Lockheed Martin's Systems-of-Systems Lunar Architecture Point-of-Departure Concept

CE&R BAA Open Forum CA-1 Midterm Briefing

30 November 2004

ARES

LOGRABEO MARTIN

ORBITEC

Contents

- Exploration Objective Decomposition and Relationship to POD Architecture
 - Guiding principles and the links between Mars and Moon exploration
 - Science, ISRU, and Testbed objective relationships to POD
 - POD Lunar campaign, affordability, and objective satisfaction
- Architecture Overview/Definition
 - POD architecture overview
 - POD comparison (LMC vs. OExS)
 - CONOPS definition/updates
 - Top-level development timelines
- System & Element Requirements
 - System definitions/updates
 - Functionality allocations, drivers, and sensitivities
- Interim Trade Studies and Analysis Results
 - Safety/human-rating, Lunar landing site, earth re-entry, propellant selection, staging location, reusability, ETO launch vehicles, CEV crew size/mission duration, advanced life support systems, ISRU O₂ production, surface transportation/science rovers, and communication/navigation
- Technology Requirements
- Exploration Programmatic and Technical Risk Assessment
- Recommendation Summary

Exploration Objective Decomposition and Relationships to POD Architecture

- Guiding principles
- Mars exploration approach
- Why-go-where on the Moon
- Science objectives
- ISRU objectives
- Testbed objectives
- Relationship of objectives to POD architecture
- POD Lunar campaign
- POD affordability
- POD objective satisfaction vs. time

Guiding Principles for Lunar Exploration

- Simultaneously address each of the Vision Objectives
 - Continuous testbed, science, and ISRU returns support program sustainability across the widest spectrum of stakeholders
 - Utilize synergistic combination of humans and robotics
 - Satisfy objectives in a safe and affordable manner
 - Enable extension to commercial activities in post-exploration era
- Start with Mars and work backwards
 - Mirror the exploration strategy likely for Mars
 - Lunar exploration testbed on critical path towards humans on Mars by 2030
 - Lunar testbed results required by at least 2025 to incorporate into Mars system developments (i.e., >5 years prior to sending humans to Mars)
- Answer the fundamental questions to determine the post-2025 future of exploration on Moon, Mars, and Beyond
 - Can humans live/work safely and effectively for long durations?
 - Can the promise of lunar ISRU be realized?
 - Is there a viable, long-term mission model?
 - Stimulus for permanent space infrastructure
 - Enables transition of government-sponsored to commercially- driven activities

Objective-driven approach maximizes exploration progress within constraints

Mars Exploration Approach

Of 153 candidate landing sites* identified for geochemistry/geology, exobiology, metrology, and seismology, 59% are near-equator, 35% in mid-latitudes, and 6% at poles

*World-wide survey by Arizona State University

- Mars robotic precursors (orbiters and landers) already leading the way
 - Pursuing water/life clues
 - Providing the global access to H20 ice at poles/near poles
 - Soon to be performing combined science, ISRU, engineering testbed missions
 - Improving rover duration and speed
- Human missions likely to use fixed, near-equatorial site for surface stays of 30-630 days
 - Near the most desirable sites
 - Low altitude to minimize entry/descent/landing difficulty
 - Enables incremental build-up
 - Most energy/mass efficient location
 - More favorable thermal environment (20°C to -140°C)
 - Safest approach
 - Best solar fluence

Fixed equatorial outpost approach to exploration high probability for Mars

Lunar Exploration – Why go where?

Polar (70°- 90°)

- 6% of surface area
- 5% of top sites (3/60*)
 - -High H concentrations but *questionable* H_20 *ice* (if not ice then H_2/O_2 extraction more difficult given dark/cold)
 - Terrain limited mostly to highlands; rich in Al and Ca/poor in FeO and TiO2
 - Craters as deep as 4km (Grand Canyon)
- Near-continuous sun <u>only</u> <u>on 5 km mountain tops</u>
 - Mild thermal variation where sun is continuous (-63 to -43°C); extreme cold in shadows (-223°C)
- 70-90+% communication connectivity to earth <u>only</u> <u>on 5 Km mountain tops</u>
- 10-45% delta-V penalty for anytime abort

Mid-latitudes (30°- 70°)

- 44% of surface area
- 26% of top sites (21/60*)
- Very similar to equatorial for terrain, illumination, etc.
- Most severe access limitations; 10- 55% delta-V penalty for anytime abort and/or access

Equatorial (+/-30°)

- 50% of total 28M km² surface area
- 69% of top science/ISRU sites (41/60*)
 - -All possible terrains
 - -All possible
 - resources available except H₂0 ice
- All types of terrain including both mares and highlands
- 14 days in sun followed by 14 days in dark
- Significant temperature swings; slightly larger than Mars (121°C to -159°C)
- 100% communication connectivity to earth
- Access via minimum delta-V; anytime abort without delta-V penalty

Human any-time, global access desirable but is it required to meet objectives?

Sockheed martin

*As defined by Lunar and Planetary Institute (1988)

Lunar Science Objectives

*Each objective may be addressed by one or more systems

- Science objectives can be accomplished at any time, in any sequence
 - Not on critical path to Mars or lunar commercialization
- Up to 80% of science may be accomplished by robotic systems
 - Non-human science not an architectural mass or cost driver
 - Up to the point that astronomical observatories remain proof of concept vs. operational systems
 - Moving forward with LRO ('08), LSI ('09), and Moonrise (Aitken Basin sample return in '10)
 - International participation with SMART 1 ('04), Lunar A ('05), and Selene ('06)
- Humans perform critical science functions but at significant cost
 - Global access/any time abort a major driver
- Synergistic with ISRU characterization

Global robotic support effectively addresses majority of science needs

Lunar ISRU Objectives

Ranking:	ISR	U A	٩p	lica	atio	n	Rankings					Re	
 High Medium Low Low High, High, Low 	Shielding/ building mat.	Propellant	Life support	Press. vessels	Mfg/parts	Energy	Tech readiness	Robotic appl.	Efficiency	Simplicity	Mission benefits	Mtrl availability	elative priority*
Regolith													1
O ₂ (regolith)													1
H ₂ (regolith)							▼		▼			V	2
$H_2/0_2$ (H_2O ice)							▼						1
C (regolith)							▼		▼				2
N ₂ (regolith)							▼		▼				4
Fiberglass/et al													2
Molded glass							▼						2
Simple ceramics							▼						2
Complex ceramics							▼			▼			4
Metallic Iron (CVD)							▼		•				2
Aluminum/Ti/etc.									▼				1
Silicon							▼						3
Solar cells									▼	▼		•	3
³ He											V		5

- Enabler for both human Mars exploration or permanent Lunar settlement/ commercialization
 - -Self-sufficiency potential well documented
 - Near-term challenge to demonstrate performance, reliability, and cost effectiveness
- Key architectural driver
 -Basing locations
 - -Power requirements
 - Mission durations (slow processes)
 - -Mass delivered to surface
 - -Robotics/automation
- Significant synergies
 - -Science and ISRU mapping/ characterization
 - -ISRU and Testbed activities (e.g., propellants, life support, *etc.*)

* CSM / CCACS

Potential game-changing capabilities warrant incremental demonstration

Exploration Testbed Objectives - Problem Space

Long-duration crew and equipment demonstrations necessary prior to Mars

Exploration Testbed Objectives

- A 'must' prior to taking next steps in human exploration
 - Sending humans to Mars
 - Initiating more permanent settlement/ commercialization
- Key architectural driver
 - -Mission sequence/ spiral definitions
 - -Mission durations
 - -Basing strategy
 - -Mass delivered to the surface
- Earth and ISS-based testing helpful but not sufficient
 - Moon provides best test-like-you-fly verification

* P=partial test, MR=most representative test, IS=In-space transit test, R=robotic test

Confidence available only through full-duration, integrated effects simulation

Relationships of Objectives to LMC's POD

Testbed and ISRU (vs. Science) are keys to most architecture decisions

LMC's POD Lunar Campaign/Spirals

Combined Spiral 2/3 approach addresses <u>all</u> objectives/enables future paths

POD Affordability

*Human exploration + RLEP less Government funds; no H&RT included to date

- Funding significantly constrained in early years
 - -HLV development starts in 2006
 - CEV testing accomplished on existing fleet of LVs
- Delaying 1st human mission to 2017/2018 satisfies 'go as you can pay' affordability constraint
 - Independent of POD
 - Driven by the 2014 milestone
- Sufficient funding available to support LMC's more aggressive approach to objective satisfaction
 - -7 years to incorporate testbed results prior to 1st Mars mission in 2030

POD all objectives in less time while remaining affordable

LMC POD Objective Satisfaction vs. Time

Continuous returns meet objectives, remain affordable, and ensure sustainability

Architecture Overview/Definition

- Assumptions and groundrules
- POD architecture overview
- POD architecture comparison to OExS POD
- CONOPS definition (transportation, surface operations)
- Top-level development timeline
- Alternatives still to be traded/evaluated

Assumptions and Groundrules (1 of 2)

- Develop balanced and sustainable exploration framework
 - Go beyond simply repeating Apollo fifty-years later
 - Apply lessons learned from Shuttle and ISS
 - Maximize amount of usable mass delivered to lunar surface
 - Maximize the payload/transportation system IMLEO ratio
 - Incrementally add to surface infrastructure with each mission
 - Provide continuous returns to address broadest spectrum of stakeholders
- Use combination of CAIV-driven solutions and spiral development to match scope, schedule, and risk to available budget profile
 - Yearly robotic missions start in 2008; yearly human missions including CEV in LEO NLT 2014, Moon between 2015-2020, and Mars NLT 2030
 - Deployment of capabilities sooner is highly desirable
 - Address all objectives and answer fundamental questions within 5 years of human return to the Moon (see objectives discussed earlier)
 - Invest in selective innovative, beneficial technologies
 - Technology at TRL 6 five years prior to IOC
 - Nuclear power acceptable
 - Address total life cycle cost equation at the very start

Assumptions and Groundrules (2 of 2)

- Simultaneously maximize crew safety and effectiveness
 - Satisfy NPR 8705.2a human rating guidelines
 - Two-failure tolerance, design for minimum risk, abort and/or safe haven during all mission phases
 - Maximize use of robotics/intelligent systems
 - Minimize crew size required for effective operations
 - Provide global access to Mars/Moon surface
 - Minimize the number of missions required to accomplish objectives (e.g., single rover can collect more samples and cover more miles in one year then six Apollo missions)
 - Deployment/returns occur day or night at any time during year
- Maximize extensibility/evolvability to Mars and Beyond
 - Use same exploration approach for both Moon and Mars
 - Provide open solutions to accommodate certain change
 - Right-size and right-time solutions (e.g., deliver long-term infrastructure elements only after decision is made to whether to stay or not)

Seeking balanced solution that is sustainable over the long run

POD Lunar Architecture Features (2018-2023)

POD Comparison

Key Arch	itecture Attribute	Assumed OExS POD	LMC POD		
Exploration approach		Expeditionary/transportation focused, limited testbed later	Balance of all objectives, testbed focus sooner vs. later		
Mission duration		4-98 days	4-500 days		
Staging lo	cation	LLO	Same		
Surface ad	cess	Global	Same		
Primary ba	ase location	Southern Pole	Fixed equatorial Outpost		
Reusability		None (TBR)	Same (TBR)		
HLV	ETO crew/cargo sep.	Yes	Yes		
	Size/#of launches	TBD/4+ per crewed mission	70mT*/2 per crewed mission (TBR)		
CEV	Crew size	4	Same		
	Functionality	Crew to/from LLO; TEI burn	Same except no TEI burn		
Transfer	Number of stages	1 (TBR)	2 with TLI, LOI, and TEI burns		
	Propellant types	LOX/LH2 or LOX/CH4 (?)	LOX/LH2 (common for all prop)		
LSAM	Functionality	Transportation and habitat	Transportation to fixed Outpost		
	Configuration	2 stage	2 stage (TBR)		
Cargo to surface/crewed mission		0.5mT	~7mT or short duration habitat		
Surface systems		Delayed until Spiral 3 post-2020	Predeploy w/1 st human mission		
Re-entry		Direct re-entry w/water recovery	Same		

*Option to launch crew on single stick version of same vehicle

Key differences all primarily relate to basic exploration approach

Transportation CONOPS

Maximum useable mass to lunar surface within available funding

Surface CONOPS

Continuous returns through robust human-robotic collaboration starting in '08

Top-level Deployment Timelines

Evolutionary incremental development manages risk and funding needs

System & Element Requirements

- System and element definitions
- Functional allocations
- Drivers/sensitivities

POD (2008-2023) Architectural Systems (1 of 2)

POD (2008-20230) Architectural Systems (2 of 2)

Basing

- Fixed Outpost
- -Landing site/equipment -Habitats

- -Laboratories
- -EVA and airlock (including robotic
- support elements) -ECLSS

-Communication/navigation

-Power (Nuclear primary,

regenerative back-up)

-Logistics support facilities/equipment

Alternate Remote Operations

- -Integrated habitat
- -Prepositioned propellants/supplies (TBR)
- -Prepositioned safe haven capabilities (TBR)

Surface Transportation

- Service vehicles
- ISRU support vehicles (TBR)

Testbed equipment/operations

Science equipment/operations

ISRU equipment/operations

SO LOCKHEED **MARTIN**

Ground Support Systems (GSS)

Certification & Training

Launch/ Abort

Recovery Operations

- Water and/or Land

Logistics Support/ Maintenance

Mission Operations

Planetary Surface Operations

Communications Operations (e.g., DSN)

Science/ Outreach Networks

Robotic Precursor Systems (RPS)

*May include comm 2nd payload

2004 – SMART 1 (ESA) 2005 – Lunar A (Japan) 2006 – Selene (Japan) 2008 – LRO I* 2009 – LSI

2010 – Moonrise* (New Frontiers) 2010 – Landing site survey/ environment characterization 2011 - Outpost engineering tests I 2012 – O₂ demonstration

 $2012 - O_2$ demonstration 2013 - Outpost engineering tests II

2014 – Regolith handling/shielding demo

2015 – Global robotic explorers I*

2016 – Metals extraction demo*

2017 – LRO II*

- 2018 O₂ prototype production
- 2019 Materials extraction demo I
- 2020 South pole H₂/O₂ extraction
- 2021 Global robotic explorers II*
- 2022 Materials extraction demo II
- 2023 Materials extraction demo III

xxx = options not included in initial POD
xxx = options continuing to be considered

Example Functional Allocations - CTS

Crew and cargo separation on most cost-effective launch solution

Example Functional Allocation Trade – TEI Delta-V in CEV vs. <u>Transfer Stage</u>

FOMs	Options for Lunar Exploration Approach					
	TEI separate stage	TEI integrated in CEV SM	TEI integrated with LOI			
Crew survivability	Smaller CEV has more LV options; added hazards	Heaviest CEV has fewest LV options	TEI always with CEV; smaller CEV has more LV options			
Reliability	Likely requires new (unproven) mid-sized engine development; TEI backs up LOI	Likely requires new (unproven) mid-sized engine development; TEI backs up LOI	Engines fired for LOI provides added confidence at TEI; common with proven RL-10 engines			
Contingencies	Some abort to orbit capability if launched with CEV	Some abort to orbit capability	If launched with CEV, large stage with higher T/W provides best abort to orbit			
Mass (mission effectiveness)	Smaller size results in decreased mass fraction	Allows significant cargo to surface	Slight increase in cargo by eliminating LSAM launch support; better mass fraction			
Extensibility	Smaller stage available for wide variety of future missions/architectures	Size and integration in CEV makes it inflexible to lunar architecture variations	Common with stages used by commercial;DOD; adjusts to lunar architecture variations			
Affordability	Additional NRE, possible new engine development, additional mgt costs	Likely to require new mid- size engine development	Fewest stages; engine, tanks, and propellants common with ETO upper stage			
Development risk	New development; potential to share descent stage development	High-risk that CEV will be continually perturbed by fluctuations in TEI delta-V and mass requirements	Minimum given common design and <u>CEV decoupling;</u> requires long-term cryo storage for extended mission			

Decoupling TEI simplifies the CEV and reduces development risk

Two Example Sensitivities Relative to Space Transportation Factors Impact on IMLEO

* Sensitivities are for POD LLO solution and would change for L1, e.g., 8.5:1 for ascent changes to ~14:1 and 4.2:1 for CEV changes to ~3.3:1. Breakeven mass point for LLO and L1 solutions is where CEV mass = ~ 5 x total LSAM mass.

Understanding transportation sensitivities key to optimizing solution space

Key Trades and Analyses Results

- Architecture-level
 - -Safety/human-rating analyses
 - Anytime abort-to-earth
 - -Lunar surface basing location
 - -Earth re-entry/landing
- CTS
 - -In-space propulsion (i.e., path-to-moon)
 - Propellant types, staging location, reusability, LSAM configuration
 - -ETO launch vehicle trade
 - -CEV size/mission duration
- Surface Systems
 - -Advanced life support systems
 - -ISRU O₂ production
 - -Rover studies
- In-space Support Systems
 - -Communication/navigation

Safety/Human-Rating – Unfinished Business

Architecture	ETO/		Lupor	Lupor	Lupor		Po ontrul	
applicability	LEO	LLO	Descent	Surface	Ascent	Earth	recovery	Concerns
# of hazards (out of 160)	94	64	45	38	41	51	53	1)EMSD-RQ-0013 CTS0405G requires unmanned rescue
Mitigations/ responses								to LLO and surface. • Requires either launch
 Design for minimum risk 								on demand or CEV and LSAM on-orbit storage
 Crew I/f and work load 								2)NPR 8705.2a App D
- Testing	3		3		3		<mark>3</mark>	safe haven or rescue
- Design margins	۲						۲	during all phases
- Failure tolerance	<mark>_</mark> 5							 Same as #1 plus need solutions for re-entry
 P(crew survival) 								3) Ability to adequate test new LVs and propulsion stages
- Repair								is a concern
- Abort*				_ 4	• 2	•		4) CTS0110G requires CTS
- Escape	- E	scape sys	stems are no	t used throu	ughout the	architect	ture →	anytime abort from surface;
- Safe haven							9	driver depending on
- Rescue								Surface destinations
<u>a</u>	1,2	1,2	1,2	1,2	2	2		failure tolerance; TBD if

items with reasonable solutions based on contractor interpretations; need gov't concurrence *Required from 'launch pad to lunar surface' per ESMD-RQ-0013 CTS0110G

Architecture selection dominated by 'interpretations' of safety concerns

this is acceptable

Anytime Abort-to-Earth*

~ Worst case anytime abort-to-earth impact for mid-latitude and near-polar surface sites

* 1) Return from lunar orbit/surface independent of orbital alignment is required by CTS0110G and was a major driver in POD trade studies.
2) NPR 8705.2a calls for abort, safe haven, or rescue during any mission phase. **Recommendations:**

- <u>Abort-to-surface safe haven is first</u>
 <u>option</u>
 - Safe haven approach proven acceptable in Antarctica Station
 - Avoids significantly penalizing each mission
 - Avoids substantial IMLEO/lost opportunity cost impacts
 - Can arrive at safe haven within
 <3 hrs
- Utilize anytime abort-to-Earth <u>from</u> equatorial region with no delta-V <u>impact</u> if surface safe haven not sufficient
- Implement on-orbit 'lifeboats' concepts if rescue is required
 - May not be needed for equatorial Outpost
 - Could be deployed prior to undertaking non-equatorial missions

Anytime abort-to-earth may be a costly design solution

Example Alternative Approach to Anytime Abort From Any Surface Location

- Provides true anytime abort from any lunar surface location regardless of latitude

 Eliminates any return restrictions but adds 2 days of travel time

 Slight modifications
 - required
 - Requires slightly more robust Ascent Stage
 - Carries 4 day habitat
 - Adds delta-V to get to L1
 - -Minor TEI increases to move CEV to L1
- 12mT total IMLEO impact (~50% of worst case LLO abortanytime-to-earth)

If anytime abort is a requirement, is there a better way?

Primary Base Location - Equatorial Site

- Most Mars-like environment/exploration strategy
- Maximum mass to surface; any orbit accessibility
- Maximum safety
 - -Anytime abort with no added delta-V
 - -Safe haven/abort option from global expeditions
 - -Large mares excellent for landing sites
- Abundant ISRU possibilities
 - -Regolith provides for efficient O₂ production
 - -Ilmenite mining sites (H and Ti)
 - -Pyroclastic deposits (Fe, Mg, Cu, Pb, Cd, Te)
 - -KREEP minerals for industry, agriculture, etc.
 - Anorthosite (Al metals or rocket fuel; fiberglass, glass, and ceramic products)
 - -Calcium metal (conductors, easy to machine)
- Location for majority of priority science (69% of 61 top science sites within +/- 30°)
 - -Most primitive lunar rocks
 - -Unusual volcanic features such as vents
 - -Volatile history (H, ³He) and traps (e.g., dark halo craters)
 - -Crater ejecta history (Fe, Mg, Ti in mare basalts)
 - -Limb sites for maintaining far-side observatories
 - Equatorial sites enhance interferometric imaging (i.e., celestial objects never rise or set at poles)
- Full-sky viewing w/100% Earth comm coverage

Equatorial e.g., Mare Smythii (1.7°N/85.8°W)

- Polar site chases potential Hydrogen but . . . – Uncertain existence
 - Extraction in extreme terrain/cold
 - May add years to exploration timeline
- Crew locations likely 10-100's km away from potential H deposits, astronomy cold traps, and Aitken Basin (i.e., robotics required)
- Near-constant illumination but . . .
 - Only on mountain tops
 - Low grazing angles unfriendly to crew vision, shadows, energy efficiency
- Only 70-90% comm w/o satellites

Primary Base Location – Equatorial Site

FOMs	Options for Lunar Exploration Approach	
	South Pole (e.g., Malapert Mountain)	Equatorial (e.g., Mare Smythii)
Safety/Mission Success	Very treacherous terrain, no anytime abort without significant mass impacts	Minimizes hazards; lunar surface first option for safe haven; anytime abort w/o penalty
Mission Effectiv	eness	
Testbed	Conditions are either milder or worse then Mars	Location, environment, and exploration strategy most representative of Mars
Science	Near <5% of top sites; Aitken Basin distance/size requires robotics to explore regardless of base location	Access to 69% of top sites and all terrain types; preferred for some astronomical observations
ISRU	High H concentrations but uncertain ice; other resources limited	Access to all resources except potential H ₂ O; O ₂ plentiful w/easier extraction/processing
Mass	Significant impact of anytime access and abort	Maximum mass to surface; no anytime abort penalty
Extensibility	Milder continuous sun location may be best for permanent lunar settlement	More mars-like conditions make system/technology more extensible to Mars
Affordability	Added \$ for comm, extreme cold/dark conditions, throwaway expeditions	Lowest cost solution for equal scope
Sustainability	Interesting concept; extreme condi- tions and/or no ice add yrs to timeline	Capable of providing most returns for \$; Apollo-like issue to contend with
Development risk	Possible to mitigate day/night issue but only in very selected sites	Must develop systems to contend with lunar day/night

Site selection close given unknowns: Equatorial site has more positives

Landing Site – <u>Water</u> vs. Land

Water recovery is the initial preferred solution

- Requires simplest/ lowest risk CEV design (L/D<0.5)
- Single zone covers all seasonal/daily planned arrivals
- Slight increase in ops costs offset by lower design CEV costs
- Minimizes over flight/ stage disposal concerns
- Maintains potential for passive abort
- Water landing required for abort operations
- Flight rate does not warrant reusability (TBR)
- Avoids ~260m/s delta-V addition to TEI for polar earth return trajectory

Initial results indicate water landing is preferred approach (TBR)

Path-to-Moon – Interim Summary Results

Gross mission costs for expendable LSAM solutions are lowest at LLO but L1 only 3% higher

Expendable LLO optimum but reusability and L1 surprisingly competitive

Path-to-Moon – <u>LLO</u> vs. L1 Mission Mass

Mass differentials still favor LLO path

Path-to-Moon – IMLEO and Costs of Reusable vs. Expendable LSAM

Crewed missions assuming LOX/LH2 (454 Isp)

Recurring cost savings of four LSAMs makes reusable LSAMs cost competitive with expendable LSAMs

Reusable LLO solution may make sense from mass/cost perspective*

* Interim analyses; final recommendation must consider other factors (e.g., safety, operations, etc.)

ETO Launch – Current Trade Space

Trade to be expanded to include emerging commercial ETO launch options

ETO Launch – 25-70mT Evolved ELV

Family 1 or 1b: Existing/modified ELV slightly lower cost during the CEV development timeframe

70mT-class ELV family is most affordable, long-term solution for exploration

ETO Launch – 25-70mT Evolved ELV (TBR)

Uncertainties in accurately/consistently measuring safety across NASA/industry

Crew Size and Mission Duration Impacts to CEV and IMLEO – <u>4</u> vs. 6

- 4 crew optimal number for lunar exploration
 - -Ensures safe operations and efficient exploration
 - -Small increase in safety and mission effectiveness provided do not warrant the significant disadvantages of 6
 - 25% increase in CEV mass and cost
 - ~25-40mT increase in IMLEO corresponding to a lost opportunity cost of >\$300M/mission
 - Higher development risk
 - Requirements for larger crew HLV
- Relatively small sensitivity to mission duration could support potential on-orbit contingency/rescue scenarios if required

IMLEO and affordability very sensitive to crew size

Advance Life Support Systems – Open vs. <u>Partial Closure</u> vs. Full Closure

Long-duration goals may outweigh near-term suboptimization

ISRU O₂ Production – Demonstration Scale

NASA illustration of notional production -class lunar mining effort

- O₂ produced from equatorial ironrich mare regolith (either ilmenite-rich or pyroclastic glass)
- Utilizes fluidized bed reactor using hydrogen reduction

Incremental capability demos provide path to potential self-sufficiency

Surface Transportation/Rover - Trade Space

- Human exploration depends on expanding the capability and range of surface transportation; both human and robotic
 - -Far greater range and mobility
 - -Larger payloads
 - -Multi-functional tasking
 - -Day/night operations
 - -Telerobotic/autonomous functionality
- Investigating modular approaches to add functions over time and be customizable for different roles on site
 - One-sizes-fits-all not feasible technically
 - Unique design for each not affordable
- Crew safety/rescue is the critical issue to allow humans to move beyond landing site

Investigating more affordable and safe methods for global reach

Example Exploration Rovers Capabilities

Global exploration of all top 60 science sites accomplished with 3 rovers within 12 to 24 months (each finishing up at equatorial Outpost to deliver samples)

More science on 1st crewed mission than all of Apollo expeditions

Communications/Navigation – Direct w/Minisats

Note: (x%) = % lunar coverage for near-side (NS) and far-side (FS)

communications augmented by constellation of narrowband minisats is POD (Option 7) – Highest benefit/\$

Direct wideband earth-moon

- Minimum upfront costs consistent with funding profile
- Sufficient for near-term science and testbed activities
- Provides key safety net to CEV on the far-side
- Option 8 best solution for polar coverage (100% coverage available by adding 2 more satellites at L2)
- Option 5 provides greater coverage/more precise navigation available if the decision is made to remain at the moon

POD comm/nav solution best fit with funding and near-term lunar objectives

Remaining Trades/Analyses Focus

- Safety/Human-rating Analyses
 - Continue efforts to analyze NPR 8705.2a implications on architecture including expansion of concepts for anytime abort, safe haven, and/or rescue
- ETO LV Trade
 - Finalize all FOMs and expand to include commercial launch alternatives
- In-Space Propulsion Trade
 - Validate propellant selections and staging location
 - Optimization of LSAM configuration and number of stages
- Alternative Mission Models
 - Further decomposition of testbed requirements to earth, ISS, space, and lunar surface application
 - Further optimization of systems scope and timing with funding
- Expand reusability analyses
 - LSAM, transfer stages, CEV (CM, SM)

Continuing further efforts to refine/validate initial results across broad spectrum

Technology Requirements

POD High Payoff Technologies (2008-2023)

- Intelligent systems/robotics*
 - Outpost emplacement, science rovers, ISRU emplacement/operations, humantended operations
- High-ISP cryogenic propulsion*
 - Long-term storage, throttleability, reliability, in-space handling, LOX/H2 and/or LOX/CH4 engines, ISRU propellant production
- On-orbit automated rendezvous and docking*
- Counter measures to long duration space exposure of crew
- Nuclear power for lunar surface
- ISRU for propellant production, life support, and manufacturing
 - Extraction, processing, manufacturing, storage, transport
- Advanced life support systems (maximum resource closure)
- Heavy lift launch vehicle
 - IVHM, engine-out, wide body cryogenic upper stage
- Software (autonomy, reconfigurability, reliability)
- In-vehicle activities (IVAs) vs. EVAs
- Advanced mission operations and life cycle support capabilities
 - Automation, lights-out operations, integrated logistics/maintenance

*Fundamental to solution; significant impact if not available

POD assumes continued development of critical beneficial technologies

Example Technology Roadmap – CEV System-level

Development efforts effectively leverage existing and emerging technology

Future High Payoff Technologies

Category	Enhanced capabilities	Information to enable implementation
In-space communication/ navigation	Orbiting satellite constellation to provide 100% wideband communications and GPS-like navigation precision	Decision to permanently settle and/or commercialize the moon
In-space refueling/ servicing	Provide in-space refueling/servicing of CEV, LSAM, and transfer stages via either earth or lunar-based propellants	 Decision on permanent settlement Incorporation of reusable systems Long-duration cryogenic storage ISRU propellant production Proven human-robotic collaboration
Production- class ISRU systems	 Production-class ISRU systems In-situ construction In-situ commercial mfg Etc. 	 Decision on permanent settlement Proven cost effective/reliable ISRU processes ISRU processes scaled to production-class Viable business case
Reusable systems	Reusable CEV, LSAM, and transfer stages (possibly transition to SEP or NEP vs. chemical propulsion)	 Decision on permanent settlement Proven ISRU and in-space refueling/servicing Robust exploration and/or commercial mission model to warrant investments
Commercial lunar operations	Transition from exploration Outpost to long-term settlement including commercial operations, tourism, etc.	 Decision on permanent settlement Government policies to permit transition of capabilities to private sector Viable business case to consistent with risks
Super HLV	Extend HLV towards 135mT class to support significant mass to both Moon and Mars	 Decision on permanent settlement Decision to continue human exploration to Mars

Desirable capabilities for next spirals depending on decision for post-2023

Exploration/Programmatic and Technical Risk Assessment

Top Risks/Example Mitigation Steps (1 of 2)

Risk	Type *	POD unique	Example mitigation strategies
Changing priorities/ programmatics	P, C, S	No	Continuous mission returns; open solutions; spiral development; mission success; CAIV-based decision making; implement ISS/Shuttle lessons learned
Human- rating/safety considerations	P, T, C, S	No	Government consensus on safety requirements; Architecture-level human rating features (e.g., SPE safe havens, back-up life support); robotics; minimum in-space infrastructure
Long duration space impacts to crew	P, T, C, S	No	Early research on Earth and ISS; precursor robotic missions to characterize environments/mitigation strategies; intelligent support/ advanced life support systems; full duration Mars system/crew demo
Intelligent/ robotic system maturity	T, C, S	Some what	Invest in new capabilities early; incrementally demonstrate in precursor robotic missions (e.g., Hubble servicing); leverage extensive commercial and DoD efforts
"Power rich" surface system maturity	P, T, C, S	No	Leverage Project Prometheus efforts into surface systems; develop advanced regenerative systems capable of supplying power and supporting ECLSS in parallel
High-ISP propulsion system maturity	T, C, S	Some what	Next cryogenic systems derived from today's proven technologies, develop long-term storage and in space transfer; invest in parallel in advanced 'game changing' technologies including ISRU or tethers

54

Top Risks/Example Mitigation Steps (2 of 2)

Risk	Type *	POD unique	Example mitigation strategies
Historically high ops cost for crewed missions	P, T, C, S	No	Implement ISS/Shuttle lessons learned to reduce logistics train and 'standing army'; implement 'man-tended' ops; maximize autonomous functionality; leverage low cost ops from robotic missions in combination with COTS/standards
Current mission model does not warrant reusability investments	P, T, C, S	Νο	Maximize commonality at subsystem/component levels; selective reusability where cost effective (e.g., surface systems); delay full reusability into later spiral when more robust mission model and lunar ISRU may support (open system designs upfront minimize the impact of later spiral insertion)
Total cost/ mass of new ISRU capabilities	P, T, C, S	Some what	Demonstrate ISRU concepts/technology in early spirals starting with robotic precursor missions; implement small scale pilots during initial spiral; delay large scale commitments (e.g., in space fuel depots) until next spiral
Low cost/safe ETO launch capacity	P, T, C, S	Νο	Develop HLVs ranging up to at least 70 mT class to minimize # of launches; minimize mass required to lunar surface; seek self sufficiency via use of in space resources and bioregenerative life systems; demonstrate routine autonomous docking/assembly; develop high ISP propulsion

* P=programmatic, T=technical, C=cost, S=schedule

Risks mitigated by our baseline features and future development efforts

Recommendation Summary

- Reconsider exploration strategy, definition of spirals, and mission durations
 - Focus on objective-driven solutions
 - Balanced approach (testbed-focused) can be affordable
- Reconsider requirements for global access and preferred landing site
 - Equatorial location more effective solution given <u>all</u> considerations
- Convene Government/Contractor Safety Working Group to better understand human rating requirements/evaluation methods
 - Driver for ETO LV selection
 - Clarify anytime abort-to-earth and rescue requirements that are key to many CEV and architectural-level decisions
- Continue to consider several aspects of architecture, e.g.,
 - Reusability, safety alternatives, fuel alternatives, and early HLV development
- Consider long-term cryogenic propulsion/storage and nuclear surface power technology developments a top priority for lunar architecture

Seeking the sustainable approach that ensures journey ends at destination

