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Abstract
This work introduces a first proposal on how to use
semiotics in order to improve software engineering
methods, when intelligent autonomous systems are
targeted. First we investigate the current flaws in
software engineering, concerning intelligent
autonomous systems. Then we propose a knowledge
taxonomy, based on semiotic ideas, aiming a tool to
understand the information domain of intelligent
autonomous systems. Further, we illustrate on how to
use the notion of knowledge types during the
development of a simple intelligent autonomous
system, emphasizing the relationship between the
described types of knowledge aiming at the
understanding on how they are organized into an
intelligent autonomous system. After that we review
the idea of generalized subsistence machine (GSM)
proposed by Meystel as a possible tool (not the
unique nor the best one) to represent the information
domain of intelligent autonomous systems. Finally, it
is shown how both ideas might be used in the
requirement analysis step of any software
engineering method when an intelligent autonomous
system is targeted. As a conclusion, we discuss the
future works and trends of semiotic intelligent
autonomous systems engineering.

Keywords: artificial intelligence, semiotics, artificial
life, autonomous systems, software engineering,
UML, knowledge unit, knowledge space, knowledge
taxonomy.

1 Introduction
During the early years of the computer era (1950 to
around of 1965), software development was an art
that was virtually unmanageable. There was very few
systematic software development methods and they
used to be very specific and with a limited
distribution. Software design, by this time, was an
implicit process of one’s head, and documentation
was often nonexistent [Pre92]. As soon as general-
purpose hardware became a commonplace and
multiprogramming and multi-user systems were
introduced, the second computer era had started
(around mid-60’s to the late 1970). Many other new
and powerful concepts, like real-time computing and
database, had been introduced. The complexity of the

applications and the large scale in which they started
to be sold introduced a dark cloud on the horizon: the
software maintenance. This fact fired the software
crisis that started the third computer era (late 70’s to
late 80’s). This era introduced many software
engineering paradigms and tools. Now, with the
appearance of objected-oriented paradigm, powerful
desktop computers, Internet, multimedia and artificial
intelligence (AI), we are living the fourth computer
era.

Since the beginning of the computer science artificial
intelligence was an aspiration. In fact, the wish for
intelligent machines came before the idea of
computers, as they are today (an approximation to
Turing machines). AI techniques and methods have
been emerging and getting better since early 60’s
when the mathematical logic was first applied to
achieve artificial intelligence and an AI sub-field has
emerged: the autonomous intelligent systems. This
field emphasized the use of AI techniques applied to
autonomous systems, i.e., systems capable of taking
decisions in an autonomous way. Nowadays we have
many powerful theories, methods and paradigms
related to AI but, unfortunately, we still lack of
systematic AI systems development methods able to
provide a formal way to fully understand the
knowledge processing and communication inside
them. Additionally, AI researchers and engineers
have another problem: current software
representation models are often inadequate for
autonomous systems. Due to the fact that, for most of
autonomous systems, it is not possible to
predetermine all possible states, modeling tools based
on finite state automata theory, e.g. state charts and
Petri nets, become inadequate. This problem is
especially important in the development of evolutive
autonomous systems. In this case not only the
representation models are inadequate. Analysis and
design paradigms, e.g. objected oriented, lacks
concepts that allows dynamic data structures
definition as well as a way to formally deal with
evolutive functions and methods (e.g. genetic
programming).

This paper introduces a proposal for an approach to
autonomous system engineering based on semiotics.



2 Aiming a good information domain
model

Any computational system is a dynamic system that
can be modeled by a Turing machine. Humans have
developed, though, high level languages and
engineering methods to make the development of
complex systems possible and affordable. Any
software engineering method can be divided into
three parts: Analysis; Design and Construction. The
analysis step intends a good problem understanding
for consistent following steps. The quality,
maintenance and expandability of the software are
grounded in this step. Anywise, this step can also be
divided into two other ones: Requirement Analysis
and Domain Analysis. The requirement analysis aims
at understanding the problem scope and the domain
analysis aims for the identification and partition of
software roles and tasks. To help us understand, let’s
consider an analogy [Lar98]: a business organization.
If the software engineering were a business
organization, the requirement analysis would ask:
“what are the business concepts (sale, employee, etc)
and processes (e.g. making sales, paying employees,
etc…)?” In the same way, the domain analysis would
ask: “what are the employee roles?” The domain
analysis builds a conceptual model that is not a
description of software components; it represents
concepts in the real-world problem domain focusing
in data processing aspects (information flow,
information structure, information content). This
problem domain with this focus is called
“information domain”.

An autonomous intelligent system (IS) can also be
seen as a set of concepts and processes aiming for an
adequate information treatment and behavior
generation. Although we may use current software
engineering methods to focus on the information
domain, in this case they do not provide a formal way
to understand the knowledge transforming and
communication needed by any autonomous IS. In
other words, in this case, current software
engineering methods still lack of an adequate
methodology for knowledge representation. The
appropriate understanding of information domain is
important to achieve a good allocation of information
transforming methods into each system module. The
lack of such methodology may result in systems that
will be more complicated, will need more time to be
developed and also get the risk of becoming
unmanageable as they grow in complexity. The use
of software engineering techniques is aimed here as a
way of getting those systems manageable and

affordable. The lack of an adequate information
structure may lead to difficulties in the use of
multiresolutional approaches (what is sometimes vital
concerning intelligent autonomous systems) and in
the system scalability, understandability and
maintenance. All those reasons encouraged us to
propose new techniques that seem to be more
adequate when intelligent autonomous systems are
concerned. These techniques explore the semiotic
nature of knowledge and its use in building intelligent
autonomous systems. In next section we present a
knowledge taxonomy based on C.S.Peirce’s and
Morris’ semiotics and how it can be used aiming for a
good information domain model.

3 A knowledge taxonomy
Peirce’s semiotics introduced a signical taxonomy,
where different kinds of signs (e.g. rhemes, dicents,
arguments, icons, indexes, symbols, qualisigns,
sinsigns, legisigns) addressing different
characteristics of its structure and signic function
were proposed. From Peirce’s taxonomy, Gudwin
[Gud96] derived a taxonomy of types of knowledge,
where each type of knowledge addresses a different
way on that phenomena from the world can be
modeled. This taxonomy can be summarized in
Figure 1 where: R means Rhematic; D means Dicent;
Ic means iconic; Ob means object; Sp means specific;
G means generic; Sy means symbolic; In means
indexical; Se means sensorial; Oc means occurrence.
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Figure 1 - Knowledge taxonomy

All arrows refer to argumentative knowledge (both
analytic and synthetic). From this point forward, we
will use the Figure 1 notation between brackets to
specify the different kinds of knowledge. For
example, {RIcSeG} means a rhematic iconic
sensorial generic knowledge.



In this taxonomy a knowledge is first classified
according to its functionality (designative, apraisive,
prescriptive) and to its structure (rhematic, dicent). As
we will see, argumentative knowledge is a special
case and it is both a functional and a structural. Here
we will present the structural classification before
discussing about the functional one.

3.1 Rhematic knowledge

A rhematic ({R}) knowledge is a representation of
environmental phenomena like sensorial experiences,
objects and events. It is a term directly related to
perceptual data. A color is an example of a sensorial
experience that is a rhematic knowledge. The
rhematic knowledge can be represented by a name
(rhematic symbolic - {RSy}), an icon (rhematic
iconic - {RIc}) or an index (rhematic indexical -
{RIn}). A {RIc} knowledge is a direct representation
of the phenomenon that it represents. A {RSy}
knowledge is a name that refers the phenomenon. A
{RIn} knowledge is an indirect reference to the
phenomenon.

The {RIc} knowledge can be divided into three
different classes: sensorial - {RIcSe}; object -
{RIcOb}; occurrence - {RIcOc}. Those three
knowledges can be divided into two classes: specific
(Sp) and generic (G). The {RIcSe} knowledge is a
sensorial information like an image or a temperature
sensor output. A {RIcSeSp} knowledge is a
particular instance of a sensorial pattern. A {RIcSeG}
knowledge is a generic knowledge of all time
occurrences of some sensorial input. The knowledge
that the outside temperature is 28 degrees Celsius is a
specific sensorial knowledge but the knowledge of
what is a high temperature is a generic sensorial
knowledge.

The {RIcO} knowledge is the knowledge related to a
real world object (existent or nonexistent). The
{RIcOSp} knowledge is the knowledge of a specific
occurrence of a specific object. It assumes an
existence of an object model. This model is a
{RIcOG} knowledge.

The {RIcOc} knowledge is the knowledge related to
environment and objects attributes and events, e.g. a
color of an object, an object creation or destruction,
an action, etc. The {RIcOcSp} knowledge is related
to a specific object or event, e.g. the knowledge that a
specific car is red. The {RIcOcG} knowledge is
related to a class of objects of events, e.g. the
knowledge that stars shine at night.

3.2 Dicent knowledge

The dicent ({D}) knowledge is a proposition. The
difference of a proposition and a term is that the
proposition has a truth-value associated with it.
Usually, this truth-value represents the belief of the
proposition and it can vary from false to true using a
multivalored logic or not (e.g. fuzzy logic).

A proposition can be a term or a set of terms or other
propositions linked with logical connectives.
Examples: the knowledge that “A” is true; the
knowledge that “A∧B” is false; the knowledge that
“IF A∧B THEN C”.

A dicent knowledge can be iconic ({DIc}) or
symbolic ({DSy}). The {DSy} knowledge is a name
({RSy}) that has a truth-value, e.g., a label of the first
order logic. The {DIc} knowledge is not only a direct
representation of the environment phenomenon
({RIc} terms) but also a measure of the belief of this
phenomenon occurrence.

3.3 Designative knowledge

Until now it was presented the structural
classification of the knowledge and now we will start
discussing the functional one. The first one is the
designative knowledge. It is employed to represent
the world. An alive organism usually initiates its life
with almost none designative knowledge.

A designative knowledge can be at the same time
rhematic and designative as depicted in Figure 1.

3.4 Apraisive knowledge

Apraisive knowledge is used to make a judgment
according to some objective. In an alive system this
objective can be innate or learned. In this case the
apraisive knowledge can be, for example, love, hate,
pain, pleasure, desire, etc… An apraisive knowledge
is usually classified as rhematic iconic.

3.5 Prescriptive knowledge

Prescriptive knowledge is used to plan, predict and
actuate in the real world through actuators. In the
same manner of apraisive knowledge the prescriptive
knowledge is usually classified as rhematic iconic.

3.6 Argumentative knowledge

Before introducing the argumentative knowledge it is
necessary to introduce the concepts of knowledge
unit and knowledge space. A knowledge unit is an
atomic structure of information carrying some
meaning, i.e. modeling at a particular level of
resolution, a phenomenon from the world. A
knowledge space is a space that stores knowledge
units. In this context, only the structural knowledge



taxonomy is relevant because the concepts of
knowledge unit and space are related only to
knowledge’s structure, not its functional purpose.

Argumentative knowledge is related to knowledge
processing and transformation. It may be seen as an
algorithm that creates or transforms knowledge units
in a knowledge space. It is both a structural and
functional classification. It is structural in the sense
that it is a knowledge unit like any rhematic or dicent
knowledge but its structure holds a program code
instead of data. It is functional because it has an
explicit functional role. A good metaphor for
understanding what an argumentative knowledge is,
is the representation of machine instructions within a
computer memory. Those instructions can be seen
both as data (a sequence of bytes) and code
(processor instructions). In the same way,
argumentative knowledge is both data (structure) and
code (process).

The argumentative knowledge ({Ar}) can be
synthetic ({ArSt}) or analytic ({ArAn}). An {ArAn}
knowledge unit is like a piece of code that creates
new knowledge units that does not contain any new
information - it only turns explicit an information that
was implicit in the knowledge space. In other words,
it only performs an “analysis” of existing knowledge
units, making explicit something that was modeled
into a more compact form. The most important
{ArAn} is the “modus ponens”. Different from the
{ArAn}, the {ArSt} knowledge creates knowledge
units that contain new information. In other words, it
synthesizes new knowledge content. There are two
kinds of {ArSt}: inductive ({ArStId}) and abductive
({ArStAb}). The {ArStId} knowledge makes small
modifications in the premises knowledge units to
produce a new one. In this sense, one can say that it is
a constructive argument. One example of {ArStId} is
the generalization. The {ArStAb} selects candidate
units as true or false (at any degree) according to the
preexistent knowledge units in the knowledge space.
The candidate units can be generated either by an
{ArStId} knowledge or by any random method.
Different of the {ArStId} knowledge, it is a
destructive argument.

4 An information domain partition
During the requirement analysis step of any software
engineering method, our goal is to outline the scope
of the system. We do this by finding its restrictions,
objectives, inputs and outputs. After that, in the
domain analysis, an information domain model is
built focusing on “what” not on “how” [Pre91]. In the

semiotic point of view, the model should make clear
the classification and distribution of all knowledge
units of the system except the argumentative ones.

The knowledge taxonomy previously presented can
be used to help us understand the information domain
of the system. This approach may help us achieve
better distributed and more representative models.
Classifying the inputs, outputs, objectives and
restrictions is the first step to achieve a good
information domain model. As we said before, this
classification leads to a better understanding of the
information domain. At this step the focus should be
on the information structure, not on the information
functionality. Aiming a better understanding on how
the information can be classified, lets consider the
Terzopoulos’ artificial fishes (Figure 2) as a case of
study [Ter94]. This example is very adequate because
it is a simple autonomous system in the information
domain point of view.
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Figure 2 - Artificial fish model

The artificial fishes have innate knowledge units that
determines whether or not it is male or female,
predator or prey, if it likes schooling or not, if it likes
brightness or darkness, cold or warmth, and so forth.
Using the knowledge taxonomy we can say that these
knowledge units are apraisive, more specifically
{RIc}. Other apraisive knowledge units present in the
artificial fishes model are the mental state variables:
hunger (H), libido (L) and fear (F). Note that the
mechanism used to calculate them is due to
argumentative knowledge units. The behavior of an
artificial fish is generated using intention generation
and behavior generation modules based on
predefined rules. Those rules correspond to
prescriptive knowledge units ({RIc}). The artificial
fishes learn how to coordinate their actuator to
produce a coherent movement. This knowledge is
prescriptive too.

Once understood the information structure, it is
possible to understand the information functionality.
At this point we will recall the general subsistence



machine (GSM) concept. Meystel [Mey96] has
proposed the GSM architecture as “a system which is
unified by a goal to exist as an entity. In pursuit of
this goal, GSM can perform tasks which has been
developed internally or submitted externally”. The
GSM architecture is very adequate to autonomous
systems modeling but it would be naive to imagine
that it is the only or the best architecture. In this work,
the GSM structure is adopted due to the fact that it is
generic and promising. Any other model can be used
instead of the GSM. For that, it is only necessary to
understand the functionality and information
distribution of such model in the semiotic point of
view. The GSM architecture can be seen in the
Figure 3.
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Figure 3 - Multiresolutional GSM structure

The GSM modules are perception (P), world model
(WM), value judgement (VJ), behavior generation
(BG), “S” means sensors, “W” means world and “A”
means actuators. Any of the GSM modules can be
regarded as GSM too (embedded GSM).

In a first glance, this definition seems to be very
adequate for autonomous agents and alike but not for
others IS as, for example, medical diagnosis expert
systems. Although, it is easy to see that GSM
structure bears for all intelligent systems. In a medical
diagnosis system for example, its “goal to exist as an
entity” is related to its success in performing good
diagnostics. Its actuators might be a GUI that make
queries for the user and the sensors might be a GUI
that receives his answers.

Based on the fact that the GSM maps intelligent
systems, we can use its structure as a starting point
for a domain analysis model. This approach leads to a
multiresolutional representation of the IS that might
be very interesting in most cases but it’s necessary to
certificate that the IS mapping into the GSM will be
adequately done. To make it possible it is necessary
to know how to distribute our system elements into
the GSM parts, otherwise the system model might
turn to be confusing and unmanageable.

To ensure a properly autonomous IS information
domain mapping into a GSM structure, two points
should be observed: the function and objective of
each GSM component and which kind of knowledge
each of them supports. The first point should be
carefully observed to avoid mistakes. When the
engineer is working over a GSM-based IS
information domain model he must remember that
any GSM part can be a nested GSM. In a nested
GSM the meaning of each GSM part changes
according to its location. For example: a perception
module is responsible for a sensory processing. So, a
world model of a GSM nested in a perception module
may contain a model of the sensorial space and the
actuators may be something like a focus system. For
a complete description of each GSM part please refer
to [Mey96].

The second point to be observed turns clear the
importance of semiotics in the information domain
analysis. GSM parts usually hold the same kind of
knowledge, no matter if it is embedded or not. Thus,
a prior knowledge of the knowledge distribution in
the GSM structure helps us to build consistent
information domain models. Table 1 shows the
taxonomy of the knowledge contained by each GSM
part. The notation "X → Y" means an argumentative
knowledge that transforms a knowledge type X to a
knowledge type Y.

Lets recall the artificial fishes example again. In this
case we can see that both the intention generator,
behavior generator and optimization modules hold
prescriptive and designative knowledge units. This
suggests that they can be combined into one single
behavior generation module in different hierarchical
levels (nested GSM). The focuser acts into the
sensorial space. It uses some prescriptive knowledge
to change the designative knowledge generation. This
fact suggests that the focuser is part of an embedded
GSM in the perception module. The apraisive and
some designative knowledge used by the intention
generator to control the focuser can be grouped into a
word model module, completing a GSM (Figure 4).

Another important point is that the GSM-based
model should be built in conformance with the
Analysis, Design and Project paradigm adopted. For
example, if the analysis method is the structured
analysis the GSM structure should be represented as
a data flow diagram (DFD). In this case, many DFDs
in different detail levels can represent the GSM. In an
object-oriented analysis (OOA) the GSM structure
can be easily mapped into an object-oriented
structure. We will introduce in future works how this



method integrates with a specific software
engineering method called UML (Unified Modeling
Language) [Lar98].

Knowledge P VJ WM BG

Apraisive X
Designative X X
Prescriptive X
{RIcSe} X X X X
{RIcO} X X
{RIcOc} X X
{D} X X
{RIcSeSp} → {RIcSeG} X X
{RIcSeSp} → {RIcOSp} X
{RIcSeG} → {RIcOSp} X
{RIcSeG} → {RIcOG} X
{RIcOSp} → {RIcOG} X
{RIcSeSp} → {RIcOcSp} X
{RIcSeG} → {RIcOcG} X
{RIcOcSp} → {RIcOcG} X
any {RIc} → {RIcSeSp} X

Table 1
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Figure 4 - GSM based artificial fishes

5 Conclusion
This work introduced important issues concerning the
development of a semiotic oriented software
engineering methodology, aimed for the analysis and
design of autonomous intelligent systems. First of all,
we emphasized the utility of discriminating among
different types of knowledge, when considering the
domain of intelligent autonomous systems as a
development platform. The hierarchy developed by
Gudwin is a good starting point, in this case, that
allows us to discriminate on the different functions
performed within an autonomous intelligent system
and also point out concepts of different nature that
need to be treated in these systems. Differently from
common software systems, intelligent autonomous
systems concepts and processes are directly related to

knowledge and knowledge processing. At this point,
the introduction of the concepts of knowledge unit, in
its structural and functional forms proves to be very
useful during both analysis and design phases of
development. The definition of knowledge space
allows the determination of an architecture suitable to
handle the particularities of such class of software
systems. The semiotic nature of different types of
knowledge is the guideline on the whole process.
Understanding the subtleties among the different
knowledge types, and the knowledge types required
in order to build an intelligent autonomous system,
allows a better comprehension of its behavior, and
also makes more easy its development. This is a work
in progress. Next publications should include a more
in depth discussion concerning the concept of
knowledge space and knowledge unit. This work is
the first step towards a semiotic engineering method
and does not adopt any specific software engineering
methodology. Future works should introduce how
these concepts apply in a specific method such UML.
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