mich
stets sehr unterstützt hat.

Ein Dankeschön auch dafür, dass ich im Rahmen meiner Doktorarbeit nicht nur
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sphäre. Ich hätte mir keine bessere Umgebung für diese Arbeit wünschen können.
Ganz besonders gilt das für meine Zimmerkollegen, die meinen manchmal doch etwas
ausdrucksstarken Arbeitsstil (meist) klaglos ertragen haben.
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